DoubleCheck for
Oblivious HTTP and
beyond

Ben Schwartz, OHAI @ IETF 115



Changes since IETF 114

e Removed:

o Normative dependencies on OHTTP and Access Service
Descriptions
o Requirement to use CONNECT-UDP and HTTP/3
o “MUST” use a transport proxy (changed to “SHOULD”)
e Added:
o Text on how DoubleCheck can be used for Privacy Pass
o New terminology for the participants’ roles

o Example showing DoubleCheck for ODoH using
draft-pauly-ohai-svcb-config



Reminder: How DoubleCheck works

e The Client wants a Desired Resource on the Origin
The Client fetches it through the Proxy, acting as a caching HTTP request proxy
o  Guarantees consistency but not authenticity
e TheClient fetches it again directly from the Origin

o  Guarantees authenticity but not consistency
o SHOULD run the transport through the same Proxy to maintain the IP anonymity set

e Check that the contents match!

HTTP cache

Proxy

Transport proxy




Key |deas

e If you need Key Consistency, you usually also need a proxy that is
trusted not to reveal your identity to the destination.
o Otherwise, your IP address gives you away.
e You only need Key Consistency with this proxy’s other users.
o Users of other proxies are distinguishable from you anyway.

e HTTP cachingrules are all you need to achieve this.
o ...provided the resource’s origin sets the right headers.
o ...provided that everyone interprets the HTTP caching rules in a very

specific way.



What guidance to provide about leakage

Privacy leakage sources noted in the draft:

e Temporal correlation between check and use
“Establish a transport tunnel through the Proxy to the Origin (OPTIONAL)”
“If the Proxy offers an Encrypted DNS service, it MUST NOT enable EDNS Client Subnet”
“Clients MUST perform each fetch to the Origin ... as a fully isolated request. Any state related to
this Origin (e.g., ...) MUST NOT be shared with prior or subsequent requests.’
o  “This specification does not offer specific mitigations for protocol fingerprinting.”
e Cacheeviction attacks
o  “Proxies SHOULD employ defenses against malicious attempts to fill the cache. Some possible
defenses include:...”



Is this how we want to do it?

e Consistency alternative: Bespoke consistency logic
o More explicit: Avoids subtle reinterpretations of existing standards (e.g.,
If-Match, “immutable”)
o Smoother: Might be able to avoid a “Thundering Herd” of revalidations
when a popular resource changes.
o Requires alot of new protocols and logic for all three parties
e Authenticity alternative: Object Security (e.g. JSON Web Signature)
o Faster: Removes the need for the second check
o More complicated, less convenient: Origin needs to change its
certificate handling, etc.



Appendix



Example: Platform telemetry

e My OS installation image came configured to report telemetry to a default telemetry
service that supports OHTTP.
e | believe my OSimage is the same as everyone else’s, and | trust the code running locally,

but | want to prevent the telemetry service from linking my reports together.
o  Otherwise the OHTTP Relay is unnecessary!
e | have configured my OS with an OHTTP Relay that | trust not to collude with the
telemetry service, but | don’t trust the Relay with the contents of my telemetry reports.
o  Otherwise the OHTTP Gateway is unnecessary!
e Problem: How do | ensure that the Gateway URL, KeyConfig, and Target URL are

authentic and the same as everyone else’s?



Easy answer: Hardcode everything!

e Bakethe Gateway URL, Target URL, and KeyConfig right into the OS image
o  oringeneral distribute them through a trusted, consistent “bootstrap channel’.
e Problem: This prevents key rotation and other operational adjustments.



Many details

e Stitched together from standard HTTP cache and proxy components
o  Headers used: Cache-Control, ETag, If-Match, Age
o  Some additional requirements beyond general HTTP compliance.
e Defenses against different attackers
o  Malicious Relays (KeyConfig forgery)
o  Malicious Service Description Hosts (cache wiping, fetch timing correlation)
o Colluding malicious Clients (cache wiping, cache eviction)
e Performance considerations
o  Various recommended optimizations
o  Overall latency is generally 2 RTT through the proxy

10



