

Exposure of Telefonica network topology through ALTO for integration with Telefonica CDN Update from IETF 114

<u>Luis M. Contreras</u> (*) | *Telefónica GCTIO – Transport Group* Francisco Cano, Anais Escribano | *Telefónica CCDO – Video Group*

ALTO WG meeting @ IETF 115, London, November 2022

Rationale for making TCDN to be transport network aware (reminder)

- One of the main objective of TCDN is to provide an efficient delivery of contents within the network
- Content delivery is based nowadays on a (semi-)static view of the network, decoupled from the real situation along time
- In order to make a complete and efficient usage of the network, TCDN would benefit from a real time knowledge of the status and characteristics of the network
 - For instance, allowing delivery decisions in TCDN to quickly adapt to network status variation (e.g., topology changes, congestion, etc.)
- Project presented in IETF 114, update reported here

Network map & Cost map

(reminder)

```
Network Map
```

```
"pid0:0a0a0a01": [
  "1.1.1.0/24"
"pid0:0a0a0a02": [
  "2.2.2.0/24"
],
"pid0:0a0a0a03": [
  "3.3.3.0/24"
],
"pid0:0a0a0a05": [
  "11.11.11.0/30"
],
"pid0:0a0a0a06": [
  "22.22.22.0/30"
```

A PID can represent a set of prefixes assigned either to clients or to CDN delivery points

Networkmap – association of prefixes per PID \leftrightarrow BGP Costmap - hopcount among PIDs \leftrightarrow BGP-LS

```
Cost Map
                                  "pid0:0a0a0a05": 2,
"pid0:0a0a0a01": {
                                  "pid0:0a0a0a06": 1
  "pid0:0a0a0a01": 0,
                                },
  "pid0:0a0a0a02": 2,
                                "pid0:0a0a0a05": {
  "pid0:0a0a0a03": 2,
                                  "pid0:0a0a0a01": 2,
  "pid0:0a0a0a05": 2,
                                  "pid0:0a0a0a02": 2,
  "pid0:0a0a0a06": 1
                                  "pid0:0a0a0a03": 2,
                                  "pid0:0a0a0a05": 0,
},
"pid0:0a0a0a02": {
                                  "pid0:0a0a0a06": 3
  "pid0:0a0a0a01": 2,
                                },
  "pid0:0a0a0a02": 0,
                                "pid0:0a0a0a06": {
  "pid0:0a0a0a03": 2,
                                  "pid0:0a0a0a01": 1,
  "pid0:0a0a0a05": 2,
                                  "pid0:0a0a0a02": 1,
  "pid0:0a0a0a06": 1
                                  "pid0:0a0a0a03": 1,
},
                                  "pid0:0a0a0a05": 3,
                                  "pid0:0a0a0a06": 0
"pid0:0a0a0a03": {
  "pid0:0a0a0a01": 2,
  "pid0:0a0a0a02": 2,
  "pid0:0a0a0a03": 0,
```

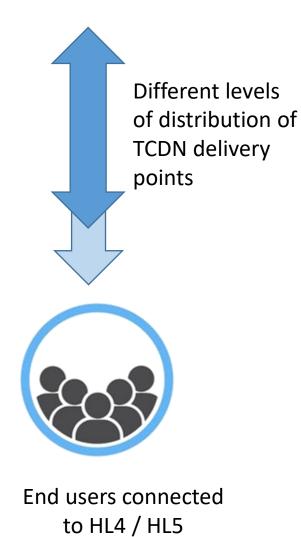
Process followed

Pre-production Initial tests in lab environment with simple Lab topology. Simplistic network configuration (e.g., OSPF) for understanding viability of the approach and get experience. Production Network *IETF* 115 **IETF 114** Integration on a pre-production environment with realistic network topologies, and **Technology** network configuration as in the production Preparation of ALTO connection for Lab network, with the purpose of assess the being an element of the production solution and solve problems found.

Pilot run on Oct. 27th

Deployment of ALTO as an element of the production network and full integration with TCDN

network (server installation, security aspects, flow definition, etc)


Initial known restriction

Due to an issue with current version of the OS of one of the router vendors it is not possible to disseminate — BGP-LS information for HL3-HL2 interconnection, except for some few PoPs in a

region of the network

Interconnection Interconnection Routers ~10 nodes level Backbone P Routers ~20 nodes level **Province** 3 PE Platforms level ~200 nodes IP Edge Local (BPE, BRAS) level ~1K nodes DSLAMS OLT. Access/ Cell Site Gateway Capillarity 5 ~10K nodes level

IP Transport Hierarchy Levels (HL)

High level view of a network in a mid-size country

Bright news

- A total of 16383 summarized IP address ranges are retrieved from the network, allocated to different kind of nodes (fixed, mobile, enterprise)
- Such IP ranges are internal, but also external to Telefonica (those of national interconnections at IXP)
- Available information in cost map correctly reflects the defined IGP metric
- The load of the server is not significant (yet being monitored to understand proper behavior)

Example

```
Network Map
"pid0:ac***703": [
           "2.139.150.192/27",
           "2.139.146.32/27"
           "2.138.196.0/27"
           "2.139.170.96/27",
           "2.139.163.0/27"
           "2.139.160.64/27"
           "2.139.153.192/27",
           "2.139.151.160/27"
"pid0:ac***403": [
           "2.139.144.8/29"
           "2.139.146.96/27"
           "2.139.150.160/27"
           "2.139.145.160/27"
           "2.139.148.96/27"
           "2.139.144.32/27"
           "2.139.157.32/27"
           "2.139.159.32/27"
           "2.139.156.224/27"
           "2.139.155.224/27"
           "2.139.151.224/27"
           "2.139.171.160/27"
           "2.139.163.224/27"
           "2.139.165.160/27"
           "2.139.151.96/27"
           "2.139.161.64/27",
           "2.139.164.0/27"
           "2.139.166.0/27" ],
```

```
Cost Map
"pid0:ac***f01": {
           "pid0:ac***f01": 0,
           "pid0:ac***f02": 1030,
           "pid0:ac***f18": 2530,
           "pid0:ac***f0f": 2530,
           "pid0:ac***f05": 1500,
           "pid0:58***cc7": 5030,
           "pid0:ac***f16": 1500,
           "pid0:ac***f19": 7530,
           "pid0:58***cc3": 10030,
           "pid0:50***3bd": 1300,
           "pid0:50***513": 5000,
           "pid0:c2***293": 1500,
           "pid0:c2***294": 1520
},
"pid0:ac***f02": {
           "pid0:ac***f02": 0,
           "pid0:ac***f01": 1030,
           "pid0:ac***f18": 1500,
           "pid0:ac***f0f": 1500,
           "pid0:ac***f05": 2530,
           "pid0:58***cc7": 4000,
           "pid0:ac***f16": 2530,
           "pid0:ac***f19": 6500,
           "pid0:58***cc3": 9000,
           "pid0:50***3bd": 2330,
           "pid0:50***513": 5000,
           "pid0:c2***293": 1520,
           "pid0:c2***294": 1500
```

Not so bright news

- There is no information of IP ranges in 4% of the PoPs
 - Analyze what are the particularities of those PoPs
- Some IP ranges seems not to be retrieved
 - check if proper BGP sessions are considered, because of the diversity of RR in the network for different purposes
- Only 27 PIDs are in both network map and cost map
 - Confirm if it is a matter of the HL2-HL3 BGP-LS missing information
- PIDs for CDN nodes not yet captured
 - necessary to connect to another RR?

Next steps

For the pilot

- Understand how to consume the ALTO information: how often?
- Continue analyzing the information received to understand dynamics in a production network
- Debug issues that could be found during the process
- Wait till resolution of OS issue for HL2-HL3 connections in the overall network for building a complete picture of the network

For ALTO-based solution

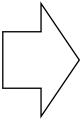
- Productification of ALTO
- Topology load automation to be consumed by TCDN logic

For ALTO / MOPS WG

- Document the pilot (would it be also interesting for MOPS?)
- Identify gaps/issues/improvements in the solution worthy to work in (e.g., security)
- To provide another update at IETF 116 (with everything solved, hopefully)

Backup

Network map creation


Leveraging on UPDATE messages from BGP RR

Pid name: Pid + ASN (default value = 0) + IP next-hop in hexadecimal:

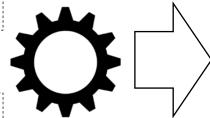
"pid" + 0 + hex(192.168.255.12) -> pid0: c0a8ff0c

BGP advertisement with address family ipv4 unicast. The nexthop value (192.168.255.12) is used for the PID identifier and the NLRI value (80.58.102.64/26) is one of the prefixes of such PID

```
{"exabgp": "5.0.0", "time": 1651759327.1712353, "host":
"localhost.localdomain", "pid": 72259, "ppid": 1, "counter": 135, "type":
"update", "neighbor": { "address": { "local": "80.58.171.201", "peer":
"192.168.252.200" }, "asn": { "local": 64531, "peer": 64531 } , "direction":
"receive", "message": { "update": { "attribute": { "origin": "igp", "med": 0, "local-preference": 100, "originator-id": "192.168.255.12", "cluster-list": [ "3.3.2.1",
"192.168.251.172" ] }, "announce": { "ipv4 unicast": { "192.168.255.12": [ { "nlri": "80.58.102.64/26" } ] } } } }
```


Cost map creation

Leveraging on UPDATE messages from BGP-LS RR


bgpls-link messages

```
{"exabgp": "5.0.0", "time": 1651676896.0184126, "host": "localhost.localdomain", "pid": 70559, "ppid": 1, "counter": 733, "type": "update", "neighbor": { "address": { "local": "80.58.171.201", "peer": "192.168.255.89" }, "asn": { "local": 64531, "peer": 64531 } , "direction": "receive", "message": { "update": { "attribute": { "origin": "igp", "local-preference": 100, "originator-id": "192.168.252.178", "cluster-list": [ "12.4.1.1" ], "bgp-ls": { "generic-lsid-258": [ "0x00000C0D0000008B"], "igp-metric": 1000 } }, "announce": { "bgp-ls bgp-ls": { "192.168.252.178": [ { "Is-nIri-type": "bgpls-link", "I3-routing-topology": 2, "protocol-id": 2, "local-node-descriptors": [ { "autonomous-system": 3352 }, { "bgp-ls-identifier": "178" }, { "router-id": "d500b8070000" } ], "remote-node-descriptors": [ { "autonomous-system": 3352 }, { "bgp-ls-identifier": "178" }, { "router-id": "c0a8ff210000" } ], "interface-addresses": [ "192.168.204.198" ], "neighbor-addresses": [ "192.168.204.197" ], "multi-topology-ids": [ ], "link-identifiers": [ ] } ] } } }}}
```

bgpls-node messages

```
{"exabgp": "5.0.0", "time": 1652431307.7986917, "host": "localhost.localdomain", "pid": 81254, "ppid": 1, "counter": 774, "type": "update", "neighbor": { "address": { "local": "80.58.171.201", "peer": "192.168.255.89" }, "asn": { "local": 64531, "peer": 64531 } , "direction": "receive", "message": { "update": { "attribute": { "origin": "igp", "local-preference": 100, "originator-id": "192.168.252.178", "cluster-list": [ "12.4.1.1" ], "bgp-ls": { "node-flags": {"O": 1, "T": 0, "E": 0, "B": 1, "R": 0, "V": 0, "RSV": 0}, "area-id": "1346612317385085419520", "local-te-router-ids": ["192.168.181.3"] }}, "announce": { "bgp-ls bgp-ls": { "192.168.252.178": [ { "Is-nIri-type": "bgpls-node", "I3-routing-topology": 2, "protocol-id": 2, "node-descriptors": [ { "autonomous-system": 3352 }, { "bgp-ls-identifier": "178" }, { "router-id": "192168181009" } ], "nexthop": "192.168.252.178" }] }}}}
```

python networkx library


```
"pid0:c0a8fc72": {},
"pid0:c0a8fc8a": {
  "pid0:c0a8fc8a": 0,
  "pid0:c0a8fca2": 1,
  "pid0:c0a8fcf9": 2,
  "pid0:c0a8fca0": 3,
  "pid0:c0a8fcec": 4,
  "pid0:c0a8fcf5": 4,
  "pid0:c0a8fca3": 4,
  "pid0:c0a8fb7b": 5,
  "pid0:c0a8fcf6": 5,
  "pid0:c0a8fbf1": 5
"pid0:c0a8fca1": {
  "pid0:c0a8fca1": 0,
  "pid0:c0a8fcf6": 1,
  "pid0:c0a8fcf1": 1,
  "pid0:13d833978": 1.
  "pid0:c0a8fbcb": 1,
  "pid0:c0a8fca3": 2,
  "pid0:c0a8fb7b": 3,
  "pid0:c0a8fca0": 3,
  "pid0:c0a8fbf1": 3,
  "pid0:c0a8fcec": 4,
  "pid0:c0a8fcf9": 4,
  "pid0:c0a8fcf5": 4,
  "pid0:c0a8fca2": 5,
  "pid0:c0a8fc8a": 6
```