
DoubleCheck for 
Oblivious HTTP and 
beyond

Ben Schwartz, OHAI @ IETF 115

1



Changes since IETF 114

● Removed:
○ Normative dependencies on OHTTP and Access Service 

Descriptions

○ Requirement to use CONNECT-UDP and HTTP/3

○ “MUST” use a transport proxy (changed to “SHOULD”)

● Added:
○ Text on how DoubleCheck can be used for Privacy Pass

○ New terminology for the participants’ roles

○ Example showing DoubleCheck for ODoH using 

draft-pauly-ohai-svcb-config

2



Reminder: How DoubleCheck works

● The Client wants a Desired Resource on the Origin
● The Client fetches it through the Proxy, acting as a caching HTTP request proxy

○ Guarantees consistency but not authenticity

● The Client fetches it again directly from the Origin
○ Guarantees authenticity but not consistency

○ SHOULD run the transport through the same Proxy to maintain the IP anonymity set

● Check that the contents match!

Client Proxy Origin

HTTP cache

Transport proxy
3



Key Ideas

● If you need Key Consistency, you usually also need a proxy that is 

trusted not to reveal your identity to the destination.
○ Otherwise, your IP address gives you away.

● You only need Key Consistency with this proxy’s other users.
○ Users of other proxies are distinguishable from you anyway.

● HTTP caching rules are all you need to achieve this.
○ …provided the resource’s origin sets the right headers.

○ …provided that everyone interprets the HTTP caching rules in a very 

specific way.

4



What guidance to provide about leakage

Privacy leakage sources noted in the draft:

● Temporal correlation between check and use
○ “Establish a transport tunnel through the Proxy to the Origin (OPTIONAL)”

○ “If the Proxy offers an Encrypted DNS service, it MUST NOT enable EDNS Client Subnet”

○ “Clients MUST perform each fetch to the Origin … as a fully isolated request. Any state related to 

this Origin (e.g., ...) MUST NOT be shared with prior or subsequent requests.”

○ “This specification does not offer specific mitigations for protocol fingerprinting.”

● Cache eviction attacks
○ “Proxies SHOULD employ defenses against malicious attempts to fill the cache. Some possible 

defenses include: …”

5



Is this how we want to do it?

● Consistency alternative: Bespoke consistency logic
○ More explicit: Avoids subtle reinterpretations of existing standards (e.g., 

If-Match, “immutable”)

○ Smoother: Might be able to avoid a “Thundering Herd” of revalidations 

when a popular resource changes.

○ Requires a lot of new protocols and logic for all three parties

● Authenticity alternative: Object Security (e.g. JSON Web Signature)
○ Faster: Removes the need for the second check

○ More complicated, less convenient: Origin needs to change its 

certificate handling, etc.

6



Appendix

7



Example: Platform telemetry

● My OS installation image came configured to report telemetry to a default telemetry 

service that supports OHTTP.

● I believe my OS image is the same as everyone else’s, and I trust the code running locally, 

but I want to prevent the telemetry service from linking my reports together.
○ Otherwise the OHTTP Relay is unnecessary!

● I have configured my OS with an OHTTP Relay that I trust not to collude with the 

telemetry service, but I don’t trust the Relay with the contents of my telemetry reports.
○ Otherwise the OHTTP Gateway is unnecessary!

● Problem: How do I ensure that the Gateway URL, KeyConfig, and Target URL are 

authentic and the same as everyone else’s?

8



Easy answer: Hardcode everything!

● Bake the Gateway URL, Target URL, and KeyConfig right into the OS image
○ or in general distribute them through a trusted, consistent “bootstrap channel”.

● Problem: This prevents key rotation and other operational adjustments.

9



Many details

● Stitched together from standard HTTP cache and proxy components
○ Headers used: Cache-Control, ETag, If-Match, Age

○ Some additional requirements beyond general HTTP compliance.

● Defenses against different attackers
○ Malicious Relays (KeyConfig forgery)

○ Malicious Service Description Hosts (cache wiping, fetch timing correlation)

○ Colluding malicious Clients (cache wiping, cache eviction)

● Performance considerations
○ Various recommended optimizations

○ Overall latency is generally 2 RTT through the proxy

10


