
Cefore: CCNx-based Cloud-native Network
Function for Deploying ICN as a Service

Yusaku Hayamizu, Atsushi Ooka, Kazuhisa Matsuzono, Hitoshi Asaeda

National Institute of Information and Communications Technology (NICT), Japan

IETF115
5-11 November, London, UK

Outline

• Background/Motivation

• Cefore: CCNx-based Extensible Packet Forwarding Engine
• Cefpyco: Cefore Python Compact Package
• Cefore x Docker Integration

• Sample Scenarios
• Conclusion

2

Background / Motivation

• ICN [1]
－ changing NW from “ host-centric ’’ to “ content-centric ’’

• CCNx [2,3] / NDN [4]
－ Content-Centric Networking (IETF/IRTF RFC)
－ Named-Data Networking (NDN project)

• Cefore [5,6]
－ open-source software enabling ICN communications
－ CCNx1.0-compliant packet forwarding engine developed/maintained by NICT

one missing piece might be...
a deployment solution of developed ICN modules into the Internet infrastructures

3

Aim of presentation

1. Introduction of Cefore
－ the Cefore software platform for enabling CCNx-based communications
－ application development with Cefpyco

• a Python wrapper program that helps developing CCNx applications

2. Cefore/Docker integration
－ Cefore’s integration with the emerging Docker technologies for rapid and

easy deployment of ICN

4

introduce a method for easily deploying ICN as a (micro)Service and
quickly constructing ICN-based networks

Outline

• Background/Motivation

• Cefore: CCNx-based Extensible Packet Forwarding Engine
• Cefpyco: Cefore Python Compact Package
• Cefore x Docker Integration

• Sample Scenarios
• Conclusion

5

Cefore: CCNx-based Extensible Packet Forwarding Engine

• CCNx1.0
－ defined in the RFCs 8569 and 8609, specified by IRTF ICNRG

• Cefore
－ originally designed in 2016
－ CCNx1.0 packet (Interest/ContentObject) forwarding/caching engine
－ open-source, and published in the web* and github+

6

* https://cefore.net/
+ https://github.com/cefore

Design policies

• Lightweight
－ the platform should be usable for resource-constrained devices, such as

sensor nodes

• Usability
－ the platform should be easily configured, set up, reloaded, and connected to

the experimental environments
－ Ideally, its emulation should be easily conducted and tested using real

network equipment

• Extensibility
－ the platform should be easily extensible to accommodate novel functions to

satisfy future network needs

7

Pluggable architecture of Cefore

8

cefnetd csmgrd

Cefore

forwarding
strategy

trans-
port

xxx
plugin

sh
or

te
st

 p
at

h
flo

od
in

g

de
fa

ul
t

...

sa
m

pl
e

tp

...

cache
algo.

yyy
plugin

LR
U

• PC

• router

• Raspberry Pi,
sensor

high-
performance

lightweight
3. just support forwarding function

and basic operation

2. use additional transport plugin
for efficient video streaming transfer

1. add various computing
functions such as caching

cefnetd csmgrd
fwd.str. trans. xxx cache yyy

cefnetd csmgrd
fwd.str. trans. xxx cache yyy

cefnetd csmgrd
fwd.str. trans. xxx cache yyy

enabled disabled

packet forwarding caching

• Researchers can install necessary ICN functions depending on their requirements while
considering their machine resource constraints

The Cefore software package

9

- cache plugin/
algorithm

- etc

-cefputfile
-cefputstream
-etc.

-cefgetfile
-cefgetstream
-ccnfinfo
-etc. pluggable

functions

consumer
producer

plugin

plugin
- forwarding strategy
- transport
- etc

Cefore

• Cefore provides all-in-one package for CCNx-based communications
－ core daemons (cefnetd/csmgrd with extensible plugins)
－ consumer utility (cefgetfile/cefgetstream) & producer utility (cefputfile/cefputstream)
－ network management tools (CCNinfo)

CCNx forwarder
(cefnetd)

external cache
(csmgrd)

Cefpyco
• Cefpyco (Cefore Python Compact package)*

－ a Python-based wrapper program that help developing CCNx applications running with Cefore
－ enables easy coding for python programmers (compared to the original C language)
－ Example: sending an Interest packet

10

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <ctype.h>
5 #include <cefore/cef_define.h>
6 #include <cefore/cef_client.h>
7 #include <cefore/cef_frame.h>
8 #include <cefore/cef_log.h>
9

10 int main(int argc, char *argv[]) {
11 CefT_Client_Handle fhdl;
12 CefT_Interest_TLVs params_i;
13 int res;
14 cef_log_init ("cefpyco");
15 cef_frame_init();
16 res = cef_client_init(port_num, conf_path);
17 if (res < 0) return -1;
18 fhdl = cef_client_connect();
19 if (fhdl < 1) return -1;
20 memset(¶ms_i, 0, sizeof(CefT_Interest_TLVs));

21 res = cef_frame_conversion_uri_to_name("ccnx:/test",
params_i.name);

22 if (res < 0) return -1; // Failed to convert URI to name.;
23 params_i.name_len = res;
24 params_i.hoplimit = 32;
25 params_i.opt.lifetime_f = 1;
26 params_i.opt.lifetime = 4000ull; /* 4 seconds */
27 params_i.opt.symbolic_f = CefC_T_OPT_REGULAR;
28 params_i.chunk_num_f = 1;
29 params_i.chunk_num = 0;
30 cef_client_interest_input(fhdl, ¶ms_i);
31 if (fhdl > 0) cef_client_close(fhdl);
32 return 0;
33 }

C language Python

1 import cefpyco

2
3 with cefpyco.create_handle() as h:

4 h.send_interest("ccnx:/test", 0)

33 l ines
-> 4 l ines

*https://github.com/cefore/cefpyco

Cefpyco is a user-friendly implementation as developers
can call CCNx functions such as sending Interest/Data

Outline

• Background/Motivation

• Cefore: CCNx-based Extensible Packet Forwarding Engine
• Cefpyco: Cefore Python Compact Package
• Cefore x Docker Integration

• Sample Scenarios
• Conclusion

11

What is Docker?
• Docker

－ a platform of container-based virtualization technology for
quick and scalable deployment of network services

• Benefits
－ Lightweight

• a Docker container is very lightweight compared with VM
• -> we can build many containers in one physical machine
• -> this enriches evaluation scenario of ICN networks and

improves scalability of experiments
－ Performance

• Docker containers do not contain OS
• -> they can be easily and quickly initiated and terminated
• -> this facilitates comfortable test and evaluation of ICN services

－ Scalability
• there is a requirement that multiple ICN nodes providing different functions co-exist in a network
• the concept of microservices that each service image is built for each purpose fits this requirement
• useful option tools such as docker-compose can be used for flexibly and quickly setting up Docker containers

12

comparison of VM and Docker

physical machine

host OS

hypervisor

guest OS guest OS

middleware
/ library

app.

middleware
/ library

app.

VM

physical machine

host OS

Docker engine

middleware
/ library

app.

middleware
/ library

app.

Docker

Example scenario of Cefore/Docker-based networking

• Scenario
－ The consumer requests a file
－ The producer responses to the request and send back data
－ The CCNx router stores received data into CS (csmgrd)

13

cefnetdconsumer

producer

“min” “cache”

csmgrd

“cache”

service node

“xxx”

consumer

router

Example 1 – writing a Dockerfile

• define a microservice as a ``base’’ service
－ base function as an ICN node
－ necessary functions for providing ICN services

as a container node

14

FROM ubuntu:20.04
LABEL maintainer="hayamizu <hayamizu@nict.go.jp>"
RUN mkdir -p /cefore
WORKDIR /cefore
RUN apt update
RUN apt install -y git build-essential libssl-dev automake
RUN apt -y clean
RUN git clone https://github.com/cefore/cefore.git
WORKDIR /cefore/runner_test

install basic libraries for building Cefore

download the Cefore software from the github

base/Dockerfile

Afterward, other enhanced ICN services, e.g. ``min’’ and ``cache,’’
inherit this ``base’’ image

Example 2 – writing a Dockerfile

• define a microservice as a ``min’’ service
－ minimum functions serving as a ICN node, i.e., installation & app. preparation

15

FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure
RUN make; make install; make clean
RUN ldconfig
ENV USER root
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash

min/Dockerfile

configure & make & install Cefore

set the entrypoint, i.e., just starting Cefore daemon
(cefnetd)

define a service “min’’ that provide minimum ICN functions (application tools)

Example 3 – writing a Dockerfile

• define a microservice as a ``cache’’ service

16

FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure --enable-cache --enable-csmgr
RUN make; make install; make clean
RUN ldconfig
RUN echo "CS_MODE=2" > /usr/local/cefore/cefnetd.conf
RUN echo "CACHE_TYPE=memory" > /usr/local/cefore/csmgrd.conf
ENV USER root
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash

cache/Dockerfile

configure Cefore by enabling ``csmgr/cache’’ option

set the entrypoint, i.e., starting Cefore daemons
(cefnetd & csmgrd)

make & install Cefore
modify the configuration files.
CS_MODE=2 (csmgrd)
CACHE_TYPE=memory

define “cache” service by adding caching function (cache/csmgrd) to
the base ICN functions

Leveraging docker-compose*

• docker-compose
－ a tool for defining and running multi-container Docker

applications
－ easy service configuration using a YAML file
－ can create and start all the services from the configuration

with a single command
-> easy to conduct scenario-based experiments(emulations)

like network simulations such as ns-3

17

version: "3.3"
services:

producer:
image: cefore/cache
container_name: "producer"
hostname: "producer"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.10

router:
image: cefore/cache
container_name: "router"
hostname: "router"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.20

consumer:
image: cefore/min
container_name: "consumer"
hostname: "consumer"
working_dir: "/cefore"
networks:

downward:
ipv4_address: 10.0.1.100

networks:
downward:
name: downward
driver: bridge
ipam:
driver: default
config:
- subnet: 10.0.1.0/24

*https://docs.docker.com/compose/

Example: docker-compose.yml

cefnetdconsumer

producer

“min
”

“cache”

csmgrd

“cache”

consumer

router

Outline

• Background/Motivation

• Cefore: CCNx-based Extensible Packet Forwarding Engine
• Cefpyco: Cefore Python Compact Package
• Cefore x Docker Integration

• Sample Scenarios
• Conclusion

18

Sample scenario – Video streaming over the Internet

19

• IEICE ICN summer workshop 2021 [fully-online]
－ Cefore/Docker hands-on
－ Multicast video streaming using Cefore/Docker platforms*

• The producer is located at NICT (Tokyo)
• The consumers receive the video streaming from their homes/schools/companies

*You can get sample codes from https://github.com/cefore/2021-hands-on [materials are in Japanese only]

Conclusion
• Cefore

－ CCNx-based extensible packet forwarding engine
－ All-in-one package for CCNx-based communications

• Cefpyco
－ Useful development tool for creating new ICN applications

• Cefore/Docker integration
－ Quick and scalable deployment of CCNx functions

• Sample scenario
－ Video streaming

• Future work
－ A possibility of collaboration with the emerging Docker orchestration technologies such as Kubernetes

20

Cefore/Docker-based networking can be one possible option for
easily constructing ICN networks over the existing Internet infrastracture

Reference

[1] V. Jacobson, et al., “Networking Named Content,” in Proc. ACM CoNEXT’09, vol. E102-B, no. 9, Sept. 2019.

[2] “Content-Centric Networking (CCNx) Semantics,” https://datatracker. ietf.org/doc/rfc8569/ , Accessed on 7 July 2022.

[3] “Content-CentricNetworking(CCNx)MessagesinTLVFormat,”https: //datatracker.ietf.org/doc/rfc8609/ , Accessed on 7 July 2022.

[4] L. Zhang, et al., “Named Data Networking,” ACM SIGCOMM CCR, vol. 44, no. 3, pp 66-73, July 2014.

[5] “Cefore,” https://cefore.net , Accessed on 7 July 2022.

[6] H.Asaeda,etal.,“Cefore: Software Platform Enabling Content-Centric Networking and Beyond,” IEICE Trans. Commun., vol.E102-B, no.9,

pp.1792-1803, Sept. 2019.

21

Thank you.

Cefore Cefore

https://cefore.net/ https://github.com/cefore

