High Avallability In
BMP data-collection

Zhuoyao Lin

IETF 115 - GROW

Motivation

E\Ietwork Telemetry

Gathering network insights via Network
Telemetry is nowadays necessary.

Having a scalable and high-available solution
becomes then imperative.

Passive

(e.g. BMP, IPFIX)
|l Collector

Active
(e.g. SNMP)

High Availability of BMP

'BGP Monitoring Protocol (BMP)

BMP provides access to the different RIBs, as
well as a view of BGP updates a router is
receiving.

This data is crucial for monitoring networks.

BGP network

BGP table dump :
&update messages EMP Siation

BGP router

Il. Problem Statement: .
Goal of having BMP high availability

* Every router exposes BMP twice to guarantee high-availability.

 The “shared internal logic” works across multiple collectors in multiple locations to guarantee
scalability by dumping BMP only once in the database.

Collector A

BMP session

Shared
internal
logic

BMP session
Operator Database

Collector B

1. Design: High Availability of BMP
Overview

1. Active/Standby feature:
Assign Active/Standby state to collector
based on their timestamp colEsEr A

Start time: Timestamp A

BMP session

2. Redis for exchanging collector’s
timestamp:
Collector: (a) writes its timestamp to Redis
every second
(b) gets collectors’ timestamps
from redis every second Sellza el

Timestamp A

Timestamp B

BMP session Operator Database

Start time: Timestamp B

3. Signals for maintenance:
Manually configure Active/Standby state in
runtime

[1. Design: High Availability of BMP
Overview

* Every second pmacct writes to Redis:
Key: [cluster _name] +[cluster_id] +[core_process_name] (with 2s timeout)
Value: [timestamp]

* Every second pmacct lists from Redis all the available collectors and set a dump_flag
accordingly

* |If dump_flag == True, then the collector writes the decided BMP messages into the Database
(Only one collector has dump_flag == True)

| CollectorA | CollectorB

There is only collector A’s timestamp Active -—--
Collector A has the smallest timestamp Active Standby
Collector A has NOT the smallest timestamp Standby Active

Redis is unavailable Active Active

[1. Design: High Availability of BMP
pmacct

—

pmacct is a small set of multi-purpose ('/étreaming\j\\'\ MySQL
passive network monitoring tools. o Telemetry PgSQL

: , . libpcap ~O SQLite
To achieve our goal we need to implement @
the software logic in pmacct to make sure P WY MongoDB
BMP data i hed twice but onl ~ NetFlow BerkeleyDB

ata is cached twice but only COPRX - '
forwarded once. Bl °\waw a

NG
RabbitMQ m
BGP IGP Kafka
BMP RPKI

maps GeolP

tables http://www.pmacct.net/

Design:
Active/Standby State

Regular workflow

1. Write collector’s timestamp key to Redis with
2 seconds timeout

2. Get all timestamp from Redis

3. Compare all timestamp and set dump_flag
accordingly

4. Sleep 1 seconds and repeat

Write to Redis Get all key

(timeout = 25s) from Redis

High Availability of BMP

Maintenance mode

1. Catch signal 34
2. Set timestamp to current time
3. Write timestamp to Redis

As a result, the current collector will become
standby

Set If Forward BMP
dump_flag dump_flag== information

Sleep 1s <
7

lll. Design:
Caching & Fail-over mechanisms

Caching mechanism Fail-over mechanism
Standby collectors do not export metrics to the Assuming there are two collectors A (active), B
Database, but keep the received BMP event in a (standby):

local cache for 2 ds. . :
Ocalcachefor 2 seconas 1. Collector A crashes (stops writing to Redis)

This allows to have “at least once” guarantee. s) :
& 2. Redis will timeout A’s key in (0, 2] seconds

3. Collector B is now the collector with the
lowest timestamp and so becomes active

4. Collector B sends the local cache to the DB

5. Collector B sends all BMP traffic received

V. Test Results:
Two & Three Daemon Set-up

High Availability of BMP

Lab Set-up Diagram

» Kafka <«
A
» Kafka <«
192.0.2.6:1790 Docker Redis 192.0.2.27:1790
A [N F—— > B
A A *, get's v A A
192.0.2.6:1790 Docker Redis 192.0.2.27:1790 B 4
A < » B y | 19202271790 |7
get/s 4 B
A A
A
IPFIX
(Anycast Best)
BMP Routers
BMP Routers PE-61 IPEIX
gg'?; {Anycast Best)
BMP Routers
PE-19

V. Test Results:

Two & Three Daemon Set-up

BMP
800
\\\ 600
\ 400
200
BMP
Aug 9, 14:24-14:25 F— 400
B locBbmp-locB01c 2022... 136
o ;I locCbmp-locCoic 2022... 292
200

B locBbmp-locB01¢ 20220804-2 (d570464f)

FLOW to locA

AN

FLOW to locA

.—"/\/\/\/

@ 19851.100.19 [198.51.100.61

Time, Peer Ip Src by Xbit/Sec

23 14:24 1425 1426 1427 1428 14:29 14:330 14331 14:32

19.53 Kbps

9.77 Kbps

14.65 Kbps

9.77 Kbps

4.88 Kbps

2.93 Kbps

1.95 Kbps

0.98 Kbps

14:33

High Availability of BMP

FLOW to locB

FLOW to locB

~ T~ — '

@ 19851.100.19 [198.51.100.61

10

19.53 Kbps

9.77 Kbps

19.53 Kbps

9.77 Kbps

V. Summary

* Load Balance: As the number of router increasing, more collectors
are introduced to do data load balance. This bring horizontal
scalability.

* Data Duplication: BMP data is exposed twice (or more) to
guarantee high availability. By itself, this would bring data

duplication. I h k
* Reduce Duplication: this project designs a system to make sure the a I I S

BMP data is cached twice (or more) but only forwared once, to help
in scalability.

Links:
- Thesis:

- pmacct: https://github.com/pmacct/pmacct

https://github.com/pmacct/pmacct

Backup

lll. Design:
How Active/Standby Affects Dumping Process

Dumping Process
Call kafka dumping function Data Qu eue

High Availability of BMP

Fdada_list queue Enqueue(data, queue)
i=0 i++

timestamp >199999)
Core process Core process Core process Core process

dump_flag=1 dump_flag=0 dump_flag=1 dump_flag=0 Kafka plugin
aa_flag= 1 aa_flag=1 pp_flag= 1 pp_flag= 1

Dump the IPFIX data

nqueue(data, que
i++
end

Signal 35 Signal 36 Signal 37

aa_flag =1 aa_flag =0 aa_flag =0

pp_flag=0 pp_flag=1 pp_flag=0

13

