

((LPWAN))

draft-aguilar-lpwan-schc-convergence-00

Authors: Sergio Aguilar <sergio.aguilar.romero@upc.edu> Carles Gomez <carles.gomez@upc.edu> Rafael Vidal <rafael.vidal@upc.edu>

LPWAN@IETF115

IETF-115, London, Friday, November 10th 2022

SCHC Convergence Profile

- Update from previous interim presentation
 - Individual Submission
 - Added motivation and use cases
 - Added comparison between SCHC over LoRaWAN and SCHC over Sigfox Uplink ACKon-Error mode

Motivation

- IoT applications are tied up to the selected LPWAN technology.
- The LPWAN constraints influence the design of the IoT application itself.
- Migrating to other LPWANs implies redesigning the IoT application.
- The LPWAN, as L2, should be transparent as it is in the IP domain.

LPWAN@IETF115

(LPWAN)

Motivation

- Current SCHC implementation
 - Single SCHC C/D sublayer
 - Multiple SCHC F/R sublayer one per LPWAN (different but similar fragmentation modes)
- To reduce code complexity and maintenance, a single convergent SCHC F/R sublayer.

Multiple SCHC Implementations

LPWAN@IETF115

draft-aguilar-lpwan-schc-convergence-00

Single SCHC Implementation

LPWAN@IETF115

draft-aguilar-lpwan-schc-convergence-00

Use cases

- Multi-radio devices: Devices implementing more than one LPWAN radio.
- Multi-network applications: Applications deployed over more than one LPWAN.
- Generic SCHC F/R Profile for implementation of SCHC to test over a new technology.
 SCHC out-of-the-box F/R modes.

((LPWAN))

Use Cases

- Network Redundancy:
 - Devices using another LPWAN as backup.
 - Devices sending the same or different SCHC
 Fragment in different networks to increase probability of success.
 - Increased device duty-cycle as more networks are available.
 - Device sending SCHC Fragments over different LPWANs to check available coverage.

LPWAN@IETF115

(LPWAN)

Single SCHC ID

- To simplify the access to RuleIDs and to converge the different deviceIDs provided by the networks involved.
- Rules are defined per device.
- Device ID translation table maps the network device ID to single SCHC ID to find device rules.

((LPWAN))

Uplink fragmentation

- Comparison between SCHC over LoRaWAN and SCHC over Sigfox (option 2)
- Similarities:
 - 2-byte SCHC
 Fragmentation Header size.
 - 10-byte tile size.
 - 2-byte Rule ID size.
 - No DTag

- Differences:
 - WINDOW_SIZE (tiles per window).
 - M size (maximum number of windows).
 - N size (tiles per window).
 - Different RCS size and algorithm.

SCHC Convergence Profile

- Uplink ACK-on-Error mode
 - Rule ID size is: 8 bits
 - DTag size (T) is: 0 bits
 - Window index (W) size (M):
 3 bits
 - FCN size (N): 5 bits.
 - MAX_ACK_REQUESTS: 5
 - WINDOW_SIZE: 31

- Regular tile size: 10 bytes
- All-1 tile size: 1 to 10 bytes
- Retransmission Timer:
 Application-dependent.
- Inactivity Timer: Applicationdependent.
- RCS size: 32 bits

New Open Source Project

- SCHCduino
 - Implement SCHC for Arduino.
 - Single code base for C/D and F/R using SCHC convergence Profile.
 - Simplify application migration between LPWANs for multi-network application.
 - Allow SCHC Fragments to be sent in different LPWAN for multi-radio devices.
 - Device code, not server code (OpenSCHC as server?)

Questions and Comments? Thank you!

LPWAN@IETF115

draft-aguilar-lpwan-schc-convergence-00