Multicast VPN Upstream Designated Forwarder Selection

draft-wang-bess-mvpn-upstream-df-selection-02
Fanghong Duan@Huawei
Siyu Chen@Huawei
IETF 115
Nov. 2022
Background

- Compared with “Hot Root Standby”, “Warm Root Standby” avoids steady traffic redundancy and saves bandwidth.

- [RFC9026] defines that UMH selection is conducted by leaf PEs based on Provider-Tunnel Status.

- But,
 - Due to inconsistency of the primary PE considered by root and leaf PE, failover time cannot reach same level as “hot root standby”.
 - No endogenous mechanism to discover failure of primary PE.
 - Inconsistencies of transient unicast routing, P-Tunnel status, etc. -> Unstable “Warm Root Standby”.
 - All multicast traffic use the same primary and standby PE. Cannot perform load balancing.

- In previous versions of draft in IETF113&IETF114:
 - Upstream Designated Forwarder(DF) Selection by VRRP. → This draft defines endogenous method for IDF election and fast failover.
 - Upstream DF Selection Extended Community. → IDF Negotiation Community and BFD Discriminator Attribute.
 - Downstream PEs advertise C-multicast Route to both Primary and Standby upstream PEs and accept traffic from both sides.
 - Downstream PE performs “Anycast Reverse Path Forwarding(RPF) Checking”.
IDF Negotiation Mode

• **Passive Mode**
 - CE selects one member interface to forward traffic
 - Ingress Designated Forwarder (IDF) PE is decided by CE
 - Root PE accept the IDF role passively

• **Active Mode**
 - Client network contains one or more CEs
 - Interfaces are not bundled
 - Each root PEs can receive multicast traffic
 - Only one root PE send traffic to leaf
MVPN Extensions

• IDF negotiation Community
 • Format:
 • Carried in UMH routes (to client multicast source)
 • To be allocated from “BGP Well-known Communities” registry for each mode
 • Function:
 • Notify other root PEs to perform IDF election
 • A symbol for leaf PE to add root PE to anycast RPF checklist

• BFD Discriminator Attribute
 • Format:
 • Carried in UMH routes
 • Reuses the format defined in RFC 9026
 • BFD Mode: Redefined as unicast BFD session type, value is 2
 • Source IP optional TLV: Mandatory
 • Function:
 • Establish a BFD session to detect the failure of primary IDF PE
IDF Election Procedure

• Root PEs originate UMH routes:
 • IP address of Source IP TLV: establish a BFD session to do fast tracking of IDF failure

• Leaf PEs:
 • Originate distinct C-multicast routes to each root PEs
 • Installs P-Tunnels into anycast RPF tunnel checklist
 • Traffic received from each P-Tunnel in checklist is valid
IDF Election Procedure (cont.)

- Endogenous Mechanism for IDF Election
 - Each root PEs learn prefix of source
 - RDs of multi-homed root PEs for a same MVPN are distinct
 - Root PEs originate VPN route (to client multicast source) with originator IP address of PE
 - VPN route sent to other root PEs and leaf PEs
 - Each PE builds an ordered list of IP addresses of all root PEs in ascending IP order

- Election method a): All C-Gs use one primary IDF
 - Election occurs upon receiving all UMH routes of other PEs
 - PE Index represents its position, 0 corresponding to the lowest IP address
 - IDF: PE with Index 0; Standby IDF: PE with index 1

<table>
<thead>
<tr>
<th>Index</th>
<th>IP</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1.1.1</td>
<td>Primary IDF</td>
</tr>
<tr>
<td>1</td>
<td>2.2.2.2</td>
<td>Standby IDF</td>
</tr>
<tr>
<td>2</td>
<td>3.3.3.3</td>
<td>Common root PE</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>N</td>
<td>N.N.N.N</td>
<td>Common root PE</td>
</tr>
</tbody>
</table>
IDF Election Procedure (cont.)

- Election method b) : Different C-G can use different IDF (Load Balancing)
 - Election occurs upon root PEs receiving C-multicast join of corresponding C-G
 - IDF: PE with index i, i = (C-G mod N)
 - A new ordered list without the elected primary IDF
 - Standby IDF: PE j, j = (C-G mod (N-1))

<table>
<thead>
<tr>
<th>Index</th>
<th>IP</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1.1.1</td>
<td>Common root PE</td>
</tr>
<tr>
<td>1</td>
<td>2.2.2.2</td>
<td>Primary IDF</td>
</tr>
<tr>
<td>2</td>
<td>3.3.3.3</td>
<td>Common root PE</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>N</td>
<td>N.N.N.N</td>
<td>Common root PE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>IP</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1.1.1</td>
<td>Standby IDF</td>
</tr>
<tr>
<td>2</td>
<td>3.3.3.3</td>
<td>Common root PE</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>N-1</td>
<td>N.N.N.N</td>
<td>Common root PE</td>
</tr>
</tbody>
</table>
Failure detection and fast failover

- Endogenous mechanism for Active IDF Mode
- Detect **failure of IDF node or client facing link** of IDF quickly
- Standby IDF: Initializes a BFD session
 - Destination IP address: from Source IP TLV of BFD Discriminator Attribute of IDF

- If obsoleted IDF PE recovers and it needs to failback:
 - Obsoleted PE establishes multicast path towards SDR
 - When failback time expires, running IDF establishes the BFD session with the obsoleted PE
 - Running IDF stops sending multicast traffic and obsoleted IDF become the new IDF
 - New IDF sends multicast traffic to leaf
Data forwarding

- **Root PEs**
 - Passive mode, root PE has local receivers:
 - When one PE is selected as IDF, the other PEs may have local receivers
 - PEs need perform anycast RPF checking on client facing interface or IDF PE oriented P-tunnels when receiving traffic
 - Unidirectional forwarding: send traffic only to local receivers
 - Active mode: All root PEs can send traffic to local receivers, but only primary IDF send data to leaf PEs

- **Leaf PEs**
 - Install each P-Tunnel into anycast RPF checklist for corresponding multicast flow (C-S, C-G)
 - Accept traffic from each root PEs
 - Accept traffic from standby IDF without latency
Next Steps

• Comments and discussion.
Thanks