

FACULTY OF SCIENCE Communication Networks

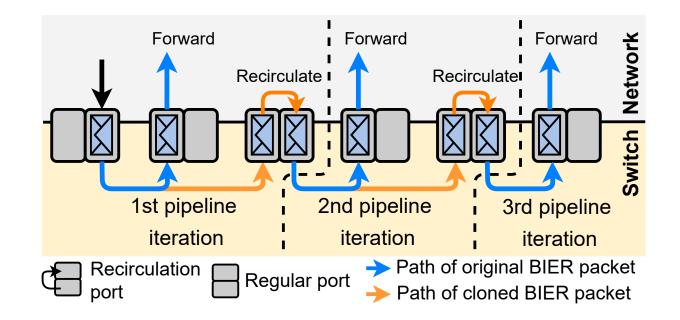
Efficient P4-Based BIER Implementation on Tofino

Steffen Lindner, Daniel Merling, and Michael Menth

http://kn.inf.uni-tuebingen.de

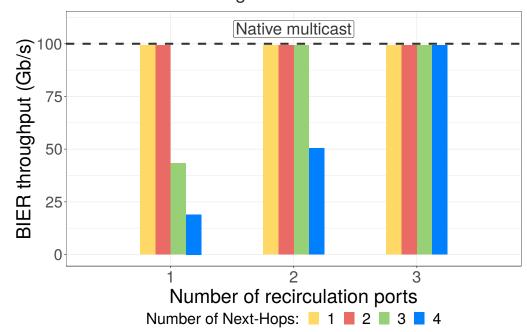
Previous Work

Problem Statement


Implementation of Efficient BIER in P4

► Optimization

▶ IETF 108


- First implementation of BIER & BIER-FRR in P4 @ Intel[™] Tofino
- Iterative processing
 - In each iteration, one next-hop is served

Caveat

- Recirculation requires capacity
- 100 Gbit/s multicast traffic with 5 next-hops results in 400 Gbit/s recirculation traffic
- Solution: Add dedicated recirculation ports to increase recirculation capacity

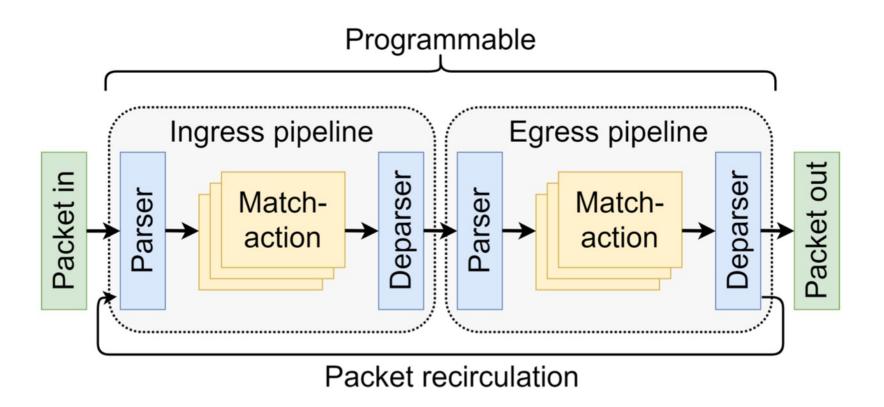
Sending rate = 100 Gbit/s

► Goal: Reduce recirculations to improve efficiency

Idea

- Determine all next-hops in (possibly) one shot
- Use a (static) internal multicast group to replicate packets to next-hops

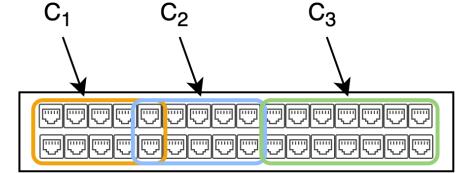
► Challenges


- BIER bitstrings with 256+ bits difficult to map to the set of packet's next-hops in a single table lookup (without specialized hardware)
- Limited number of configurable static multicast groups

How can we do this more efficiently?

Efficient Implementation of BIER in P4

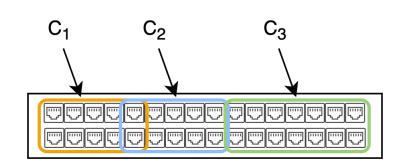
- High-level programming language to describe data plane
 - Compiler maps P4 program onto programmable pipeline of target



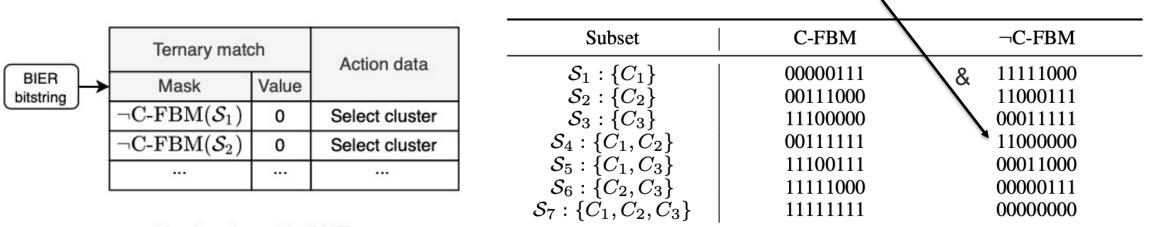
Approach

EBERHARD KARLS

TÜBINGEN


- 1. Divide all ports of a switch in k so-called *configured port clusters* C_i
- 2. Determine which configured port cluster C_i requires a packet copy
 - Possibly iteratively with only a few iterations (like 1-4, not 1-32)
- 3. For each chosen configured port cluster C_i , use a suitable (static) multicast group to replicate packet to required next-hops
- \rightarrow Maximal number of recirculations: *k*-1
- Example 32-port switch
 - Three configured port clusters with size 11, 11, 10
 - At most 2 recirculations; independent of number of next-hops

Switch


Efficient Implementation of BIER in P4 (2)

- How to determine which C_i requires a packet copy?
 - Look at all combinations of configured port clusters S_i
 - C-FBM(S_i) is combined FBM; indicates all BFERs reachable through S_i
 - Ternary match on BIER bitstring and complement of C-FBM → Match when result is 0

Switch

Ordered by |S_i| → Select first configured port cluster C_j in S_i for further processing
Example BitString: 00001101

Match-action-table (MAT)

EBERHARD KARLS

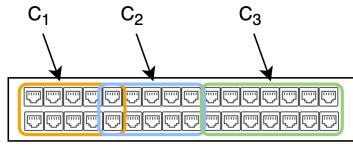
UNIVERSITÄT Tübingen

- ► How to determine appropriate multicast group within C_i ?
 - Configure all combinations of ports within configured port cluster C_i as static multicast group H_i
 - Robustness against change in the multicast tree, e.g., some BFERs join / leave
 - C-FBM(H_i) is combined FBM; indicates all BFERs reachable through H_i
 - Ternary match on BIER bitstring and complement of C-FBM → Match when result is 0
 - Ordered by $|H_i|$

Caveat

- $|C_i| = n$ requires $\approx 2^n$ static multicast groups
- Example 32-port switch
 - Three configured port clusters with size 11, 11, 10
 - $\leq 2^{11} + 2^{11} + 2^{10} = 5120$ static multicast groups

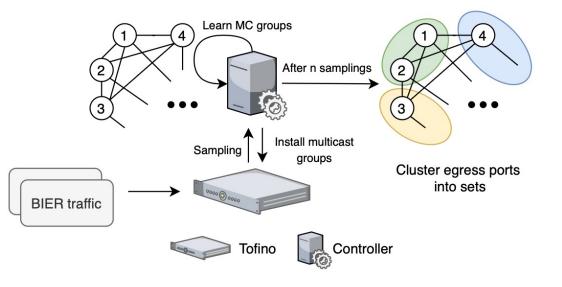
▶ Runs at 100 Gbit/s per port on Intel[™] Tofino



Assumptions

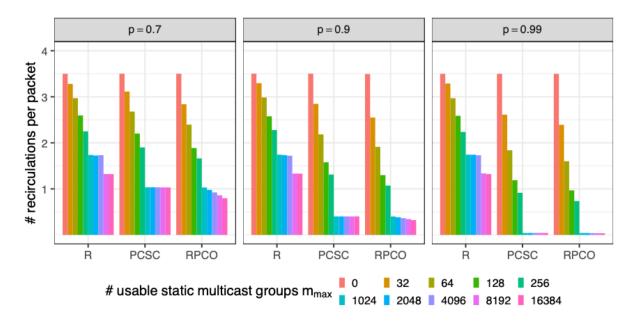
EBERHARD KARLS

UNIVERSITÄT Tübingen


- Multicast traffic is not random
 - Some correlation on egress ports
- Limited number of static multicast groups available

Switch

Idea


- Sample BIER traffic
- Store information about used ports for each BIER packet in a graph structure
- Apply clustering methods to choose configured port clusters C_i such that
 - all of them cover all ports
 - few of them are needed to cover most BIER packets

Example

- BIER traffic with 4.5 next-hops on average
- Old version requires 3.5 recirculations on average (red bar)
- Highly correlated multicast traffic
 - Almost 0 recirculations with > 1024 static multicast groups
- Less correlated multicast traffic
 - < 1 recirculations with > 1024 static multicast groups

(a) Traffic sampled from four generating port clusters of size 8 with different port correlation p.

- Mechanism to forward BIER traffic with a few iterations instead #next-hops
 - Configuration: Choose configured port clusters C_i
 - Iterative processing
 - 1. Select configured port cluster C_i
 - 2. Send packet to all required ports within C_i
 - Step 2 may be achieved through pre-defined internal multicast groups
 - Does not require dynamic state
 - May bee done differently depending on technology
 - Max. number of iterations bounded by max. number of port clusters (~ 3 instead of 32)
 - Optimized port clusters further reduce required iterations
- ▶ Implemented in P4 at line rate @ Intel™ Tofino
- More details
 - Paper under submission: <u>https://atlas.informatik.uni-tuebingen.de/~menth/papers/Menth22-Sub-2.pdf</u>
 - We're happy to discuss

Steffen Lindner University of Tuebingen Faculty of Science Department of Computer Science Chair of Communication Networks