Challenges and Benefits of Precisely Specifying Congestion Control Algorithms

Ken McMillan (UT Austin)
Lenore Zuck (UIC)
What we are trying to do

Obtain formal specifications of a CCA (New Reno) that allow:

• Formally prove (some) properties of model

• Automatically test existing implementations for conformance with model
Why are we doing that
Why are we doing that

- Formal specification
 - Provides unambiguous reference for protocol definition
 - Clarifies intent and exposes hidden assumptions
Why are we doing that

• Formal specification
 • Provides unambiguous reference for protocol definition
 • Clarifies intent and exposes hidden assumptions

• Specification-based testing
 • Connects formal models with reality
 • Exposes conformance errors that interop testing misses
 • Example: downgrade attacks due to non-conformance SSL implementations in the wild
 • Exposes errors and ambiguities in RFC’s
 • Exposes weaknesses in formal specifications
Specification-based testing of QUIC
Specification-based testing of QUIC
Specification-based testing of QUIC

Formally prove user-level guarantees
Specification-based testing of QUIC

Client packets automatically generated from spec

Server packets automatically validated against spec

Test refinement of spec by impl
Results of spec-based testing of QUIC
Results of spec-based testing of QUIC

- Numerous corrections to the formal specifications
 - Both strengthening and weakening
Results of spec-based testing of QUIC

- Numerous corrections to the formal specifications
 - Both strengthening and weakening
- Numerous errors uncovered in four implementations
 - Conformance errors
 - Crashes due to low-level coding errors
 - Takeaway: interop testing is not enough to ensure conformance!
 - Specification-based testing produces more general stimuli
Results of spec-based testing of QUIC

• Numerous corrections to the formal specifications
 • Both strengthening and weakening

• Numerous errors uncovered in four implementations
 • Conformance errors
 • Crashes due to low-level coding errors
 • Takeaway: interop testing is not enough to ensure conformance!
 • Specification-based testing produces more general stimuli

• Various of the errors were exploitable
 • Off-path denial of service scenario due to RFC’s client migration handling
 • Heartbleed-style information leak
Why hard to do same with New Reno

- We need to understand the protocol
- We need a quantitative model of the environment (network)
- We need to understand its (quantitative) guarantees
 - And those of CCA in general
Why hard to do same with New Reno

- We need to understand the protocol
- We need a quantitative model of the environment (network)
- We need to understand its (quantitative) guarantees
 - And those of CCA in general

Network model and quantitative properties need to be agreed on by the community
Understanding New Reno

- The models of the literature (including RFCs) are not precise
 - the behavior after time-out (Exponential Backoff)
- Possible to reverse-engineer from (e.g.) Linux implementation
 - Ideally, the specs should not require that
Quantitative Model of Network

• To define CCA’s guarantees, there must be a network model
 • For QUIC: a functional model for UDP is clear

• We can make something up
 • How to know it is “good enough”

• Impossible to define properties without a good quantitative model of the network
Properties of New Reno (& CCAs)
Properties of New Reno (& CCAs)

- Note: in QUIC, there is a consensus on the simple functional guarantees of the Transport Layer
Properties of New Reno (& CCAs)

- Note: in QUIC, there is a consensus on the simple functional guarantees of the Transport Layer
- CCA’s guarantees are harder to distill esp. in view of ill-defined network
Properties of New Reno (& CCAs)

• Note: in QUIC, there is a consensus on the simple functional guarantees of the Transport Layer

• CCA’s guarantees are harder to distill esp. in view of ill-defined network

• There are nice studies of formal properties of CCAs
 • Assuming an ideal AIMD and depending on its A/M constants which are not constant in New Reno

• But hard to apply to New Reno
 • E.g., α-efficiency is that, in steady state, utilization of channel is $\geq \alpha$, where α depends on the constants that aren’t

• Studies exclude timeouts
 • we don’t understand some behaviors after timeouts (return from ExpBck to SISt)
Why are we here?

• To (try to) convince you that formal specification is valuable for CCAs
 • Helpful beyond (often impractical) formal verification
 • E.g., parametric analysis of real-time protocols

• To get help in designing good models for networks
 • Essential to derive the right high-level properties

• To get help in understanding CCAs that are in use
 • Understanding CCAs is harder than most other protocols
 • There is no consensus as to the quantitative guarantees in terms of env & CCA

• There may be many definitions of CC in different network environment
Conclusion

• Benefits of formal specifications:
 • formally prove key properties of CCA
 • Rigorously test implementations conform to the specs
 • Both (ioho) have high benefits in engineering CCs

• To create formal specification we need:
 • Definition(s) of network model
 • Definition(s) of CC (possibly dependent on network model)