
Interactive
Authentication of
Non-Interactive
HTTP Requests

Ben Schwartz, HTTPAPI and OAUTH @ 115

Popup Authentication

This is what login looks like on the web today…

… and this is how it looks for the rest of HTTP

Non-web HTTP login is
stuck in 1996

What about OAuth?

OAuth (currently) enables

clients to speak proprietary

protocols (over HTTP) to

specific origins that are

known in advance.

This protocol is for clients

that want to speak

standardized protocols (over

HTTP) to any compatible

origin.

Your Example service has
requested interactive
authentication.

OPEN BROWSER

CHANGE EXAMPLE
PROVIDER

Interactive
authentication complete

OK

HTTP Exchange 1: The trigger

OPTIONS /home/bemasc/calendars HTTP/1.1

Host: cal.example.com

HTTP/1.1 401 Unauthorized

WWW-Authenticate: interactive location=/login

WWW-Authenticate: ...

Hey, do you support CalDAV?

Who are you? Open a browser.

HTTP Exchange 2: The login screen

GET /login HTTP/1.1

Host: cal.example.com

Accept: text/html,...

Accept-Language: en-US,...

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

...

HTTP/1.1 401 Unauthorized

Content-Type: text/html

...

Hi cal.example.com, this is the
web browser.

The user has opened
https://cal.example.com/login in a

new tab.

Here are the login instructions.

HTTP Exchange 3: The success signal

GET /login HTTP/1.1

Host: cal.example.com

Accept: text/html,...

Accept-Language: en-US,...

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: ?1

Cookie: login=6bb0e2c8-874e-44c8-b8e0-25e12f339b46

...

HTTP/1.1 200 OK

Content-Type: text/html

...

The user followed a link to
https://cal.example.com/login, and

I already have a cookie for this
request.

OK, you can close now.

HTTP Exchange 4: The access

OPTIONS /home/bemasc/calendars HTTP/1.1

Host: cal.example.com

Cookie: login=6bb0e2c8-874e-44c8-b8e0-25e12f339b46

HTTP/1.1 200 OK

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE

Allow: PROPFIND, PROPPATCH, LOCK, UNLOCK, REPORT, ACL

DAV: 1, 2, access-control, calendar-access

...

Hey, do you support CalDAV?
I have a cookie.

Oh hi again.
Yes, I do support CalDAV!

Specified procedure

1. New auth-scheme “interactive” with a “location=” parameter that

provides the authentication path.

2. The client reacts by opening this path in a browser “popup”.

3. The client interacts, navigates, types passwords, accesses second factors,

etc.

4. If the authentication path ever loads successfully, the client stores the

request headers and closes the popup.

5. The client copies any stored Cookie or Authorization headers into its

future requests for this origin.

Interesting corners of this spec

● Both Cookie and Authorization headers are supported.
○ “Authorization” is more natural, but only “Cookie” can be used without Javascript.

● Proxy clients convert Authorization into Proxy-Authorization.
○ …but Cookie headers are just dropped

○ Should we define a way to send cookies to a proxy?

● The spec mandates a URL bar (to avoid phishing) and interstitial dialogs

before the browser opens and after it closes (to avoid clickjacking).
○ Is there a better way?

● “interactive” can be used alongside “basic” or “digest” for compatibility
○ Browsers are required to ignore “WWW-Authenticate: interactive”

● No way to declare success without closing the browser…

Closing thoughts

● Brand new draft!

● Brings all the goodness of modern web login to the rest of HTTP

● Needs more HTTP and OAuth expert input
○ How should Set-Cookie parameters work?

○ Should we define a way to send cookies to HTTP proxies?

○ Is there a way to share more concepts with OAuth?

● Seeking adoption in HTTPAPI/HTTPBIS/OAUTH/???

● Mentioned in draft-schwartz-masque-access-descriptions as a good way

to authenticate to proxies.

OPTIONS /home/bemasc/calendars HTTP/1.1
Host: cal.example.com

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer location="https://authorization-server.com/" scope="read"

The specifics of this header are TBD, the
important part is it has the full URL of the
authorization server. (Should probably
follow HTTP Structured Headers tho.)

Step 1: The Trigger
New Draft

Note: The authorization server URL
could be under the control of the
resource server or a completely
unrelated server depending on how
you want to deploy it.

GET https://authorization-server.com/.well-known/oauth-authorization-server HTTP/1.1

HTTP/1.1 200 Ok
Content-Type: application/json

{
 "issuer": "https://authorization-server.com/",
 "authorization_endpoint": "https://authorization-server.com/authorize",
 "token_endpoint": "https://authorization-server.com/oauth/token",
 "registration_endpoint": "https://authorization-server.com/oauth/clients",
 "response_types_supported": "code",
 ...
}

Step 2: Client Discovers AS Metadata RFC8414

Where to open the browser to

Where to
get the
tokens
from

https://authorization-server.com/authorize?client_id=***&redirect_uri=***&scope=read
 &code_challenge=XXXX&code_challenge_method=S256&state=XXX

Step 3: Initiate OAuth Flow
RFC6749

Client launches a browser to initiate the OAuth flow…

Note: The client_id could be:
● Pre-registered out of band
● Registered dynamically via

RFC7591
● Provided as a URI according to

a new specification

Note: The redirect_uri could be
● Custom URL scheme
● localhost:port
● “out-of-band”

Normal OAuth flow proceeds,
enabling strong MFA and
passwordless, as well as SSO

POST /oauth/token HTTP/1.1
Host: authorization-server.com
Content-type: application/x-www-form-urlencoded

grant_type=authorization_code
&client_id=***
&code_verifier=XXXX

HTTP/1.1 200 OK
Content-type: application/json

{
 "token_type": "Bearer",
 "expires_in": 86400,
 "access_token": "XXXXXXXX",
 "refresh_token": "YYYYYYYYY",
 "scope": "read"
}

Step 4: OAuth flow is complete
RFC6749

OAuth flow completes, authorization server redirects to redirect_uri with authorization code, client
exchanges code for an access token

Note: Refresh token is up to the
discretion of the AS, but can be
used to get a new token when the
current one expires if the AS
doesn’t need the user to
re-authenticate themselves.

GET /home/bemasc/calendars HTTP/1.1
Host: cal.example.com
Authorization: Bearer XXXXXXXXX

CALENDAR DATA RESPONSE
…

Step 5: Resource request
RFC6750

Client uses access token to fetch data

Note: There are opportunities here
to also leverage the new step-up
OAuth draft as well, if the RS wants
the user to come back with a new or
different access token

