draft-urien-coinrg-iose
(Internet Of Secure Elements)
"Architecture of secure elements in the Internet whose resources are identified by URIs"

Pascal.Urien@Telecom-Paris.fr
About Secure Elements

• A Secure Element contains a certified microcontroller and embedded software. Its *Evaluation Assurance Level* (EAL) is up to EAL6+, given a scale ranging from one to seven, according to Common Criteria (CC) standards.

• 9 billions Secure Elements shipped in 2021.

• Today 8/16 bits CPUs, up to 10KB SRAM, 100KB non volatile memory + crypto processors
 – Next generation: 32bits core, 60MHz clock, up to 2048KB FLASH, 64KB SRAM + crypto processors

• Legacy communication: serial (ISO7816), emerging I²C, SPI

• Binary Encoding Rules: small packets (about 256 bytes), i.e. ISO7816 APDUs

• Programming environments: Javacard (a subset of Java) six billions devices deployed every year, other languages (C...).

• Secure software management(list/delete/upload) framework: Global Platform with Secure Channel Protocol (SCP), using ISO7816 APDUs.
Why connecting Secure Elements to Internet?

• On-line trusted cryptographic resources for internet user.
 – Identified by Uniform Resource Identifiers.

• Issues:
 – Additional processor (server) is required with network interface and TCP/IP connectivity.
 – Global Platform support for on-demand applications.
 – Protocol to access to secure element resources.
 – Secure element naming.
 – Attestation procedure for on-demand applications.
IOSE creates cryptographic resource URIs

- \texttt{schemes://sen:psk@server.com:port/?query}
- in which:
 - server.com:port is the TCP/IP socket for the front TLS server
 - sen is the secure element name (TLS server name)
 - psk is the pre-shared-key value (256 bits)
 - schemeS (S meaning secured by TLS) identifies the syntax used by the application embedded in the secure element
 - query is a request, encoded according to scheme syntax

IOSE Server Components

- The Administration plane: RACS (TCP Deamon)
- The Service Plane: TLS-SE (TCP Daemon)
- The Attestation procedure. It transfers secure element control to user. Its security relies two properties:
 - 1) secure elements can not be cloned,
 - 2) and they manage only one TLS session at a given time.
Administration Plane: RACS

- Secure element applications are securely downloaded thanks to Global Platform (GP) protocols, working over ISO7816.
- Remote APDU Call Secure (RACS\(^1\)), transports GP protocols, over TLS sessions.
- End entities are mutually authenticated by X509 certificates.
- In this context secure elements are identified by Secure Element Identifier (SEID), inserted in RACS messages.

\(^1\)https://datatracker.ietf.org/doc/draft-urien-core-racs/
Service Plane: TLS-SE

- Secure Elements run TLS1.3 server\(^1\), using pre-shared-key (PSK), and a server name (SEN).
- The server name is found in the historical bytes (up to 15 bytes) of the secure element Answer To Reset (ATR).
- TLS packets are transported over ISO7816 interface
- The client-facing server (server.com) finds in the ClientHello Server Name Indication (SNI) the secure element name (SEN). Thereafter it performs segmentation/reassembly operations in order transport TLS packet over the communication interface.
- Optional TLS Identity Module (TLS-IM\(^2\)) compute PSK procedures
- Secure element is the backend server, identified by a server name

\(^1\)https://datatracker.ietf.org/doc/draft-urien-tls-se/
\(^2\)https://datatracker.ietf.org/doc/draft-urien-tls-im/
On-demand Application & Attestation

1- The application is downloaded in the secure element SEID, thanks to RACS. It generates a pair of public/private keys.
2- The app provider binds the secure element name (SEN) to its SEID.
3- It reads the public key via TLS-PSK.
4- It generates a certificate and pushes it over TLS-PSK session.
5- The user receives the app provider PSK and SEN.
6- It opens a TLS-PSK session, both parties compute the TLS Handshake Secret (HS).
7- It reads the public key.
8- It reads the certificate.
9- It checks the secure element knowledge of TLS handshake secret and private key.
10- And Finally it modifies the PSK value to PSK-User.

Pascal Urien - COINRG - IETF115 - November 8th 2022
Open Resources

• TLS-SE for javacard (JC 3.0.4)
 – https://github.com/purien/TLS-SE
 – ASCII command lines over TLS
• IOSE Server v5 (Windows, Ubuntu, Raspberry Pi)
 – https://github.com/purien/IoSE
 – 2 TCP Daemons, RACS + TLS
 – Multiple communication interfaces
 • PC/SC, I²C, SIM Array
Could this draft become a working group item?

(4) Research on potential new transport protocol, new privacy and security mechanisms required or enabled by in-network compute.