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Background / Motivation

• ICN [1]
－ changing NW from “ host-centric ’’ to “ content-centric ’’

• CCNx [2,3] / NDN [4]
－ Content-Centric Networking (IETF/IRTF RFC)
－ Named-Data Networking (NDN project)

• Cefore [5,6]
－ open-source software enabling ICN communications
－ CCNx1.0-compliant packet forwarding engine developed/maintained by NICT

one missing piece might be...
a deployment solution of developed ICN modules into the Internet infrastructures
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Aim of presentation

1. Introduction of Cefore
－ the Cefore software platform for enabling CCNx-based communications
－ application development with Cefpyco

• a Python wrapper program that helps developing CCNx applications

2. Cefore/Docker integration
－ Cefore’s integration with the emerging Docker technologies for rapid and 

easy deployment of ICN
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introduce a method for easily deploying ICN as a (micro)Service and 
quickly constructing ICN-based networks
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Cefore: CCNx-based Extensible Packet Forwarding Engine

• CCNx1.0
－ defined in the RFCs 8569 and 8609, specified by IRTF ICNRG

• Cefore
－ originally designed in 2016
－ CCNx1.0 packet (Interest/ContentObject) forwarding/caching engine
－ open-source, and published in the web* and github+
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* https://cefore.net/
+ https://github.com/cefore



Design policies

• Lightweight
－ the platform should be usable for resource-constrained devices, such as 

sensor nodes

• Usability
－ the platform should be easily configured, set up, reloaded, and connected to 

the experimental environments
－ Ideally, its emulation should be easily conducted and tested using real 

network equipment

• Extensibility
－ the platform should be easily extensible to accommodate novel functions to 

satisfy future network needs
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Pluggable architecture of Cefore
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• Researchers can install necessary ICN functions depending on their requirements while 
considering their machine resource constraints



The Cefore software package
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• Cefore provides all-in-one package for CCNx-based communications
－ core daemons (cefnetd/csmgrd with extensible plugins)
－ consumer utility (cefgetfile/cefgetstream) & producer utility (cefputfile/cefputstream)
－ network management tools (CCNinfo)

CCNx forwarder
(cefnetd)

external cache
(csmgrd)



Cefpyco
• Cefpyco (Cefore Python Compact package)*

－ a Python-based wrapper program that help developing CCNx applications running with Cefore
－ enables easy coding for python programmers (compared to the original C language)
－ Example: sending an Interest packet
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <ctype.h>
5 #include <cefore/cef_define.h>
6 #include <cefore/cef_client.h>
7 #include <cefore/cef_frame.h>
8 #include <cefore/cef_log.h>
9

10 int main(int argc, char *argv[]) {
11 CefT_Client_Handle fhdl;
12 CefT_Interest_TLVs params_i;
13 int res;
14 cef_log_init ("cefpyco");
15 cef_frame_init();
16 res = cef_client_init(port_num, conf_path);
17 if (res < 0) return -1;
18 fhdl = cef_client_connect();
19 if (fhdl < 1) return -1;
20 memset(&params_i, 0, sizeof(CefT_Interest_TLVs));

21 res = cef_frame_conversion_uri_to_name("ccnx:/test", 
params_i.name);

22 if (res < 0) return -1; // Failed to convert URI to name.;
23 params_i.name_len = res;
24 params_i.hoplimit = 32;
25 params_i.opt.lifetime_f = 1;
26 params_i.opt.lifetime = 4000ull; /* 4 seconds */
27 params_i.opt.symbolic_f = CefC_T_OPT_REGULAR;
28 params_i.chunk_num_f = 1;
29 params_i.chunk_num   = 0;
30 cef_client_interest_input(fhdl, &params_i);
31 if (fhdl > 0) cef_client_close(fhdl);
32 return 0;
33 }

C language Python

1 import cefpyco

2
3 with cefpyco.create_handle() as h:

4 h.send_interest("ccnx:/test", 0)

33 l ines 
-> 4 l ines

*https://github.com/cefore/cefpyco

Cefpyco is a user-friendly implementation as developers 
can call CCNx functions such as sending Interest/Data
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What is Docker?
• Docker

－ a platform of container-based virtualization technology for
quick and scalable deployment of network services

• Benefits
－ Lightweight

• a Docker container is very lightweight compared with VM
• -> we can build many containers in one physical machine
• -> this enriches evaluation scenario of ICN networks and 

improves scalability of experiments
－ Performance

• Docker containers do not contain OS
• -> they can be easily and quickly initiated and terminated
• -> this facilitates comfortable test and evaluation of ICN services

－ Scalability
• there is a requirement that multiple ICN nodes providing different functions co-exist in a network
• the concept of microservices that each service image is built for each purpose fits this requirement
• useful option tools such as docker-compose can be used for flexibly and quickly setting up Docker containers
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Example scenario of Cefore/Docker-based networking

• Scenario
－ The consumer requests a file
－ The producer responses to the request and send back data
－ The CCNx router stores received data into CS (csmgrd)
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Example 1 – writing a Dockerfile

• define a microservice as a ``base’’ service 
－ base function as an ICN node
－ necessary functions for providing ICN services 

as a container node 
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FROM ubuntu:20.04
LABEL maintainer="hayamizu <hayamizu@nict.go.jp>"
RUN mkdir -p /cefore
WORKDIR /cefore
RUN apt update
RUN apt install -y git build-essential libssl-dev automake
RUN apt -y clean
RUN git clone https://github.com/cefore/cefore.git
WORKDIR /cefore/runner_test

install basic libraries for building Cefore

download the Cefore software from the github

base/Dockerfile

Afterward, other enhanced ICN services, e.g. ``min’’ and ``cache,’’ 
inherit this ``base’’ image



Example 2 – writing a Dockerfile

• define a microservice as a ``min’’ service 
－ minimum functions serving as a ICN node, i.e., installation & app. preparation
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FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure
RUN make; make install; make clean
RUN ldconfig
ENV USER root
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash

min/Dockerfile

configure & make & install Cefore

set the entrypoint, i.e., just starting Cefore daemon 
(cefnetd)

define a service “min’’ that provide minimum ICN functions (application tools)



Example 3 – writing a Dockerfile

• define a microservice as a ``cache’’ service
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FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure --enable-cache --enable-csmgr
RUN make; make install; make clean
RUN ldconfig
RUN echo "CS_MODE=2" > /usr/local/cefore/cefnetd.conf
RUN echo "CACHE_TYPE=memory" > /usr/local/cefore/csmgrd.conf
ENV USER root 
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash

cache/Dockerfile

configure Cefore by enabling ``csmgr/cache’’ option

set the entrypoint, i.e., starting Cefore daemons 
(cefnetd & csmgrd)

make & install Cefore
modify the configuration files.  
CS_MODE=2 (csmgrd) 
CACHE_TYPE=memory

define “cache” service by adding caching function (cache/csmgrd) to 
the base ICN functions



Leveraging docker-compose*

• docker-compose
－ a tool for defining and running multi-container Docker 

applications
－ easy service configuration using a YAML file
－ can create and start all the services from the configuration 

with a single command
-> easy to conduct scenario-based experiments(emulations)

like network simulations such as ns-3
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version: "3.3"
services:

producer:
image: cefore/cache
container_name: "producer"
hostname: "producer"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.10

router:
image: cefore/cache
container_name: "router"
hostname: "router"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.20

consumer:
image: cefore/min
container_name: "consumer"
hostname: "consumer"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.100

networks:
downward:
name: downward
driver: bridge
ipam:
driver: default
config:
- subnet: 10.0.1.0/24

*https://docs.docker.com/compose/

Example: docker-compose.yml
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Sample scenario – Video streaming over the Internet
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• IEICE ICN summer workshop 2021 [fully-online]
－ Cefore/Docker hands-on
－ Multicast video streaming using Cefore/Docker platforms*

• The producer is located at NICT (Tokyo)
• The consumers receive the video streaming from their homes/schools/companies

*You can get sample codes from https://github.com/cefore/2021-hands-on [materials are in Japanese only]



Conclusion
• Cefore

－ CCNx-based extensible packet forwarding engine
－ All-in-one package for CCNx-based communications

• Cefpyco
－ Useful development tool for creating new ICN applications

• Cefore/Docker integration
－ Quick and scalable deployment of CCNx functions

• Sample scenario
－ Video streaming

• Future work
－ A possibility of collaboration with the emerging Docker orchestration technologies such as Kubernetes
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Cefore/Docker-based networking can be one possible option for 
easily constructing ICN networks over the existing Internet infrastracture
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Thank you.

Cefore Cefore

https://cefore.net/ https://github.com/cefore


