Asunchronous Deterministic
Networking (ADN) Framework for
Large scale networks

Red)
letters:

draft-joung-detnet-asynch-detnet-framework-01 adfedt
conten S/

Jinoo Joung, Jeong-dong Ryoo, Tae-sik Cheung, Yizhou Li, Peng Liu

[ETF 115

Scope

* |t specifies the framework for both latency & jitter bounds guarantee in large scale
networks with dynamic sources with arbitrary input patterns.
* |arge scale:
» arbitrary topology, may include loops
* link capacity & propagation delay vary
* dynamic sources: flows join and leave

» arbitrary patterns: aperiodic or random packet arrivals. Only constraint is the TSpec {burst,
rate}.

- Similar to the Internet

e Overall framework
* Decouple the latency guarantee problem from the jitter guarantee problem
* Latency guarantee

* Regulators or Metadata based forwarding

* Jitter guarantee

* Latency guaranteed network & Time-stamping & Buffering

Solution candidates & shortcomings

1. Flow regulation: Forcing a flow into its initial shape {B, r}

* requires flow state maintaining. = This can be overcome with flow aggregation.

2. Packet metadata based forwarding

* may require lookup/decide/queue-reorder/overwrite in line speed.
— This can be compensated by the performance advantage of stateless fair-
queuing at core nodes.

3. Slotted operation (without strict synchronization)
* can be seen as an example of regulation with {Burst, rate, and start phase},

* requires the slot planning and the source cooperation,

* the cycle-time can be as large as the accumulated burst size, because it may have
to accommodate all the other flows in its path.

* The proposed solutions in this document include 1 and 2.

Latency guarantee framework with regulators

* Regulation on Flow aggregate lows from 3 same IR does not increase
the worst latency of

input port remain

e ATS EIEO in a node. the FIFO system.
* At every node Flow ~ s Yo
R : n-regular —» Inima
IR per input port e system S I:> IR I:>
* IR has only one queue, but still — R arch
requires individual flow states architecture
* FAIR
tput t
° PFAR /IRper > pr:oc?SD
input High
* Other possible solutions —ﬁ priorty Output
- Strict r
I‘R—perll_,\ queue priority ||
pgrtt Low Scheduler >
priority
K queue /

Implementation practice of ATS

Latency guarantee framework with regulators

Generalized
* Regulation on Flow aggregate _ FIFO system
Regulated Minimal
e ATS QTS IR p&.:r FA
* FAIR (Flow aggregate & IR) 3) [> >
e At “aggregation domain (AD)” boundaries — Min'imal
* FAis of flows with same path in AD IR per FA
* IR per FA Generalized IR architecture
* Generalized ATS
* Shown to work better than ATS [FAIR] - output port

IR per : High module
® PFAR Ff\ priority Output
: FIFO port
 Other possible solutions R per queue ‘ o >
Low

priority

N Y

Implementation practice of FAIR
at an AD ingress

Latency guarantee framework with regulators

* Regulation on Flow aggregate
e ATS
* FAIR
* PFAR (Port-based FA regulation)

* At every node or at critical links to break the cycle

* FAis of flows having same input/output port of a
node

* Regulate FA, not individual flow, with {3B, >r}

e Best scalability: no need to maintain individual
flow states

 Shown to work almost as well as ATS [ADN].

e Other possible solutions

/PFAR

per

PFAR
per
input
port

input
port T :

High
priority
FIFO
queue

Low
priority
queue

output port\

module

Output
Strict port

priority | >
Scheduler

/

Implementation practice of PFAR

Latency guarantee framework with metadata

BACKGROUND
* Fair queuing (e.g. Virtual Clock [Zhang])

* is based on FT, Finish time F(p) = Service finish time of packet p in an Ideal
fluid model = Service order in a realistic packet-based model. Smaller FT gets

* FTis determined by the “fair distance” from the previous packet’s F(p-1) in the Node An output port module of a
same flow, or from the packet's arrival time: switching device
F(p) = max{F(p-1), A(p)} + L(p)/r; F. (p) ‘Finish time’ of packet p at
* |t requires F(p-1) to get F(p). F(p-1) is the “flow state”. node h
A.(p) Arrival time of packet p at

* We propose to use fair queuing in core nodes without flow state.
Necessary conditions are:

e Within a flow,

1. Keep the fair distance between FTs of consecutive packets

node h

L(p) Length of packet p

r Flow service rate

2. Preserve the actual service completion order
3. Reflect the time lapse as hops progress: F,(p) 2 F, ;(p)
* Across the flows,

4. Align the FTs to the current time

Latency guarantee framework with metadata

Node An output port module of a switching device
Solution: Global FT based forwarding framework Fu(p) ‘Finish time’ of packet p at node h
_ . . An(p) Arrival time of packet p at node h
1) Obtain Fy(p) at the entrance node O, as in the Virtual Clock: . Lensth of
p ength of p
Fo(p) = max{F,(p-1), Aq(p)}+L(p)/r. _
))) r Flow service rate
2) in a core node, increment FT of previous node by d, (p): .
d,(p) FT increment factor of p at node h

Fr(p) = Fr1(p) + d, 1(p).

3) d,(p) is a non-decreasing function of p within a node busy -
npu
period & should be larger than or equal to the actual delay; poprt f N
High

dh(p) 2 Ah+1(p) - Ah(p) priority| M FIFO queue per
. input port
4) In a core node, preserve the service order of packets from the : |—v : ;p S Strict
same input port. : v | FIFO queue per sfr:g:flyer
input port with pre- >
* By 1)~ 3), the conditions 1 ~ 4 are met. . - p—— emption :
. . . . : ,l: queue
* By 4), using the per-input port FIFO queue is possible. ; :O_W , output port | |}
. rioril module E
* The metadata to carry in a packet: F.(p), d,(p). L”opr‘t“ K : /
* These are dynamic and need to be updated. |—Jl> | >[— portJ :
* d,(p) can be set to d,. Then metadata update is simpler. & <witch mwﬁ

M: Finish time (F) marker S: HoQ examine, select the min F,
update d,(p)

Discussion

e Simple FIFO implementation & simple metadata management.

* d, can be obtained (theoretical or measured) in a distributed manner; or by a central network
manager then distributed.

* As an example d, can be u,, the maximum latency in node h for any flow.

* A packet with max latency up until h gets F, (p) = Fo(p)+(A,(p)-Ay(p)), while others have
F.(p") > Fo(p')+(A,(p)-Ay(p’)); therefore does not delayed more than it would in a stateful VC.

* The proposed solution is work conserving, contrary to the non-work conserving scheme [Stoica].
* It approximates packetized rate proportional servers (PRPS) [Stiliadis] whose E2E delay bound is

bounded with < B/r + H*(L/r+L, . /C),

* where B is the max burst of the flow, H the number of hops, C the link capacity, L the max packet length
of the flow, L . the max packet length of all the flows.

* Note that the bound is free from other flows’ bursts. Flow protection can be achieved.

max

Jitter guarantee framework

 Jitter guarantee = Reproducing the inter-
arrival process with the inter-departure @ %] Time-
stamper
process of a network.
e With a latency guaranteed network, time-

stamping and buffering at the network
boundary:

Network with E2E latency

 E2E jitter is upper bounded. upper bound guarantee

* |t can be set to zero.

* ‘E2E buffered latency’ (c,—a,) is also
upper bounded.

* Moreover, we can control the jitter

. Buffer
bound. We can even have zero jitter, C

with E2E buffered latency bound = 2*
E2E latency bound [BN].

a, : the arrival time of n,, packet of a flow

The jitter between packets i and j is defined as |(¢; — a;) — (cj — aj)|.

Thank you

Please take a look at
https://datatracker.ietf.org/doc/draft-joung-detnet-asynch-detnet-framework/

Comments and Questions are welcome!

[FAIR] Jinoo Joung. "Framework for delay guarantee in multi-domain networks based on interleaved regulators." Electronics 9, no. 3
(2020).

[ADN] Jinoo Joung, Juhyeok Kwon, Jeong-Dong Ryoo, and Taesik Cheung. "Asynchronous Deterministic Network Based on the
DiffServ Architecture." IEEE Access 10 (2022).

[Zhang] Lixia Zhang. "Virtual clock: A new traffic control algorithm for packet switching networks." In Proceedings of the ACM
symposium on Communications architectures & protocols, pp. 19-29. 1990.

[Stoica] lon Stoica and Hui Zhang. "Providing guaranteed services without per flow management." ACM SIGCOMM Computer
Communication Review 29, no. 4 (1999): 81-94.

[Stiliadis] Dimitrios Stiliadis and Varma Anujan. "Rate-proportional servers: A design methodology for fair queueing algorithms."
IEEE/ACM Transactions on networking 6, no. 2 (1998): 164-174.

[BN] Jinoo Joung and Juhyeok Kwon. "Zero jitter for deterministic networks without time-synchronization." IEEE Access 9 (2021).

11

