
High Availability in

BMP data-collection

1

Zhuoyao Lin

IETF 115 - GROW

High Availability of BMP
I. Motivation

Network Telemetry

Gathering network insights via Network
Telemetry is nowadays necessary.

Having a scalable and high-available solution
becomes then imperative.

BGP Monitoring Protocol (BMP)

2

Network Collector

Passive
(e.g. BMP, IPFIX)

Active
(e.g. SNMP)

BMP provides access to the different RIBs, as
well as a view of BGP updates a router is
receiving.

This data is crucial for monitoring networks.

II. Problem Statement:

Goal of having BMP high availability
High Availability of BMP

3

Collector A

Collector B

BMP session

Shared
internal

logic

BMP session
Operator Database

• Every router exposes BMP twice to guarantee high-availability.

• The “shared internal logic” works across multiple collectors in multiple locations to guarantee
scalability by dumping BMP only once in the database.

High Availability of BMPIII. Design:

Overview

4

Collector A

Collector B

BMP session

BMP session Operator Database

Redis

Timestamp A

Timestamp B

Start time: Timestamp A

Start time: Timestamp B

1. Active/Standby feature:
Assign Active/Standby state to collector
based on their timestamp

2. Redis for exchanging collector’s
timestamp:

Collector: (a) writes its timestamp to Redis
every second

(b) gets collectors’ timestamps
from redis every second

3. Signals for maintenance:
Manually configure Active/Standby state in
runtime

• Every second pmacct writes to Redis:
Key: [cluster_name] +[cluster_id] +[core_process_name] (with 2s timeout)
Value: [timestamp]

• Every second pmacct lists from Redis all the available collectors and set a dump_flag
accordingly

• If dump_flag == True, then the collector writes the decided BMP messages into the Database
(Only one collector has dump_flag == True)

High Availability of BMPIII. Design:

Overview

5

Collector A Collector B

There is only collector A’s timestamp Active ----

Collector A has the smallest timestamp Active Standby

Collector A has NOT the smallest timestamp Standby Active

Redis is unavailable Active Active

High Availability of BMPIII. Design:

pmacct

6

pmacct is a small set of multi-purpose
passive network monitoring tools.

To achieve our goal we need to implement
the software logic in pmacct to make sure
BMP data is cached twice but only
forwarded once.

High Availability of BMPIII. Design:

Active/Standby State

Regular workflow Maintenance mode

1. Write collector’s timestamp key to Redis with
2 seconds timeout

2. Get all timestamp from Redis

3. Compare all timestamp and set dump_flag
accordingly

4. Sleep 1 seconds and repeat

1. Catch signal 34

2. Set timestamp to current time

3. Write timestamp to Redis

As a result, the current collector will become
standby

Start
Write to Redis
(timeout = 2s)

Get all key
from Redis

Set
dump_flag

Forward BMP
information

If
dump_flag==1

7

Sleep 1s

Yes

No

High Availability of BMPIII. Design:

Caching & Fail-over mechanisms

Caching mechanism Fail-over mechanism

Standby collectors do not export metrics to the
Database, but keep the received BMP event in a
local cache for 2 seconds.

This allows to have “at least once” guarantee.

Assuming there are two collectors A (active), B
(standby):

1. Collector A crashes (stops writing to Redis)

2. Redis will timeout A’s key in (0, 2] seconds

3. Collector B is now the collector with the
lowest timestamp and so becomes active

4. Collector B sends the local cache to the DB

5. Collector B sends all BMP traffic received

High Availability of BMP

Lab Set-up Diagram

IV. Test Results:

Two & Three Daemon Set-up

9

High Availability of BMP
IV. Test Results:

Two & Three Daemon Set-up

10

High Availability of BMP
V. Summary

• Load Balance: As the number of router increasing, more collectors
are introduced to do data load balance. This bring horizontal
scalability.

• Data Duplication: BMP data is exposed twice (or more) to
guarantee high availability. By itself, this would bring data
duplication.

• Reduce Duplication: this project designs a system to make sure the
BMP data is cached twice (or more) but only forwared once, to help
in scalability.

Thanks

11

Links:

- Thesis:

- pmacct: https://github.com/pmacct/pmacct

https://github.com/pmacct/pmacct

12

Backup

High Availability of BMP

Call kafka dumping function

Core process
dump_flag = 1

aa_flag = 1

BMP BMP

Kafka plugin

IPFIX

end

Dump BMP data

Put the BMP
data into queue
Discard it and
don’t dump

Dump the IPFIX data

cdada_list queue
i = 0

i = 0 i >0

Enqueue(data, queue)
i++

wait

Enqueue(data, queue)
i++
/While(current_time - queue->front->timestamp >199999)
{Dequeue(data, queue)
i- -}
Sleep(2)

Core process
dump_flag = 0

aa_flag = 1

Core process
dump_flag = 1

pp_flag = 1

Core process
dump_flag = 0

pp_flag = 1

Signal 35

aa_flag = 1
pp_flag = 0

Signal 36

aa_flag = 0
pp_flag = 1

Signal 37

aa_flag = 0
pp_flag = 0

Dumping Process

Data Queue

III. Design:

How Active/Standby Affects Dumping Process

13

