
Asynchronous Deterministic
Networking (ADN) Framework for

Large scale networks

draft-joung-detnet-asynch-detnet-framework-01
Jinoo Joung, Jeong-dong Ryoo, Tae-sik Cheung, Yizhou Li, Peng Liu

IETF 115

Red
letters:
added

contents

Scope
• It specifies the framework for both latency & jitter bounds guarantee in large scale

networks with dynamic sources with arbitrary input patterns.

• large scale:

• arbitrary topology, may include loops

• link capacity & propagation delay vary

• dynamic sources: flows join and leave

• arbitrary patterns: aperiodic or random packet arrivals. Only constraint is the TSpec {burst,
rate}.

 Similar to the Internet

• Overall framework

• Decouple the latency guarantee problem from the jitter guarantee problem

• Latency guarantee

• Regulators or Metadata based forwarding

• Jitter guarantee

• Latency guaranteed network & Time-stamping & Buffering

2

Solution candidates & shortcomings

1. Flow regulation: Forcing a flow into its initial shape {B, r}

• requires flow state maintaining. This can be overcome with flow aggregation.

2. Packet metadata based forwarding

• may require lookup/decide/queue-reorder/overwrite in line speed.

 This can be compensated by the performance advantage of stateless fair-

queuing at core nodes.

3. Slotted operation (without strict synchronization)

• can be seen as an example of regulation with {Burst, rate, and start phase},

• requires the slot planning and the source cooperation,

• the cycle-time can be as large as the accumulated burst size, because it may have

to accommodate all the other flows in its path.

• The proposed solutions in this document include 1 and 2.

3

Latency guarantee framework with regulators

• Regulation on Flow aggregate
• ATS

• At every node

• IR per input port

• IR has only one queue, but still
requires individual flow states

• FAIR

• PFAR

• Other possible solutions

Implementation practice of ATS

4

IR per
input
port

output port
module

High
priority

FIFO
queueIR per

input
port Low

priority
queue

Strict
priority

Scheduler

Output
port

IR does not increase
the worst latency of

the FIFO system.

Flows from a same
input port remain

FIFO in a node.

IR architecture

Minimal
IR

Flow
π-regular FIFO

system S

• Regulation on Flow aggregate
• ATS

• FAIR (Flow aggregate & IR)

• At “aggregation domain (AD)” boundaries

• FA is of flows with same path in AD

• IR per FA

• Generalized ATS

• Shown to work better than ATS [FAIR]

• PFAR

• Other possible solutions

Latency guarantee framework with regulators

Implementation practice of FAIR

at an AD ingress

IR per
FA

output port
module

High
priority

FIFO
queueIR per

FA
Low

priority
queue

SP or Fair
Scheduler

Output
port

Generalized
FIFO system

Generalized IR architecture

5

Latency guarantee framework with regulators

• Regulation on Flow aggregate
• ATS

• FAIR

• PFAR (Port-based FA regulation)

• At every node or at critical links to break the cycle

• FA is of flows having same input/output port of a
node

• Regulate FA, not individual flow, with {∑B, ∑r}

• Best scalability: no need to maintain individual
flow states

• Shown to work almost as well as ATS [ADN].

• Other possible solutions

Implementation practice of PFAR

6

PFAR
per

input
port

output port
module

High
priority

FIFO
queue

Low
priority
queue

Strict
priority

Scheduler

Output
port

PFAR
per

input
port

Latency guarantee framework with metadata
BACKGROUND

• Fair queuing (e.g. Virtual Clock [Zhang])

• is based on FT, Finish time F(p) = Service finish time of packet p in an Ideal
fluid model = Service order in a realistic packet-based model. Smaller FT gets
earlier service.

• FT is determined by the “fair distance” from the previous packet’s F(p-1) in the
same flow, or from the packet's arrival time:

F(p) = max{F(p-1), A(p)} + L(p)/r;

• It requires F(p-1) to get F(p). F(p-1) is the “flow state”.

• We propose to use fair queuing in core nodes without flow state.
Necessary conditions are:

• Within a flow,

1. Keep the fair distance between FTs of consecutive packets

2. Preserve the actual service completion order

3. Reflect the time lapse as hops progress: Fh(p) ≥ Fh-1(p)

• Across the flows,

4. Align the FTs to the current time
7

Symbol Definition

Node An output port module of a
switching device

Fh(p) ‘Finish time’ of packet p at
node h

Ah(p) Arrival time of packet p at
node h

L(p) Length of packet p

r Flow service rate

Latency guarantee framework with metadata

Solution: Global FT based forwarding framework
1) Obtain F0(p) at the entrance node 0, as in the Virtual Clock:

F0(p) = max{F0(p-1), A0(p)}+L(p)/r.

2) in a core node, increment FT of previous node by dh(p):
Fh(p) = Fh-1(p) + dh-1(p).

3) dh(p) is a non-decreasing function of p within a node busy
period & should be larger than or equal to the actual delay;

dh(p) ≥ Ah+1(p) − Ah(p).

4) In a core node, preserve the service order of packets from the
same input port.

• By 1) ~ 3), the conditions 1 ~ 4 are met.

• By 4), using the per-input port FIFO queue is possible.

• The metadata to carry in a packet: Fh(p), dh(p).

• These are dynamic and need to be updated.

• dh(p) can be set to dh. Then metadata update is simpler. 8

Symbol Definition

Node An output port module of a switching device

Fh(p) ‘Finish time’ of packet p at node h

Ah(p) Arrival time of packet p at node h

L(p) Length of p

r Flow service rate

dh(p) FT increment factor of p at node h

Input
port

S

output port
module

output port
module

Input
port

switch

High
priority

Low
priority

Low priority
queue

Strict
priority

Scheduler
with pre-
emption

FIFO queue per
input port

FIFO queue per
input port

M

M

M: Finish time (F) marker S: HoQ examine, select the min F,
update dh(p)

Discussion

• Simple FIFO implementation & simple metadata management.

• dh can be obtained (theoretical or measured) in a distributed manner; or by a central network
manager then distributed.

• As an example dh can be uh, the maximum latency in node h for any flow.

• A packet with max latency up until h gets Fh(p) = F0(p)+(Ah(p)-A0(p)), while others have
Fh(p’) > F0(p’)+(Ah(p’)-A0(p’)); therefore does not delayed more than it would in a stateful VC.

• The proposed solution is work conserving, contrary to the non-work conserving scheme [Stoica].

• It approximates packetized rate proportional servers (PRPS) [Stiliadis] whose E2E delay bound is
bounded with ≤ B/r + H*(L/r+Lmax/C),

• where B is the max burst of the flow, H the number of hops, C the link capacity, L the max packet length
of the flow, Lmax the max packet length of all the flows.

• Note that the bound is free from other flows’ bursts. Flow protection can be achieved.

9

Jitter guarantee framework

• Jitter guarantee ≈ Reproducing the inter-
arrival process with the inter-departure
process of a network.

• With a latency guaranteed network, time-
stamping and buffering at the network
boundary:

• E2E jitter is upper bounded.

• It can be set to zero.

• ‘E2E buffered latency’ (ci – ai) is also
upper bounded.

• Moreover, we can control the jitter
bound. We can even have zero jitter,
with E2E buffered latency bound ≈ 2*
E2E latency bound [BN].

Source

Network with E2E latency
upper bound guarantee

DestinationBuffer

an

bn

cn

Time-
stamper

10

an : the arrival time of nth packet of a flow

Thank you
• Please take a look at

https://datatracker.ietf.org/doc/draft-joung-detnet-asynch-detnet-framework/

• Comments and Questions are welcome!

• [FAIR] Jinoo Joung. "Framework for delay guarantee in multi-domain networks based on interleaved regulators." Electronics 9, no. 3
(2020).

• [ADN] Jinoo Joung, Juhyeok Kwon, Jeong-Dong Ryoo, and Taesik Cheung. "Asynchronous Deterministic Network Based on the
DiffServ Architecture." IEEE Access 10 (2022).

• [Zhang] Lixia Zhang. "Virtual clock: A new traffic control algorithm for packet switching networks." In Proceedings of the ACM
symposium on Communications architectures & protocols, pp. 19-29. 1990.

• [Stoica] Ion Stoica and Hui Zhang. "Providing guaranteed services without per flow management." ACM SIGCOMM Computer
Communication Review 29, no. 4 (1999): 81-94.

• [Stiliadis] Dimitrios Stiliadis and Varma Anujan. "Rate-proportional servers: A design methodology for fair queueing algorithms."
IEEE/ACM Transactions on networking 6, no. 2 (1998): 164-174.

• [BN] Jinoo Joung and Juhyeok Kwon. "Zero jitter for deterministic networks without time-synchronization." IEEE Access 9 (2021).

11

