
DNS Privacy with Speed? Evaluating DNS over QUIC and its Impact on Web Performance

Mike Kosek, Luca Schumann, Trinh Viet Doan | Technical University of Munich

Robin Marx | KU Leuven

Vaibhav Bajpai | CISPA Helmholtz Center for Information Security

IMC 2022

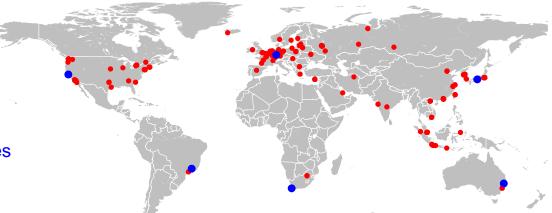
See also previous paper

- "One to Rule them All? A First Look at DNS over QUIC" @ PAM 2022
- Presented at MAPRG @ IETF 113

- Main differences with today:
 - Updated DNS over QUIC implementation
 - Session resumption, 0-RTT, address validation/amplification prevention
 - Multiple vantage points
 - Added Web Performance measurements

Mike Kosek | kosek@in.tum.de | Technical University of Munich

Motivation


- Web traffic shifted to HTTPS
- Privacy leaks through unencrypted DNS over UDP (DoUDP) queries
- Addressed by DNS over TLS (DoT) and DNS over HTTP/2 (DoH)
- Suboptimal performance due to TCP+TLS handshake (2-RTT+)
- QUIC combines connection and encryption into 0/1-RTT handshake
- DNS over QUIC (DoQ) aims to combine DNS privacy with minimal latency

Impact of DoQ on Web performance?

ТШ

Target Resolvers and Vantage Points

- Target Resolvers
 - ZMap Scan of the IPv4 address space from a single VP in EU in April 2022
 - 1,216 DoQ resolvers, of which **313** support DoH and DoUDP
 - Geographical Distribution
 - EU: 130
 - AS: 128
 - NA: 49
 - AF/OC/SA: 2 each
- Vantage Points
 - 6 distributed Amazon EC2 instances

Methodology

- Tooling
 - Selenium with Chromium: Top 10 most popular webpages (Tranco April 12th 2022)
 - DNS Proxy: DNS over QUIC / HTTPS / UDP (and DoTCP, DoT)*

Methodology

- Tooling
 - Selenium with Chromium: **Top 10** most popular webpages (*Tranco April 12th 2022*)
 - DNS Proxy: DNS over QUIC / HTTPS / UDP (and DoTCP, DoT)*
- Measurements
 - Every webpage (10) using each DNS protocol (3) via every resolver (313) from all vantage points (6)
 - Repeated every 48 hours over the course of one week in April 2022
 - 2 back-to-back navigations: (a) cache warming, and (b) actual Web performance measurement
 - Populate DNS Cache of the resolver (NOT the browser cache!)
 - QUIC Version negotiation and Address Validation (These DoQ servers always use RETRY ©)
 - TLS 1.3 Session Ticket

Evaluation – Measurement Overview

- Samples: DoQ: 57,393 / DoH: 56,840 / DoUDP: 57,032
- DNS over QUIC
 - TLS 1.3 Session Resumption
 - 0-RTT
 - QUIC Version 1
 - DoQ Draft Version 02

100% 0% 89% (draft-34, -32, and -29) 87%. (doq-i03, doq-i00)

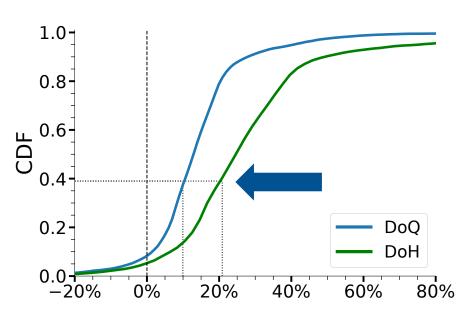
Evaluation – Measurement Overview

- Samples: DoQ: 57,393 / DoH: 56,840 / DoUDP: 57,032
- DNS over QUIC
 - TLS 1.3 Session Resumption
 - 0-RTT
 - QUIC Version 1
 - DoQ Draft Version 02
- DNS over HTTP/2
 - TLS 1.3 Session Resumption
 - 0-RTT
 0%
 TCP Fast Open
 0%
 - HTTP/2 100%

0%	
89%	(draft-34, -32, and -29)
87%.	(doq-i03, doq-i00)

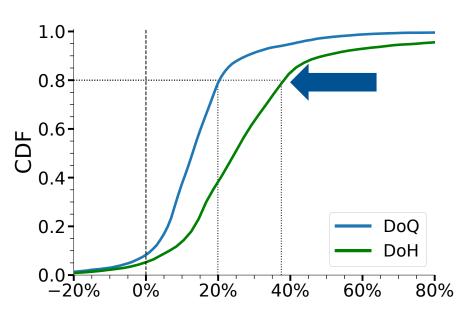
100%

99%

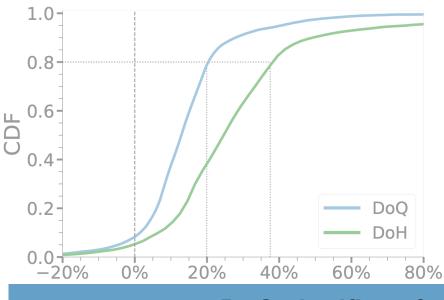

ПΠ

Evaluation – Metrics

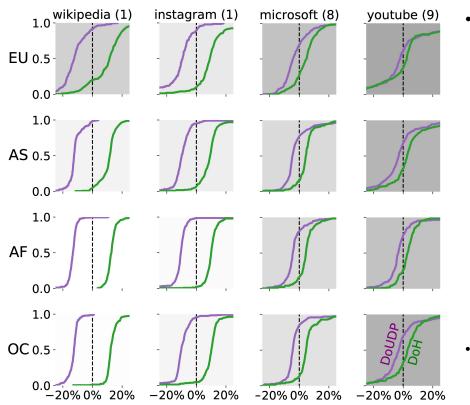
- First Contentful Paint: time until the first visible image or text is shown on the screen
 - Early in the page load
 - Should correlate well with DNS perf
- Page Load Time: time until the start of the onLoad event
 - End of the page load
 - Might have worse correlation


Evaluation – First Contentful Paint over all webpages

- Relative FCP differences between
 - DoUDP (baseline)
 - DoQ
 - DoH
- At p40, FCP increased
 by <= 10% for DoQ, 20% for DoH

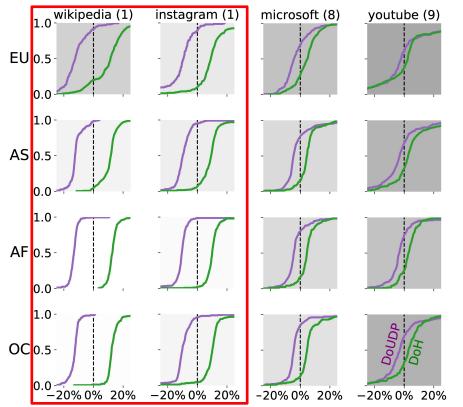

Evaluation – First Contentful Paint over all webpages

- Relative FCP differences between
 - DoUDP (baseline)
 - DoQ
 - DoH
- At p40, FCP increased by <= 10% for DoQ, 20% for DoH
- At p80, FCP increased by <= 20% for DoQ, 40% for DoH


Evaluation – First Contentful Paint over all webpages

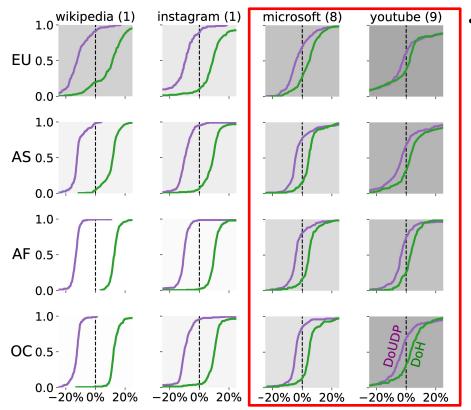
- Relative FCP differences between
 - DoUDP (baseline)
 - DoQ
 - DoH
- At p40, FCP increased
 by <= 10% for DoQ, 20% for DoH
- At p80, FCP increased by <= 20% for DoQ, 40% for DoH

DoQ significantly improves over DoH

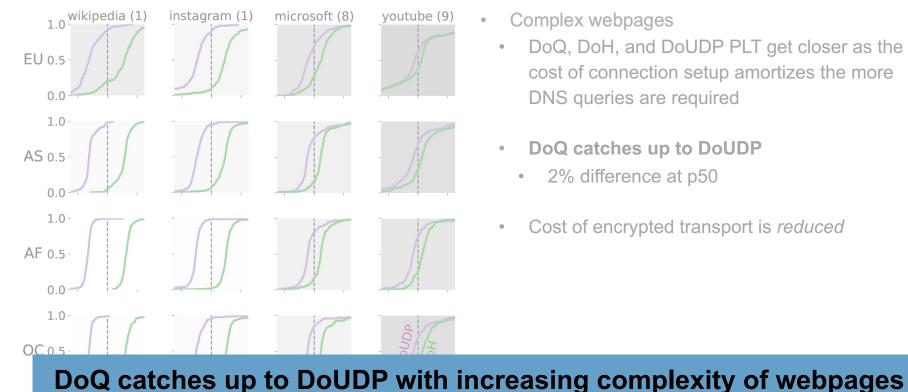


- Relative PLT differences between
 - DoQ (baseline)
 - DoUDP
 - DoH

Background darkness: helps show trends in larger version of this image in the paper, ignore here



- Simple webpages
 - At p50, DoQ is 10% faster than DoH
 - At p50, DoQ is 10% slower than DoUDP
 - Cost of encrypted transport is *high*


Mike Kosek | kosek@in.tum.de | Technical University of Munich

- Complex webpages
 - DoQ, DoH, and DoUDP PLT get closer as the cost of connection setup amortizes the more DNS queries are required
- DoQ catches up to DoUDP
 - 2% difference at p50
- Cost of encrypted transport is *reduced*

Conclusion

- Encrypted DNS does not have to be a compromise
 - DoQ improves over DoH with up to 10% faster page loads for **simple** webpages
 - DoQ catches up to DoUDP with increasing **complexity** of webpages
 - Caveat: only 10 webpages + 313 resolvers

Conclusion

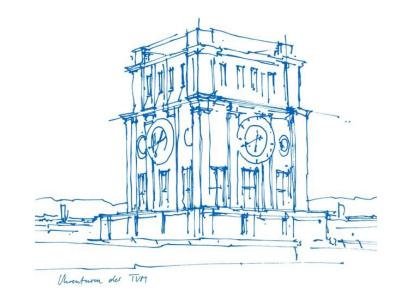
- Encrypted DNS does not have to be a compromise
 - DoQ improves over DoH with up to 10% faster page loads for **simple** webpages
 - DoQ catches up to DoUDP with increasing **complexity** of webpages
 - Caveat: only 10 webpages + 313 resolvers
- Work is ongoing
 - Unused potential due to missing support for 0-RTT
 - DNS over HTTPS/3
 - Support recently added by Cloudflare DNS, Google Android* and Public DNS

DoQ makes encrypted DNS much more appealing for the Web

Paper

https://bit.ly/3TtqHMV

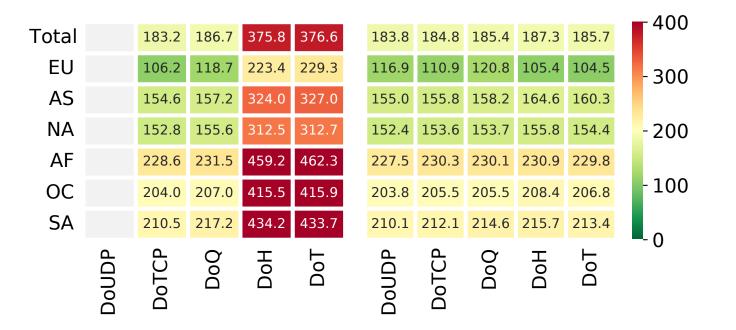
Code & Dataset



https://bit.ly/3CZ7qME

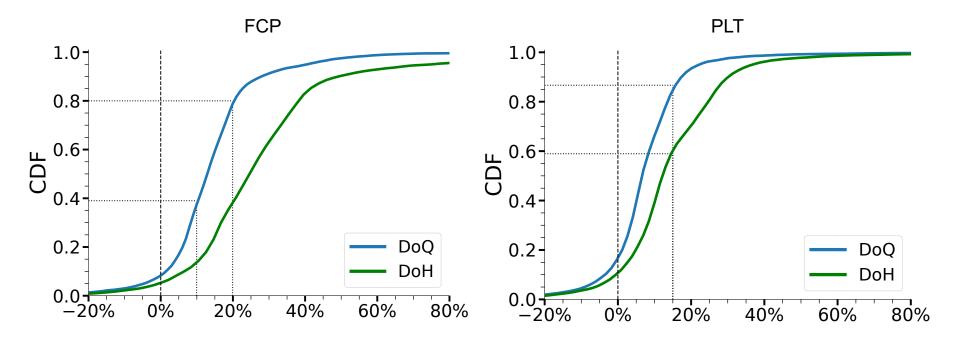
DoQ makes encrypted DNS much more appealing for the Web

Extra slides



Evaluation – Single Query Sizes

]	DoUDP	DoTCP	DoQ	DoH	DoT	
Single Query Sizes (median IP payload in bytes)						
- Total	122	382	4444	2163	1522	
— Handshake C->R	—	72	2564	569	551	
- Handshake R->C	—	40	1304	211	211	
— DNS Query	59	149	190	579	261	
- DNS Response	63	121	386	804	499	



Evaluation – Response Times

Evaluation – FCP and PLT

14% of DoQ / 41% of DoH measurements increase the PLT by 15% or more