Requirements of large-scale deterministic network

draft-liu-detnet-large-scale-requirements-05

Peng Liu liupengyjy@chinamobile.com
Yizhou Li liyizhou@huawei.com
Toerless Eckert tte@cs.fau.de
Xiong Quan xiong.quan@zte.com.cn
Jeong-dong Ryoo ryoo@etri.re.kr
Shiyin Zhu zhushiyin@h3c.com
Xuesong Geng gengxuesong@huawei.com
Recap

Presented the requirements slides in Detnet interim, absorbing some good points from the earlier draft

Submitted and presented draft-liu-detnet-large-scale-requirements-00

Merged draft-xiong-detnet-wide-area-ip-requirements, addressed the comments

Discussion online and offline, addressed the comments and update from v01 to v05

Sep, 2021 Nov, 2021, IETF 112 Mar, 2022, IETF 113 Nov, 2022, IETF 115

Motivations

•Aiming at the large-scale deterministic network with long hops, large per-hop time variation, great number of flows and/or multiple domains without the same time source, this document describes the technical requirements including the data plane enhancement requirements when the different deterministic levels of applications co-exist and are transported.
Main Updates

- Summarized the key attributes of large-scale detnet
- Re-structured the document for better alignment:
 - Remove Section 3 of the old version and merged it into Requirements Section
 - Refine the Technical Requirements Section
 - Add Data Plane Enhancement Requirements Section
- Addressed the comments from Lou Berger, Bala’zs Vagas, Fan Yang, Lei Zhou, & Tianran Zhou. Thank you all.
- Some editorial improvement.
Key attributes of large-scale detnet

We define a large-scale DetNet network as a network that requires DetNet solutions for typically one or more of the following key attributes:

- There is relaxed clock synchronization or no clock synchronization in different domains.
- The end to end path is a combination of short and long distance hops.
- There are various transmission rate supported at the different ports and on different network node.
- There are a large number of flows which may has different level demands of DetNet service accrossing multi-domains.
- The topology change and failures of link might be more common.
- The mechanisms used to ensure bounded latency (e.g. queuing mechanism) may be multiple or have different configuration/parameter in multi-domains.

Such domains are normally within a single administrative control network or multiple cooperating administrative networks within a closed group of administrative control [RFC8655].
Overall technical requirements
- closely aligned with the key attributes

• Req 1. Tolerate Time Asynchrony
 – Support Asynchronous Clocks Across Domains
 – Tolerate Clock Jitter & Wander within a Clock Synchronous Domain
 – Provide Mechanisms not Requiring Full Time Synchronization
 – Support Asynchronization based Methods
• Req 2. Support Large Single-hop Propagation Latency
• Req 3. Accommodate the Higher Link Speed
• Req 4. Be Scalable to Numerous Network Devices and Massive Traffic Flows
• Req 5. Tolerate Failures of Links or Nodes and Topology Changes
• Req 6. Support Enhancement of Queuing Mechanisms (merge original Req 6 and Req 7)
 – Support Configuration of Multiple Queuing Mechanisms
 – Support Queuing Mechanisms Switchover Crossing Multi-domain
Data Plane Enhancement Requirements

• **Req 1. Support Aggregated Flow Identification**
 – The number of individual flows is huge, and they may randomly join and leave the aggregated flow at each hop.
 – Explicit flow identification makes it easier to quickly distinguish the different kinds of DetNet flows instead of relying on the prefixes or wildcards as indicated in [RFC8938].

• **Req 2. Support Meta Information used by Functions ensuring Deterministic Latency**
 – Supporting synchronized or asynchronized queuing mechanisms requires different information to be defined as the DetNet-specific metadata
 – Data plane processing efficiency also needs to be considered

• **Req 3. Support Redundancy Related Fields**
 – Sequence number is the only metadata currently defined for redundancy feature of Detnet.
 – MPLS data plane uses Detnet-over-MPLS label stack to carry it, and native IPv6 data plane should be able to carry this information too.

• **Req 4. Support Explicit Path Selection**
 – MPLS label stack can be used for this purpose. IP data plane enhancement is required to support the explicit path selection based on IP source routing or SRv6.
Next step

• It is in the process of the adoption call.
• Please reply to the mailing list before November 18.