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Scope
• It specifies the framework for both latency & jitter bounds guarantee in large scale 

networks with dynamic sources with arbitrary input patterns.

• large scale: 

• arbitrary topology, may include loops

• link capacity & propagation delay vary

• dynamic sources: flows join and leave

• arbitrary patterns: aperiodic or random packet arrivals. Only constraint is the TSpec {burst, 
rate}.

 Similar to the Internet

• Overall framework

• Decouple the latency guarantee problem from the jitter guarantee problem

• Latency guarantee

• Regulators or Metadata based forwarding

• Jitter guarantee

• Latency guaranteed network & Time-stamping & Buffering
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Solution candidates & shortcomings

1. Flow regulation: Forcing a flow into its initial shape {B, r} 

• requires flow state maintaining.  This can be overcome with flow aggregation.

2. Packet metadata based forwarding

• may require lookup/decide/queue-reorder/overwrite in line speed. 

 This can be compensated by the performance advantage of stateless fair-

queuing at core nodes.

3. Slotted operation (without strict synchronization)

• can be seen as an example of regulation with {Burst, rate, and start phase},

• requires the slot planning and the source cooperation,

• the cycle-time can be as large as the accumulated burst size, because it may have

to accommodate all the other flows in its path.

• The proposed solutions in this document include 1 and 2.
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Latency guarantee framework with regulators

• Regulation on Flow aggregate
• ATS 

• At every node

• IR per input port

• IR has only one queue, but still 
requires individual flow states

• FAIR

• PFAR

• Other possible solutions

Implementation practice of ATS
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• Regulation on Flow aggregate
• ATS

• FAIR (Flow aggregate & IR)

• At “aggregation domain (AD)” boundaries

• FA is of flows with same path in AD

• IR per FA 

• Generalized ATS

• Shown to work better than ATS [FAIR]

• PFAR

• Other possible solutions

Latency guarantee framework with regulators

Implementation practice of FAIR 
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Latency guarantee framework with regulators

• Regulation on Flow aggregate
• ATS

• FAIR

• PFAR (Port-based FA regulation)

• At every node or at critical links to break the cycle

• FA is of flows having same input/output port of a 
node

• Regulate FA, not individual flow, with {∑B, ∑r}

• Best scalability: no need to maintain individual 
flow states

• Shown to work almost as well as ATS [ADN].

• Other possible solutions

Implementation practice of PFAR
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Latency guarantee framework with metadata
BACKGROUND

• Fair queuing (e.g. Virtual Clock [Zhang])

• is based on FT, Finish time F(p) = Service finish time of packet p in an Ideal 
fluid model = Service order in a realistic packet-based model. Smaller FT gets 
earlier service.

• FT is determined by the “fair distance” from the previous packet’s F(p-1) in the 
same flow, or from the packet's arrival time:

F(p) = max{F(p-1), A(p)} + L(p)/r; 

• It requires F(p-1) to get F(p). F(p-1) is the “flow state”.

• We propose to use fair queuing in core nodes without flow state. 
Necessary conditions are:

• Within a flow,

1. Keep the fair distance between FTs of consecutive packets 

2. Preserve the actual service completion order

3. Reflect the time lapse as hops progress: Fh(p) ≥ Fh-1(p)

• Across the flows,

4. Align the FTs to the current time
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Symbol Definition

Node An output port module of a 
switching device

Fh(p) ‘Finish time’ of packet p at 
node h

Ah(p) Arrival time of packet p at 
node h

L(p) Length of packet p

r Flow service rate



Latency guarantee framework with metadata

Solution: Global FT based forwarding framework
1) Obtain F0(p) at the entrance node 0, as in the Virtual Clock: 

F0(p) = max{F0(p-1), A0(p)}+L(p)/r.

2) in a core node, increment FT of previous node by dh(p):
Fh(p) = Fh-1(p) + dh-1(p).

3) dh(p) is a non-decreasing function of p within a node busy 
period & should be larger than or equal to the actual delay; 

dh(p) ≥ Ah+1(p) − Ah(p).

4) In a core node, preserve the service order of packets from the 
same input port.

• By 1) ~ 3), the conditions 1 ~ 4 are met.

• By 4), using the per-input port FIFO queue is possible.

• The metadata to carry in a packet:  Fh(p), dh(p). 

• These are dynamic and need to be updated. 

• dh(p) can be set to dh. Then metadata update is simpler. 8
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Node An output port module of a switching device

Fh(p) ‘Finish time’ of packet p at node h

Ah(p) Arrival time of packet p at node h

L(p) Length of p
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dh(p) FT increment factor of p at node h
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Discussion

• Simple FIFO implementation & simple metadata management.

• dh can be obtained (theoretical or measured) in a distributed manner; or by a central network 
manager then distributed.

• As an example dh can be uh, the maximum latency in node h for any flow.

• A packet with max latency up until h gets Fh(p) = F0(p)+(Ah(p)-A0(p)), while others have  
Fh(p’) > F0(p’)+(Ah(p’)-A0(p’)); therefore does not delayed more than it would in a stateful VC.

• The proposed solution is work conserving, contrary to the non-work conserving scheme [Stoica].

• It approximates packetized rate proportional servers (PRPS) [Stiliadis] whose E2E delay bound is 
bounded with  ≤ B/r + H*(L/r+Lmax/C), 

• where B is the max burst of the flow, H the number of hops, C the link capacity, L the max packet length 
of the flow, Lmax the max packet length of all the flows. 

• Note that the bound is free from other flows’ bursts. Flow protection can be achieved.
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Jitter guarantee framework

• Jitter guarantee ≈ Reproducing the inter-
arrival process with the inter-departure 
process of a network.

• With a latency guaranteed network, time-
stamping and buffering at the network 
boundary:

• E2E jitter is upper bounded. 

• It can be set to zero.

• ‘E2E buffered latency’ (ci – ai) is also 
upper bounded.

• Moreover, we can control the jitter 
bound. We can even have zero jitter, 
with E2E buffered latency bound ≈ 2* 
E2E latency bound [BN].
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an : the arrival time of nth packet of a flow



Thank you
• Please take a look at 

https://datatracker.ietf.org/doc/draft-joung-detnet-asynch-detnet-framework/ 

• Comments and Questions are welcome!
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