Use of KYBER in the Cryptographic Message Syntax (CMS)

IETF LAMPS 115

draft-ietf-lamps-cms-kyber

Julien Prat (CryptoNext Security)
Mike Ounsworth (Entrust)

NOVEMBER 2022
Editorial:
• Editorial comments from Carl Wallace and Michael Richardson were taken into account

RecipientInfo Conventions:
• Use of KeyTransRecipientInfo to communicate algorithm info
• KeyTransRecipientInfo value MUST have the following values:
 • keyEncryptionAlgorithm.algorithm MUST be \textit{id-kem-trans} OID (KEM-TRANS mechanism)
 • keyEncryptionAlgorithm.parameters MUST be a value of type \textit{GenericKemTransParameters}
 • encryptedKey MUST be the encrypted keying data (\textit{EK}) output by the KEM-TRANS Mechanism

Algorithm limitations:
• Algorithms to be used in KEM-TRANS are limited to Kyber:

<table>
<thead>
<tr>
<th>Security Level</th>
<th>KEM</th>
<th>KDF</th>
<th>WRAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 bits</td>
<td>KYBER512</td>
<td>HKDF-SHA256</td>
<td>AES128-WRAP</td>
</tr>
<tr>
<td>192 bits</td>
<td>KYBER768</td>
<td>HKDF-SHA384</td>
<td>AES192-WRAP</td>
</tr>
<tr>
<td>256 bits</td>
<td>KYBER1024</td>
<td>HKDF-SHA512 or NULL</td>
<td>AES256-WRAP</td>
</tr>
</tbody>
</table>
Certificate Conventions:
Depend on the work item PQC-PKIX

New OIDs to be defined:
• id-kem-trans (KEM-TRANS mechanism)
• id-kyber512, id-kyber768, id-kyber1024 (KYBER algorithms)

Should we limit the number of algorithm combination to 3, depending on the security level consistency?
• 128 bits
• 192 bits
• 256 bits
Thank you!
The new generation of quantum resistant and sovereign cryptography
RFC Purpose:
Define how to use Kyber within the Cryptographic Message Syntax (CMS)

CMS Context:
One of the typical use case of the CMS Enveloped-Data Content is to:
1. randomly generate a CEK,
2. encrypt the data with a symmetric algorithm using this CEK
3. individually send the CEK to one or more recipients protected by asymmetric cryptography in a RecipientInfo object.

Requirements:
Need to define a new Key Transport mechanism fulfilling the following requirements:
- the Key Transport Mechanism SHALL be secure against quantum computers.
- the Key Transport Mechanism SHALL be able to take the Content-Encryption Key (CEK) as input.

=> Definition of the **KEM-TRANS mechanism**
A key encapsulation mechanism (KEM) is an asymmetric cryptographic algorithm allowing secret sharing between two entities.

KEM consisting of 3 functions:
• Key generation **KeyGen()**:
 • Returns a public key and a private key (PK, SK)
• Encapsulation **Encaps**(PK):
 • Takes as input the public key
 • Returns a ciphertext CT and a shared secret SS
• Decapsulation **Decaps**(SK, CT):
 • Takes as input the private key and the ciphertext
 • Returns the shared secret SS

=> Impossible to encrypt a fixed CEK with KEM
A key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value using a pseudorandom function.

KDF consists of 1 function:
• Key Derivation \textbf{Derive}(SS, KEK_LEN) :
 • Takes as input a shared secret SS and the length of the output secret key KEK_LEN
 • Returns a secret key KEK
A wrapping algorithm (WRAP) is a symmetric cryptographic algorithm protecting data in confidentiality and in integrity.

WRAP consists of 2 functions:
• Wrapping $\text{Wrap}(\text{KEK}, \text{K})$:
 • Takes as input a wrapping key KEK and a plaintext key K
 • Returns a wrapped key WK
• Unwrapping $\text{Unwrap}(\text{KEK}, \text{WK})$:
 • Takes as input a wrapping key KEK and a wrapped key WK
 • Returns the plaintext key K
KEM-TRANS MECHANISM - DESCRIPTION

Assumptions:
Sender has been provided with:
• recipPubKey: the recipient's public key for KEM.
• K: the keying data to be transported, length is compatible with the chosen WRAP algorithm.

Sender's operations:
1. (SS, CT) = KEM.encaps(recipPubKey)
2. KEK = KDF.derive(SS, kekLen)
3. WK = WRAP.wrap(KEK, K)
4. EK = (WK || CT)

Recipient's operations:
1. (WK || CT) = EK
2. SS = KEM.decaps(recipPrivKey, CT)
3. KEK = KDF.derive(SS, kekLen)
4. K = WRAP.Unwrap(KEK, WK)

=> KEM-TRANS mechanism allows the transport of any keying data, including CMS CEK
=> KEM-TRANS mechanism can be instantiated with any KEM algorithm, including a Quantum-Safe KEM, making the KEM-TRANS mechanism Quantum-Safe
RecipientInfo Conventions:
• RecipientInfo Type MUST be KeyTransRecipientInfo
• KeyTransRecipientInfo value MUST have the following values:
 • keyEncryptionAlgorithm.algorithm MUST be id-kem-trans OID (KEM-TRANS mechanism)
 • keyEncryptionAlgorithm.parameters MUST be a value of type GenericKemTransParameters
 • encryptedKey MUST be the encrypted keying data (EK) output by the KEM-TRANS Mechanism

Certificate Conventions:
• Key Usage Extension MUST contain only the value keyEncipherment
• Subject Public Key Info MUST be set to id-alg-xxx-kem OID (KEM algorithm)
Thank you!