Multicast Scaling Considerations

draft-zzhang-pim-multicast-scaling-considerations

Jeffrey Zhang, Rishabh Parekh, Hooman Bidgoli, Sandy Zhang
IETF115, London
Scaling Dimensions & Solutions

• Number of receivers
 • IP multicast can scale to unlimited number of receivers
 • Group address is a logical/virtual representation of all receivers

• Number of flows
 • Many flows can be transported by fewer number of tunnels
 • Just like unicast case
 • No per-flow state needed where tunneling is needed

• Size of network
 • E2E multicast in a vast network can be tunneled by different means in different regions
Tunneling Technologies

- IP multicast, mLDP/RSVP-TE/SR P2MP
 - Per-tunnel state needed

- Ingress Replication
 - No per-tunnel state, but in-efficient

- BIER
 - Efficient replication w/o per-tunnel state

- BIER-TE
 - Per-tunnel TE w/o per-tunnel state
 - “Global” BPs (bit positions) encode replication branches

- BIER-RBS – enhanced BIER-TE
 - Local BPs in Recursive Bitstring Structure
 - draft-eckert-bier-cgm2-rbs
Tunnel Overlay Signaling

• Tunnel ingress needs to know which flows to be put onto which tunnel
 • For certain tunnels it also needs to know which nodes must be tunnel egresses
 • E.g., IR, RSVP-TE P2MP, BIER

• Tunnel egresses may need to join the tunnel
 • E.g., mLDP and IP multicast tunnel
mLDP/PIM/IGMP/MLD as Overlay

- Signaling protocol for tunneled multicast is used for overlay signaling
- mLDP signaling for mLDP traffic over other tunnels
 - mLDP over RSVP P2P/P2MP tunnels: RFC 7060
 - mLDP over BIER: draft-ietf-bier-mldp-signaling-over-bier
- PIM signaling for IP multicast traffic over other tunnels
 - PIM over PIM tunnels: Rosen/PIM MVPN
 - PIM over BIER tunnels: draft-ietf-bier-pim-signaling
- IGMP/MLD signaling for IP multicast traffic over BIER
 - ietf-bier-mld
BGP/LISP as Overlay

- Overlay signaling uses different protocol for the tunneled traffic
- BGP MVPN signaling for:
 - IP VPN Multicast
 - mLDP VPN multicast (mLDP being the PE-CE protocol for VPN)
 - Global Table Multicast (IP/mLDP traffic in the global/default routing instance)
- LISP signaling for IP multicast
 - RFC6831, RFC8378
Tunnel Segmentation in BGP MVPN

• PE-PE tunnels are referred to as PMSI tunnels
 • Identified by (overlay) PMSI routes
 • That binds overlay flows to underlay tunnels
 • Instantiated by an underlay tunnel whose type-instance is encoded in PMSI Tunnel Attribute (PTA) of the route

• A PMSI tunnel may have different instantiations in different regions
 • Each with a different type or instance
 • The PTA is updated when the PMSI route is re-advertised into next region
 • For technical/operational/administrative reasons

• Regional Border Routers (RBRs) are segmentation points
 • They need to maintain overlay state (PMSI routes)
 • They stitch upstream/downstream segments based on the overlay PMSI route
Scaling of Segmentation Points and Tunnel Ingress/Egress

• They need to maintain overlay state
 • E.g., IP multicast flow overlay state

• Scale up
 • Multicast forwarding state is not much different from unicast
 • A route points to forwarding instructions
 • ECMP branches for unicast or replication branches for multicast
 • Routes may share forwarding instructions
 • If you can scale up unicast, you can scale up multicast
 • You just need to be prepared to scale up, and to be able to control
 • Signaling protocol needs avoid soft state refreshes

• Scale out segmentation points
 • Use multiple segmentation points between two regions
 • Each responsible for different overlay flows
Summary

• There are existing and in-development solutions to scale multicast in all three dimensions
 • IPv4/IPv6 and MPLS/SRv6 agnostic
 • They can be used together for multi-dimension scaling

• Number of receivers: IP multicast

• Number of flows: tunneling w/ or w/o per-tunnel state
 • PIM/P2MP; IR/BIER/BIER-TE/RBS

• Vast network: tunnel segmentation
 • Scale up/out segmentation points