

Cefore: CCNx-based Cloud-native Network Function for Deploying ICN as a Service

Yusaku Hayamizu, Atsushi Ooka, Kazuhisa Matsuzono, Hitoshi Asaeda

National Institute of Information and Communications Technology (NICT), Japan

IETF115

5-11 November, London, UK

- Background/Motivation
- Cefore: CCNx-based Extensible Packet Forwarding Engine
- Cefpyco: Cefore Python Compact Package
- Cefore x Docker Integration
- Sample Scenarios
- Conclusion

NICT Background / Motivation

- ICN [1]
 - changing NW from "host-centric" to "content-centric"
- CCNx [2,3] / NDN [4]
 - Content-Centric Networking (IETF/IRTF RFC)
 - Named-Data Networking (NDN project)
- Cefore [5,6]
 - open-source software enabling ICN communications
 - CCNx1.0-compliant packet forwarding engine developed/maintained by NICT

one missing piece might be...

a deployment solution of developed ICN modules into the Internet infrastructures

NICT Aim of presentation

- 1. Introduction of Cefore
 - the Cefore software platform for enabling CCNx-based communications
 - application development with Cefpyco
 - a Python wrapper program that helps developing CCNx applications
- 2. Cefore/Docker integration
 - Cefore's integration with the emerging Docker technologies for rapid and easy deployment of ICN

introduce a method for easily deploying **ICN as a (micro)Service** and quickly constructing ICN-based networks

Background/Motivation

- Cefore: CCNx-based Extensible Packet Forwarding Engine
- Cefpyco: Cefore Python Compact Package
- Cefore x Docker Integration
- Sample Scenarios
- Conclusion

NCT Cefore: CCNx-based Extensible Packet Forwarding Engine

- CCNx1.0
 - defined in the RFCs 8569 and 8609, specified by IRTF ICNRG
- Cefore
 - originally designed in 2016
 - CCNx1.0 packet (Interest/ContentObject) forwarding/caching engine
 - open-source, and published in the web* and github+

- * https://cefore.net/
- + https://github.com/cefore

• Lightweight

- the platform should be usable for resource-constrained devices, such as sensor nodes
- <u>Usability</u>
 - the platform should be easily configured, set up, reloaded, and connected to the experimental environments
 - Ideally, its emulation should be easily conducted and tested using real network equipment

<u>Extensibility</u>

 the platform should be easily extensible to accommodate novel functions to satisfy future network needs

NICT Pluggable architecture of Cefore

 Researchers can install necessary ICN functions depending on their requirements while considering their machine resource constraints

NICT The Cefore software package

- Cefore provides <u>all-in-one package</u> for CCNx-based communications
 - core daemons (cefnetd/csmgrd with extensible plugins)
 - consumer utility (cefgetfile/cefgetstream) & producer utility (cefputfile/cefputstream)
 - network management tools (CCNinfo)

- Cefpyco (Cefore Python Compact package)*
 - a Python-based wrapper program that help developing CCNx applications running with Cefore
 - enables easy coding for python programmers (compared to the original C language)
 - Example: sending an Interest packet

10

- Background/Motivation
- Cefore: CCNx-based Extensible Packet Forwarding Engine
- Cefpyco: Cefore Python Compact Package
- Cefore x Docker Integration
- Sample Scenarios
- Conclusion

- Docker
 - a platform of container-based virtualization technology for quick and scalable deployment of network services
- Benefits
 - Lightweight
 - a Docker container is very lightweight compared with VM
 - -> we can build many containers in one physical machine
 - -> this enriches evaluation scenario of ICN networks and improves scalability of experiments
 - Performance
 - Docker containers do not contain OS
 - -> they can be easily and quickly initiated and terminated
 - -> this facilitates comfortable test and evaluation of ICN services
 - Scalability
 - there is a requirement that multiple ICN nodes providing different functions co-exist in a network
 - the concept of microservices that each service image is built for each purpose fits this requirement
 - useful option tools such as <u>docker-compose</u> can be used for flexibly and quickly setting up Docker containers

comparison of VM and Docker

NICT Example scenario of Cefore/Docker-based networking

- Scenario
 - The consumer requests a file
 - The producer responses to the request and send back data
 - The CCNx router stores received data into CS (csmgrd)

NICT Example 1 – writing a Dockerfile

- define a microservice as a ``base" service
 - base function as an ICN node
 - necessary functions for providing ICN services as a container node

base/Dockerfile

Afterward, other enhanced ICN services, e.g. ``min" and ``cache," inherit this ``base" image

NICT Example 2 – writing a Dockerfile

- define a microservice as a ``min" service
 - minimum functions serving as a ICN node, i.e., installation & app. preparation

min/Dockerfile

define a service "min" that provide minimum ICN functions (application tools)

NICT Example 3 – writing a Dockerfile

• define a microservice as a ``cache" service

cache/Dockerfile

define "cache" service by adding caching function (cache/csmgrd) to the base ICN functions

NICT Leveraging docker-compose*

- docker-compose
 - a tool for defining and running multi-container Docker applications
 - easy service configuration using a YAML file
 - can create and start all the services from the configuration with a single command
 - -> easy to conduct scenario-based experiments(emulations) like network simulations such as ns-3

*https://docs.docker.com/compose/

Example: docker-compose.yml

```
version: "3.3"
services:
    producer:
        image: cefore/cache
        container_name: "producer"
        hostname: "producer"
        working_dir: "/cefore"
        networks:
            downward:
              ipv4_address: 10.0.1.10
    router:
        image: cefore/cache
        container_name: "router"
        hostname: "router"
        working_dir: "/cefore"
        networks:
            downward:
              ipv4_address: 10.0.1.20
    consumer:
        image: cefore/min
        container_name: "consumer"
        hostname: "consumer"
        working_dir: "/cefore"
        networks:
            downward:
              ipv4_address: 10.0.1.100
networks:
   downward:
      name: downward
      driver: bridge
      ipam:
        driver: default
        config:
          - subnet: 10.0.1.0/24
```

17

- Background/Motivation
- Cefore: CCNx-based Extensible Packet Forwarding Engine
- Cefpyco: Cefore Python Compact Package
- Cefore x Docker Integration
- Sample Scenarios
- Conclusion

NICT Sample scenario – Video streaming over the Internet

- IEICE ICN summer workshop 2021 [fully-online]
 - Cefore/Docker hands-on
 - Multicast video streaming using Cefore/Docker platforms*
 - The producer is located at NICT (Tokyo)
 - The consumers receive the video streaming from their homes/schools/companies

*You can get sample codes from https://github.com/cefore/2021-hands-on [materials are in Japanese only]

- Cefore
 - CCNx-based extensible packet forwarding engine
 - All-in-one package for CCNx-based communications
- Cefpyco
 - Useful development tool for creating new ICN applications
- Cefore/Docker integration
 - Quick and scalable deployment of CCNx functions
- Sample scenario
 - Video streaming
- Future work
 - A possibility of collaboration with the emerging Docker orchestration technologies such as Kubernetes

Cefore/Docker-based networking can be one possible option for easily constructing ICN networks over the existing Internet infrastracture

- [1] V. Jacobson, et al., "Networking Named Content," in Proc. ACM CoNEXT'09, vol. E102-B, no. 9, Sept. 2019.
- [2] "Content-Centric Networking (CCNx) Semantics," https://datatracker. ietf.org/doc/rfc8569/ , Accessed on 7 July 2022.
- [3] "Content-CentricNetworking(CCNx)MessagesinTLVFormat,"https://datatracker.ietf.org/doc/rfc8609/, Accessed on 7 July 2022.
- [4] L. Zhang, et al., "Named Data Networking," ACM SIGCOMM CCR, vol. 44, no. 3, pp 66-73, July 2014.
- [5] "Cefore," https://cefore.net, Accessed on 7 July 2022.
- [6] H.Asaeda,etal., "Cefore: Software Platform Enabling Content-Centric Networking and Beyond," IEICE Trans. Commun., vol.E102-B, no.9, pp.1792-1803, Sept. 2019.

Thank you.

https://cefore.net/

https://github.com/cefore