RESTful Information-Centric Networking

Dirk Kutscher and Dave Oran

ICNRG @ IETF-115
2022-11-08
8:00 - 9:00 JST: Panel 2
Session Chair: Alexander Afanasyev (Florida International University)
Panel: ICN and the Metaverse – Challenges and Opportunities

Statement: RESTful Information-Centric Networking

Dirk Kutscher
Hong Kong University of Science and Technology
Guangzhou, Guangdong, China
dku@ust.hk

David Oran
Network Systems Research & Design
Cambridge, MA, USA
daveoran@orandom.net

Statement: As TCP/IP is to the Web, ICN is to the...?

Jeff Burke
jburke@remap.ucla.edu
UCLA REMAP
Los Angeles, California, USA
More Background
Internet Protocols for Efficient RPC Communication

Systems Approach

QUIC Is Not a TCP Replacement

Bruce Davie
Sep 26

The publication of a new, definitive specification for TCP (RFC 9293) is enough of a big deal in our world that we couldn’t resist a second post on the topic. In particular, we were intrigued by the discussion that compared QUIC to TCP, which inspired this week’s newsletter.

https://systemsapproach.substack.com/p/quic-is-not-a-tcp-replacement
Representational State Transfer

Theory: Stateless Requests

Verb

Resource Identifier

GET /resource/A
; including all request & content parameters

Response
; representation of server state

MODIFY /resource/A
; including all request & content parameters

Response
; representation of server state
Representational State Transfer

Reality: Not So Stateless Requests (Cookies)

Verb
Resource Identifier

GET /resource/A
; including all request & content parameters

Response
; representation of server state

MODIFY /resource/A
; including all request & content parameters

Response
; representation of server state
RESTful Reality

HTTP3

- Connections, security contexts, channels
- Request parameters, cookies

QUIC

TCP-like congestion control
loss recovery

UDP

IP

HTTP3

TLS-1.3

QRIC

• Connections, security contexts, channels
• Request parameters, cookies
Information-Centric REST?

• ICN-idiomatic RESTful communications as a building block for applications
 • Clients and servers in sessions
 • Common understanding of state evolution
 • Suitable for a broad range of applications
 • At least HTTP/TLS’s security and privacy features
• Can we do this better than state of the art (HTTP3/QUIC/TLS-1.3)?
 • Simpler protocol machinery
 • Less overhead on the wire
 • Leveraging typical ICN benefits
Naïve ICN Approach

Interests as Vehicles for Requests

Verb

Resource

Identifier

Interest /resource/A/get
; including all request & content parameters

Data (Response)
; representation of server state

Interest /resource/A/modify
; including all request & content parameters

Data (Response)
; representation of server state
Naïve ICN Approach
Interests as Vehicles for Requests

• Flow balance
 • Request parameters can require a lot of bytes (often more than the state representation in the response)
 • Interests are intended to regulate Data packets

• Computational overload attacks on server

• Application layer processing time vs. network layer timeouts

• Secure sessions and name confidentiality
Naïve ICN Approach
Interests as Vehicles for Requests

• Flow balance
 • Request parameters can require a lot of bytes (often more than the state representation in the response)
 • Interests are intended to regulate Data packets

• Computational overload attacks on server

• Application layer processing time vs. network layer timeouts

• Secure sessions and name confidentiality
RESTful ICN Design
Data-oriented REST Sessions

• Enable client/server communication
 • With a series of request/response interactions in a session context

• Employ Reflexive Forwarding for RPC communication
 • Allow for robust ICN-idiomatic client/server communication with client parameter passing
 • For both key exchange and actual RESTFul communication

• Enable secure RESTful communication using standard ICN mechanisms
 • Content Object encryption and signatures
 • Without forcing all interactions into TLS-like tunnels
RESTful ICN Design 2

Efficiency

• Supporting a series of requests (in a session)
 • Avoid setting up context state for every request and the corresponding protocol interactions

• Establish and maintain shared "session" state
 • Using identifiers of keys and associated security context negotiated by setup phase
 • Reflexive Forwarding Parameter passing machinery for clients to refer to previously created application state
 • Emulating HTTP cookies
State Management

- Secure referent state held on a particular server (through key-ids) and a referent to application state through parameters secured through those keys
- Basis for enabling key features of today’s session based RESTful protocols
 - Application state caching on clients to allow server agility
 - Securing application state exchanged through pair-wise session keys with particular server
 - Rapid setup of these keys using TLS 1.3-compliant key exchange protocol
 - Efficient state evolution (minimizing round-trips and state representation overhead)
 - RESTful semantics for multiple interactions with the application through the same server
- Caveat
 - Have to make sure that client talks to the same server over multiple requests
 - Or that there is some server-side state synchronization machinery
CCNx Key Exchange

Mosko, Ersin, Wood: draft-wood-icnrg-ccnxkeyexchange

- TLS-1.3-like key exchange protocol between two peers
 - For establishing a shared, forward-secure key for secure and confidential communication
- Wraps "inner" ICN communication (Interest/Data) into "outer", TLS-style secured Interest/Data exchanges
 - Orthogonal to reliability and congestion control
- Designed for client/server scenarios
 - Protection against computational overload attacks
 - Can use different infrastructure for security and service functions
RESTful ICN
Session Setup

• Integrating CCNx-style kex exchanges in Reflexive Forwarding framework
 • Same semantics
 • Less data in unsolicited Interests
 • A few more roundtrips
• Coupling session state and keying
 • Key revocation => session termination

Round 1
(HELLO – HELLO-REJECT)

Round 2
(Full-HELLO)

Round 3
(App-Data)
RESTful ICN
Requests and Responses

- **Reflexive Forwarding**
 - ClientContextHandle in initial Interest
 - Contains necessary SessionID and key-id for the security context
 - Plus encrypted name for application state representation

- **Responses**
 - Request results
 - Encrypted name for new session state representation

- **Not using tunnel-like encryption**
 - Encrypting content objects with symmetric key
Conclusions

• Time to think about web over ICN: basic Interest/Data not enough
• Key idea here: Integrating key exchange with reflexive forwarding
 • Provide required context handles in initial Initial interest
 • Use negotiated keys for symmetric content object encryption
• Approximate capabilities of current state of the art (HTTP3/QUIC or TCP)
 • Overcoming complexities of 3 layer approach with isolated implementations and protocol machinery
 • Potentially easier to implement
 • Still enjoying the usual ICN greatness
• Future work
 • Name privacy
 • Build it