
1

Extensions to the Access Control
Lists (ACLs) YANG Model

draft-dbb-netmod-acl-03

NETMOD WG Meeting
7th Nov 2022, IETF#115 @ London

O. Gonzalez de Dios, S. Barguil (Telefonica), M. Boucadair (Orange)

https://datatracker.ietf.org/doc/draft-dbb-netmod-acl/

2

Context Reminder
• RFC 8519 defines a YANG data model for Access Control Lists (ACLs)

• Configuration of the forwarding behaviour in a device.
• Definition of access-control-lists (ACLs), entries (ACEs), matches, and actions.

• We presented in IETF#112 a set of problems with the ACL YANG model as
currently defined in RFC 8519

• We seeked in IETF#112 for the WG feedback about the following options:
– New version of the ACL model, minimizing non backwards compatible changes

Or

– Augmenting RFC 8519 in a new module. All existing structures are not touched

3

• Started to exercise the second option: that is,
augmentations over RFC 8519

• draft-dbb-netmod-acl-03 proposes a YANG module
to fix all the issues presented in IETF#112

Changes Since IETF#112

Samples are
presented in

the next slides

4

Manageability: Use of Defined sets (1)
• Defined set: reusable definition across several ACLs.
• Proposed defined sets:

• Prefix sets: Used to create lists of IPv4 or IPv6 prefixes.
• Protocol sets: Used to create a list of protocols.
• Port number sets: Used to create lists of TCP or UDP port values
 (or any other transport protocol that makes uses of port numbers).
• ICMP sets: Uses to create lists of ICMP-based filters. This

applies only when the protocol is set to ICMP or ICMPv6.
• Proposal:

• Augmentation to add defined sets at acl level

• Augmentation of matches to include a leaf-ref to the defined-set

<prefix-list-name>
“my-prefix-list”

“my-prefix-list”

“my-prefix-list”

“my-prefix-list”

augment /ietf-acl:acls/ietf-acl:acl:
+--rw defined-sets

5

 +--rw defined-sets
 | +--rw ipv4-prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw prefix* inet:ip-prefix
 | +--rw ipv6-prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw prefix* inet:ip-prefix
 | +--rw port-sets
 | | +--rw port-set* [name]
 | | +--rw name string
 | | +--rw port* inet:port-number
 | +--rw protocol-sets
 | | +--rw protocol-set* [name]
 | | +--rw name string
 | | +--rw protocol-name* identityref
 | +--rw icmp-type-sets
 | +--rw icmp-type-set* [name]
 | +--rw name string
 | +--rw types* [type]
 | +--rw type uint8
 | +--rw code? uint8
 | +--rw rest-of-header? binary

To create IPv4 prefix lists.

To create lists of TCP or UDP port
values.

To create lists of ICMP-based filters.

To create a list of protocols

Additional Sets can be
considered

(i.e Tags, MPLS Labels)

Manageability: Use of Defined sets (2)

To create IPv6 prefix lists.

6

Handling of TCP Flags
• The augmented ACL structure includes a new leaf 'flags-bitmask’ to better handle

the TCP flags.
• Support matching operations as those supported in BGP Flow Spec

• Simplifies operations and eases integration with other tools
• The use of the bitmasks takes precedence of the old leaf in RFC8519

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "aces": {
 "ace": [{
 "name": "null-attack",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }]
 }
 }]
 }
 }

Proposal

7

Handling of Fragments
• The augmented ACL structure includes a new leaf 'fragment' to better handle

fragments

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "ipv4-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },

Proposal

8

Rate-Limit Actions
• RFC8519 forwarding actions:

• 'accept' (i.e., accept matching traffic),
• 'drop' (i.e., drop matching traffic without sending any ICMP error message),
• ‘reject' (i.e., drop matching traffic and send an ICMP error message to the source)

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example-with-rate-limit",
 "aces": {
 "ace": [{
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

Proposal

• However, there are situations where
the matching traffic can be accepted,
but with a rate-limit policy.

• A new action called "rate-limit" is
defined.

9

Seeking for WG Feedback
• Should we maintain the augmentation approach (as current -03 version)

or switch to a bis approach?
– The augmentation makes the structures less trivial to parse
– The augmentation requires some conformance to be impose by normative language

itself (e.g., which data node takes precedence)

• Where to position the defined sets?
– Under “acls” in ACL module and leaf-ref in match in packet fields module

• What happens if other modules import the packet match?
– Standalone container in a new module

• Easier to use by other modules should they require importing packet fields module

• Is this an item best worked in netmod wg?

• Questions & Suggestions are welcome!!!!

	Extensions to the Access Control Lists (ACLs) YANG Model
	Context Reminder
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Seeking for WG Feedback

