
EDHOC

IETF 115, LAKE WG, November 08, 2022

draft-ietf-lake-edhoc-17

https://github.com/lake-wg/edhoc

— edhoc-16
— updated following security analysis
— verified after update
— wire format change

— edhoc-17
— minor update for WGLC

— traces-03
— matching edhoc-16/17

As always, details in https://github.com/lake-wg/edhoc

Since IETF 114

2

https://github.com/lake-wg/edhoc

LAKE WG interim, Dec. 15, 2021

edhoc-15 à edhoc-16

IETF 113, LAKE WG, March 21, 2022

— Main changes:
— TH_2 used as salt in the derivation of PRK_2e
— CRED_R/CRED_I included in TH_3/TH_4

— Minor changes
— Distinguish label used in info, exporter or elsewhere

— label à info_label
— label à exporter_label

— New Appendix for optional handling arbitrarily large message_2
— info_label type changed to int to support this

— Implementation note about identifiers which are bstr/int
— Clarifications, in particular compact EC representation
— Type bug fix in CDDL section
— Updated security considerations
— Updated references

Summary: edhoc-15 à edhoc-16

4

LAKE WG interim, Dec. 15, 2021

edhoc-16 à edhoc-17

IETF 113, LAKE WG, March 21, 2022

— Changes:
— Security consideration about 128 bit security against online attacks

— verifying multiple MACs
— proposed by ENS

— Updated text on peer awareness
— EDHOC-KeyUpdate is made OPTIONAL (was RECOMMENDED)

— EDHOC-KeyUpdate moved to Appendix
— Clarifications in Appendix on large message_2 (PLAINTEXT_2)

Summary: edhoc-16 à edhoc-17

6

Y
Salt3e2m Expand

PRKout Expand

Exporter

PRKexporter Expand

TH4

Application
Key

label

0

2

9

h'' context

EDHOC-17 Key Schedule

TH2

Expand KEYSTREAM2ExtractGXY

GIY

GRX

PRK2e

context2

Encryption (stream cipher) in message2

R uses
Static DH?

Salt4e3m Expand

ExpandExtract

I uses
Static DH?

PRK3e2m

Y

N

MAC2

context3

ExpandExtract PRK4e3m

N

MAC3

TH2

TH3
5

TH3

K3 / IV3

K4 / IV4

Expand

TH2

1

3 / 4

Expand

7 / 8

10

AEAD in message3

AEAD in message4

6

Expand

(signed if R uses Sign)

(signed if I uses Sign)

Session
Key

7

LAKE WG interim, Dec. 15, 2021

WGLC Comments

IETF 113, LAKE WG, March 21, 2022

— Marco Tiloca (#347)
— Charlie Jacomme (#344, #351)
— Felix Günther (#350)
— Rafa Marin-Lopez (#352)
— Christian Amsüss (#353)
— Mališa Vučinić (#354)

Thanks!

— From author
— AEAD with zero plaintext as KEYSTREAM_2 (#355)

WGLC comments

9

— Session key terminology (#344, #354)
— Detecting changes in message_1/2 (#351)
— No exchange defined for KeyUpdate (#352)
— Encoding of TH_2 (#347, #354)
— Protocol state machine (#354)
— EAD error processing (#347)
— Clarify byte string representation (#347)
— Informative references to security analyses (#343, #350)
— AEAD with zero plaintext as KEYSTREAM_2 (#355)

Specific issues

10

— Clarifying session key = PRK_out

Proposal: PR #345

Session key terminology (#344, #354)

11

— "Changes in message_1 and message_2 (except PAD_2) are detected
when verifying Signature_or_MAC_2. ”

— Correct for strongly unforgeable signature schemes, but not in general
— EUF-CMA, a signature authenticates only the underlying message
— SUF-CMA, a signature authenticates both the underlying message and the signature itself

Charlie et al.:
— None of the concrete signature scheme currently standardize appears to be malleable under xor.
— We report it for thoroughness, but are uncertain whether the sentence should be changed or

not.

Proposal: PR #356

Detecting changes in message_1/2 (#351)

12

— EDHOC-KeyUpdate defined in Appendix J
— Should we define a protocol using it?

— EDHOC-KeyUpdate was defined as a method for forward secrecy
— Overwrites PRK_out
— Requires state

— draft-ietf-core-oscore-key-update defines similar method + protocol
— Independent of EDHOC
— Part of reason why EDHOC-KeyUpdate moved to Appendix J
— No additional use case identified

Proposal: Don’t define the protocol in this draft

No exchange defined for KeyUpdate (#352)

13

— Definition
— TH_2 = H(G_Y, C_R, H(message_1))
— "The transcript hash TH_2 is a CBOR encoded bstr ..." (*)

— Used in various CBOR objects:
— context_2 = << ID_CRED_R, TH_2, CRED_R, ? EAD_2 >>
— external_aad = << TH_2, CRED_R, ? EAD_2 >>
— TH_3 = H(TH_2, PLAINTEXT_2, CRED_R)
— KEYSTREAM_2 = EDHOC-KDF(PRK_2e, 0, TH_2, plaintext_length)
— SALT_3e2m = EDHOC-KDF(PRK_2e, 1, TH_2, hash_length)

— As of -16, also used as salt
— PRK_2e = HMAC-SHA-256(TH_2, G_XY)

— In traces-03, TH_2 is here the raw byte string output of H(), i.e, not a CBOR item.
— Either: keep that and remove (*), or keep (*) and use CBOR encoded TH_2 in PRK_2e

— (TH_3 only used in CBOR objects, but has similar formulation)

Encoding of TH_2 (#347, #354)

14

— Mališa:
— valid states summarized and illustrated through a figure
— very useful from the implementor’s point of view
— similar to Appendix A of RFC 8446

— John:
— discussed before
— EDHOC does not really have the kind of states that TLS 1.3 does
— not against having a figure

Proposal: Sketch an appendix

Protocol state machine (#354)

15

— General rule:
— "If any processing step fails, the Responder MUST send an EDHOC error message back ..."

Section 3.8
— "If an endpoint receives a critical EAD item it does not recognize or a critical EAD item that

contains information that it cannot process, the EDHOC protocol MUST be discontinued."
— Must an EDHOC error message also be sent before discontinuing the protocol?
— Is it something that must be specified by the application/specification that defines the

EAD item and its processing when used as critical?

— Does "processing" cover also the actual EAD processing, or only the act of making EAD_x
available to the application?

Proposal: Apply “MUST send”, considering DoS reasons for not sending (Section 8.7). Clarify that the
EAD specification defines when and what to send.

EAD error processing (#347)

16

Clarify byte string representation (#347)

17

— "Connection identifiers in EDHOC are intrinsically byte strings.”
— “The byte strings which coincide with a one-byte CBOR encoding of an integer MUST be

represented by the CBOR encoding of that integer.”
— Other byte strings are encoded as CBOR byte strings.

OLD (edhoc-17):
h'21' is represented by 0x21 (CBOR encoding of the integer -2), not by 0x4121
NEW (proposed change):
0x21 is represented by 0x21 (CBOR encoding of the integer -2), not by 0x4121

OLD (edhoc-17):
h'18' is represented by 0x4118
NEW (proposed change):
0x18 is represented by 0x4118 (CBOR encoding of the byte string 0x18)

Proposal: Do this

Informative references to security analyses
(#343, #350)

18

— “Two earlier versions of EDHOC have been formally analyzed [Norrman20] [Bruni18] and the
specification has been updated based on the analysis.”

— Incomplete list of references. Some analyses are not yet available or preprints. Some pointers:
— Jacomme, C., Klein, E., Kremer, S., Racouchot, M., "A comprehensive, formal and automated

analysis of the EDHOC protocol", October 2023 (to appear at USENIX Security, January 2023)
https://hal.inria.fr/hal-03810102/

— Cottier, B., Pointcheval, D., "Security Analysis of the EDHOC protocol", September 2022,
https://arxiv.org/pdf/2209.03599.pdf

— Ilunga, M., Günther, F., "Analysis of the EDHOC Lightweight Authenticated Key Exchange
Protocol", August 2022, https://www.research-
collection.ethz.ch/handle/20.500.11850/576036

— Proposal: At least update the list. Annotated with insights from the analysis?

https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-17
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-17
https://hal.inria.fr/hal-03810102/
https://arxiv.org/pdf/2209.03599.pdf
https://www.research-collection.ethz.ch/handle/20.500.11850/576036

AEAD with zero plaintext as KEYSTREAM_2
(#355)

19

— EDHOC-17 uses HMAC and KMAC as stream ciphers for encryption of message_2
— KEYSTREAM_2 = EDHOC-KDF(PRK_2e, 0, TH_2, plaintext_length)

— COSE does not have IND-CPA encryption algorithms like AES-CTR and ChaCha20
— Hard to remove the tag from an AEAD call such as AES-CCM(K_2, P_2, A, N)

— Missed in the discussion: AEAD with a plaintext consisting of zeroes
— For example, implementing AES-CTR with AES-CCM:

— KEYSTREAM_2 = AES-CCM(K_2, 0000000......, A, N)
— CIPHERTEXT_2 = PLAINTEXT_2 XOR (beginning of KEYSTREAM_2)

Next steps

— Address WGLC comments

— Submit updated version of –edhoc (and, if necessary, –traces)

20

