
HTTP Access Service
Description URIs

Ben Schwartz, MASQUE @ IETF 115

1

What’s an “HTTP
Access Service”?

2

An HTTP Access Service is
an HTTP server function
that enables users to access
to other services on the
Internet.

With MASQUE, HTTP provides:

● a TCP proxy
● a UDP proxy
● a VPN server
● a DNS server
● an HTTP request proxy

How do I turn it on?
3

This is how you
choose a proxy
server

4

This is how you
configure a VPN

5

This is how you choose
a DoH server

6

How many times does
the user need to enter
this config information?

How many times does
the user need to
authenticate?

7

Goal:
● Users enter one string

into one UI
● Users authenticate

once

8

Proposal: Access Service Descriptions

1. The Access Service Provider gives users a URL.

2. Users paste this URL into one place in their client system.

3. The system tries to fetch this URL.

4. If authentication is required, the server sends

“WWW-Authenticate”, and the client prompts the user as needed.

5. The client retrieves the URL contents, which indicates all available

Access Services.

6. The client uses these services, authenticating each HTTP request

with the same credentials used for the description URL.

9

What’s at this URL?

{

 "http": {

 "template": "https://proxy.example.org/http{?target_uri}"

 },

 "tcp": {

 "template": "https://proxy.example.org/tcp{?target_host,tcp_port}"

 },

 "dns": {

 "template": "https://doh.example.com/dns-query{?dns}",

 },

 "udp": {

 "template": "https://proxy.example.org/masque{?target_host,target_port}"

 },

 "ip": {

 "template": "https://proxy.example.org/masque{?target,ip_proto}"

 }

} 10

Changes since IETF 114

● Incorporated template-driven TCP and HTTP request proxies from

draft-schwartz-modern-http-proxies.

● Removed explicit OHTTP support
○ No more KeyConfigs

○ OHTTP Gateway is represented by a general HTTP request proxy

● Added discussion of authentication

11

Next step: masque:// ?

A “vanity” URI scheme would enable hyperlinking

Access Service Description URIs directly into the

config UI, making it dramatically easier to change the

Access Service configuration.

Client implementations would be responsible for

handling this capability with great care!

12

Conclusion

● Very simple

● Reasonably future-proof
○ All keys are controlled by an IANA registry

● Seeking adoption in MASQUE
○ with appropriate cross-area review

13

Appendix

14

Use Cases

● Richer DNS interaction while using a proxy (without assuming a trusted third-party

resolver)
○ HTTP/3 bootstrap with CONNECT-UDP

○ Encrypted ClientHello, even via “legacy” proxy configuration APIs

○ Client-side DNSSEC validation

○ “Alt-SvcB” support

● Advertising new access service features
○ e.g. CONNECT-UDP Listener mode

● Changing the capabilities of an existing service without reconfiguring the clients
○ e.g. adding CONNECT-IP support to a CONNECT-UDP proxy

● Key-Consistency DoubleCheck (related proposal in OHAI)

● Hybrid VPN + Proxy service with unified login
○ Improves performance over VPN alone

15

Origin vs. URL for service identification

● Access Services are identified by the URL of an Access Service

Description
○ … unless this is not possible for the use case.

● If the service is identified by a hostname or HTTP Origin, we fetch

/.well-known/access-services.

● We need .well-known if
○ The user already has an old-style proxy configuration, and the system

wants to discover related DoH server and other modern proxy options.

○ The user knows the origin of a DoH server but doesn’t know the path.

■ See ODoH example in DoubleCheck

16

