BGP MultiNexthop Attribute

https://datatracker.ietf.org/doc/html/draft-kaliraj-idr-multinexthop-attribute-04

IETF IDR 115

Kaliraj Vairavakkalai

Juniper Networks Nov 07, 2022

Juniper Networks

Agenda

- Background
- Problem statement.
- MULTI_NEXT_HOP Attribute
 - -- Propagation Scope.
 - layout and organization
 - -- Error handling.
- Use cases discussed inline..
 - a uniform API to receiver's FIB.
 - -- DOMAIN_LOCAL_PREF.
 - Label oscillation avoidance.

Background: Expressing nexthops in BGP.

- What is a nexthop?
 - Instructions on how to forward a payload specified in BGP NLRI.

Nexthop information is extracted from BGP PDU/Route from various portions:

- Endpoint Identifier (Where to forward?)
 - Nexthop attribute (code 3)
 - MP_REACH_NLRI attribute (code 14) : "Network Address of Next Hop"
 - Redirect to IP extended community attribute.
 - Tunnel Encap Attribute.
 - Color-only community attribute.
 - Redirect to VRF extended community attribute.
- Encap to use:
 - MP_REACH_NLRI attribute (code 14) : "Label in NLRI portion"
 - Prefix-SID attribute.
 - Tunnel Encap Attribute.
 - Repair-Label attribute.
- Constraints:
 - Color community or Mapping community attribute.
 - Link bandwidth community attribute.

Background: expressing multiplicity.

- Addpath
 - Advertise multiple paths for one prefix each with its own nexthop (previous slide).
 - Increased RIB scale. Specifically RIB-out.
 - Unspecified for most of the mechanisms carrying endpoint-identifier in previous slide. Works for Nexthop attribute (code 3) and MP_REACH_NLRI attribute (code 14)
- Multipath, PIC
 - Info from Multiple routes is consumed in conjunction with local config

Observation:

These mechanisms have organically grown over the period, and information is spread across:

- Different portions of a BGP route (NLRI, and different attributes)
- Local configuration.

Problems.

- Inability to advertise more than one nexthop in a route.
- Not easily extensible to newer endpoint types, encapsulation types.
- Even with addpath, inability to express relationship between the different route nexthops (active/backup, UCMP etc).

These properties are important to use BGP as an API to receiver's FIB for both IP and MPLS routes.

• Inability to signal encap-information uniformly for different address families (e.g. cannot signal Labels for SAFI 1 routes).

Being able to do so can confine service routes to the edge, and make the core light weight. Extending the principles of BGP free core.

Problems (contd).

• Inability to express multiple labels in a route.

Helpful in some multihomed cases to avoid label oscillation.

• Semantics of a downstream allocated label is not known to receiver.

This info may be useful for some scenarios, e.g. network visualization, EPE decisions.

A problem slightly unrelated to nexthops:

- Local-preference is designed to be used in one administrative domain (AS, Confed) but doesn't work for option-C domains, because it consists of multiple AS, even though a single admin control.
- Lack of Scoping control for attribute advertisement within option-C domain scope.

These problems are attempted to be solved by MultiNexthop Attribute. Lets see how..

MultiNexthop Attribute (MULTI_NEXT_HOP)

- MNH is an Optional Nontransitive attribute.
- Usage negotiated with a new BGP capability.
- TLVized format extensible for newer endpoint types, encapsulation types, forwarding actions, argument types.
- Can carry 1 or more nexthop instructions.
- Can be used to enable BGP based API to the receiver's FIB. For IP or Upstream allocated MPLS routes.

MultiNexthop attribute – bird's eye view.

```
MNH Attribute: {
      Propagation Scope Checker,
      Num [MNH TLV]
}
MNH TLV: {
  {Type, Nexthop Forwarding Information TLV}
Nexthop Forwarding Information TLV: {
    Num[Forwarding Instruction TLV]
}
Forwarding Instruction TLV: {
    {FwdAction, Forwarding Argument TLVs}
}
```

- Propagation Scope checker controls attribute propagation scope.
- Nexthop Forwarding Information TLV: The Nexthop.
- Fowarding Instruction TLV: The Nexthop Leg/Elementworks

Propagation Scope.

- NonTransitive, will not unintentionally leak to Internet.
- Carries Advertising PNH (BGP Protocol Nexthop), which can be used to know if MNH is valid, added by the router who rewrote nexthop.

[Q: Do we need this anymore, since the propagation scope is made conservative?]

- Even amongst speakers that understand MNH, advertisement is controlled by a "Propagation scope checker" (PSC).
 - PSC flag I: When Set allow advertisement to IBGP peers.
 - PSC flag C: When Set allow advertisement to Confed-EBGP.
 - PSC flag E: When Set allow advertisement to EBGP peers in Allowed-AS list.
 - PSC Allowed-AS list: list of (4 octect) AS numbers that are under same administrative control.

This enables DOMAIN_LOCAL_PREF to be used in option-C domain scope.

MNH TLV

Types:

- 1: Upstream signaled primary forwarding path.
- 2: Upstream signaled backup forwarding path (to avoid label oscillation problem)
- 4: Downstream signaled Label Descriptor.

All above Types contain Nexthop Forwarding Information TLV.

• 3: Domain Local Preference (DOMAIN_LOCAL_PREF)

This Type contains Domain Local Preference (4 byte value). It is to be used during Path Selection in place of LOCAL_PREF attribute, within an option-C domain.

• Unknown types: are propagated, if MNH is propagated.

[Q: Perhaps add indication like Partial bit?]

Nexthop Forwaring Information TLV

- This TLV describes a Nexthop.
- It contains
 - Num Nexthops: Number of Nexthop Leg Elements.
 - one or more Nexthop Leg elements (Forwarding Instruction TLVs)

Forwarding Instruction TLV

- This TLV describes a Nexthop Leg.
- It comprises of:
 - FwdAction.
 - Forward
 - Pop-And-Forward
 - Swap
 - Push
 - Pop-and-Lookup
 - Replicate
 - One or more Arguments (Forwarding Argument TLV)

Forwarding Argument TLV (1/3)

- Endpoint Identifier:
 - IPv4 Address,
 - IPv6 Address,
 - MPLS Label (Upstream allocated or global scope),
 - Fwd Context RD, identifies a receiver on the receiving node.
 - Fwd Context RT, identifies a receiver on the receiving node..

Forwarding Argument TLV (2/3)

- Path Constraints:
 - Proximity check
 - S bit: Restrict to Singlehop path
 - M bit: Expect Multihop path.
 - When both S and M bits are set, M bit behavior takes precedence.
 - When both Clear, proximity derived from peer type (EBGP is singlehop, IBGP is multihop)
 - Transport Class ID (Color)
 - Load balance factor (for UCMP)

Forwarding Argument TLV (3/3)

- Payload encapsulation info signaling
 - MPLS Label Info (contains ELC as flag)
 - SR MPLS label Index Info
 - SRv6 SID info
- Endpoint attributes advertisement
 - Available Bandwidth (8 octets, bits per sec)

Error handling

- Follows the 'Attribute discard' approach described in [RFC7606]
- Try to deal gracefully with errors, as much as possible.
- Unkown TLVs are ignored, gracefully. With enough diagnostic data.
- For a 'FwdAction', if extraneous arguments are ignored. If minimum required arguments not available, then the Fwd-Instruction-TLV is ignored.
- If Num-Nexthops in NFI TLV is not acceptable to receiver, he ignores the MNH attribute. Attribute discard approach.
- More details in Section 6 of the draft.

References:

<u>https://datatracker.ietf.org/doc/draft-kaliraj-idr-multinexthop-attribute/</u>

Thank you.

Juniper Networks