Lightweight Authorization for EDHOC

draft-selander-lake-authz-00

Göran Selander, John Preuß Mattsson, Ericsson
Michael Richardson, SSW
Mališa Vučinić, INRIA
Aurelio Schellenbaum, ZHAW

IETF 115, LAKE WG, November 08, 2022
Authorization support in EDHOC

- The External Authorization Data (EAD) fields in EDHOC provides integration points
 - Support for authorization of peers running EDHOC
 - Typically involving trusted third parties (TTPs)

- This draft:
 - Initiator retrieves voucher from an Authorization Server authorizing the Responder

- Other examples: remote attestation, revocation checking
EAD in draft-ietf-lake-edhoc

- Format and basic use in Section 3.8
 - "must not be used for generic application data"

- Appendix E: Use of External Authorization Data
 - "Security applications ... must perform the necessary security analysis."

- Caveat in the security considerations (Section 8.1)
 - "Any new uses of EAD should be subject to careful review"

- IANA registration procedure is "Specification Required"
Example: Device Onboarding

- **Device onboarding setting**
 - AKE
 - Authorize onboarding node
 - ...

- **Involving third parties**
 - Authorization Server
 - ...

- **Potential inefficiencies**
 - Sequential processing
 - Same data in different phases, e.g. public key of the peer
 - Data sent over constrained link can be accessed over unconstrained network

[Diagram showing device, onboarding node, and third parties with constraints and unconstrained networks]
Overview

Initiator (U) — Responder (V) — Authorization Server (W)

- Voucher Retrieval
 - lake-authz

- EDHOC
 - lake-ehoc

- Data in EDHOC also used for authorization
- Transport credentials etc. over unconstrained instead of constrained links
- In parallel instead of in sequence

- Reuse of data
- Lower overhead
- Reduced latency
- Early abort
Protocol U-V

Assumptions

U \leftrightarrow V
- No prior trust relation
- U provide location of W to V

V \leftrightarrow W
- Web based trust
- Proof of Possession of PK of V
 - PK of V is in CRED_R

U \leftrightarrow W
- U trusts g^W (PK of W) to issue vouchers
 - g^W pre-provisioned

where

EAD_1 contains LOC_W, ENC_ID
EAD_2 contains Voucher: MAC(H(message_1), CRED_R)
Protocol V-W

Assumptions

\[U \leftrightarrow V \]
- No prior trust relation
- U provide location of W to V

\[V \leftrightarrow W \]
- Web based trust
- Proof of Possession of PK of V
 - PK of V is in CRED_R

\[U \leftrightarrow W \]
- U trusts \(g^W \) (PK of W)
 to issue vouchers
- \(g^W \) pre-provisioned

\[\]

where

\[H(m_1) = H(message_1) \]
\[SS = \text{Selected EDHOC ciphersuite} \]
\[\text{Voucher: } \text{MAC}(H(message_1), \text{CRED}_R) \]
Next steps

— Review updates
 — Marco’s review: https://mailarchive.ietf.org/arch/msg/lake/5fR1AitD4XRuWf18OgGbzwge40U/
— Implementation