Starvation in End-to-End Congestion Control

Venkat Arun
Mohammad Alizadeh
Hari Balakrishnan

CSAIL, MIT
Loss-based CCAs don’t bound delay

Delay bounding Congestion Control Algorithms (CCAs)

Queuing delay
- Vegas, FAST, Copa, Verus

Receive rate
- PCP, Sprout, BBR

Learning based
- Remy, PCC, ...
Delay-convergence
Delay-convergence (definition)

- Delay experienced
- Convergence time
- Small delay variation, δ

This is bad. Causes starvation
Starvation is caused by non-congestive delay

Total delay = Propagation delay
 +
Congestive (bottleneck) delay
 +
Non-congestive delay

Hard to distinguish between these
Sources of non-congestive delay

- Wi-Fi sends TCP ACKs in bursts of tens of ms
- Cellular base stations have a complex service process
- End hosts send packets/acks in bursts
- OS will only process packets when it gets the chance

One path can have multiple of these
How large is this delay (cellular)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (cellular)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (cellular)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (cellular)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (cellular)?

Another type of non-congestive delay

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, F. Yan et al.
How large is this delay (wired)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (wired)?

Pantheon: the training ground for Internet congestion-control research, USENIX ATC’18, Francis Yan et al.
How large is this delay (wired)?

Pantheon: the training ground for Internet congestion-control research,
USENIX ATC’18, Francis Yan et al.

Smaller, but significant, jitter
Non-congestive delays confuse congestion estimation

I think the congestive delay is **20 ms**

I think the congestive delay is **5 ms**
Can I just estimate congestive delay correctly then?

Every estimator we are aware of has failure modes:

Delay
- Instantaneous, average, median, min, avg of max

Rate
- Average, max of average
Starvation (definition):
1. The ratio of throughputs they get is arbitrarily large
2. It remains that way forever
Starvation in Vegas/FAST/Copa

Sending rate \(\propto \frac{1}{\text{Queuing delay}} \)

Starvation occurs when the CCA maintains similar delays for very different link rates.
Ok, the Vegas family maps different link rates to similar delays. What about the rest?
Key Result: All delay-convergent CCAs starve

Theorem: We can always construct non-congestive delay smaller than D such that starvation occurs (for any $D > 2\delta$).
Claim: Delay-convergent CCAs have similar delays for different link rates

Don’t let delay grow to infinity

Delay after convergence

Range of delay oscillation after convergence in an ideal link

Similar delays, different link rates

Link rate

Range of δ
Proof: Constructing the non-congestive delay

Sender

Time

Bottleneck

Delay added

2\delta

Receiver

Sender

Receiver
Proof: Constructing the non-congestive delay

Bottleneck rate is C_1 Mbit/s

Bottleneck rate is C_2 Mbit/s
Proof: Constructing the non-congestive delay

Bottleneck rate is C_1 Mbit/s

Bottleneck rate is C_2 Mbit/s
Is this construction realistic?
Starvation in BBR

If the network has some jitter, BBR will maintain queuing delay equal to propagation delay

If propagation delay for two flows are different, the flow with the smaller propagation delay starves!
Starvation in Vegas/FAST/Copa

One packet gets acked in 59 ms

8.8 Mbit/s
Sender

Large Buffer
120 Mbit/s

95 Mbit/s
Sender

60 ms

60 ms

Receiver

Receiver
Could deliberately oscillating delay help?

Ambiguity in estimation discretizes delay
Why would deliberately oscillating delay help?

Ambiguity in estimation discretizes delay
What next?

• Deliberately oscillate the delay

• Design for a finite link range [see paper for how]

• Use ECN, fair queuing, ...