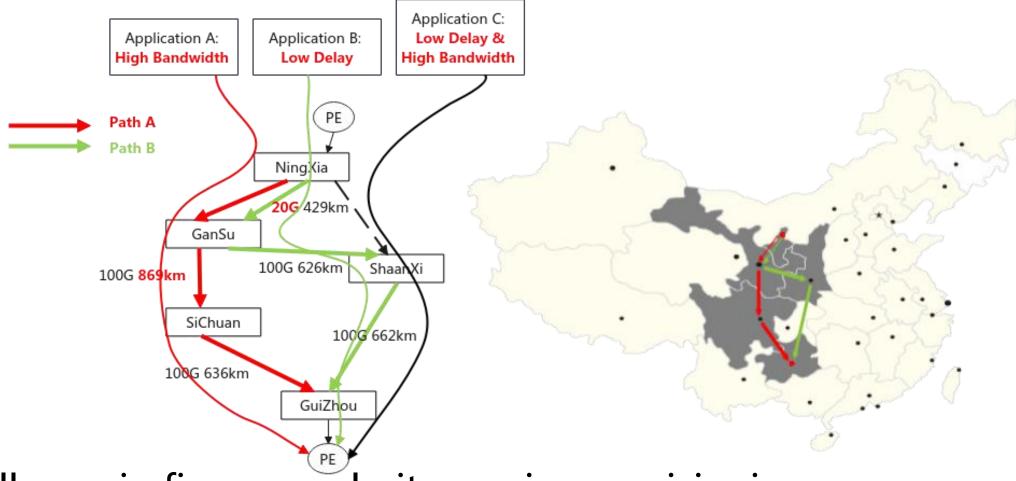
Database-based Open Resource Service (DB-ORS) Framework, Usecases and Requirements

Fenlin Zhou; Dongyu Yuan; Sheng Wang; Xiaocong Qian ZTE Corporation, China

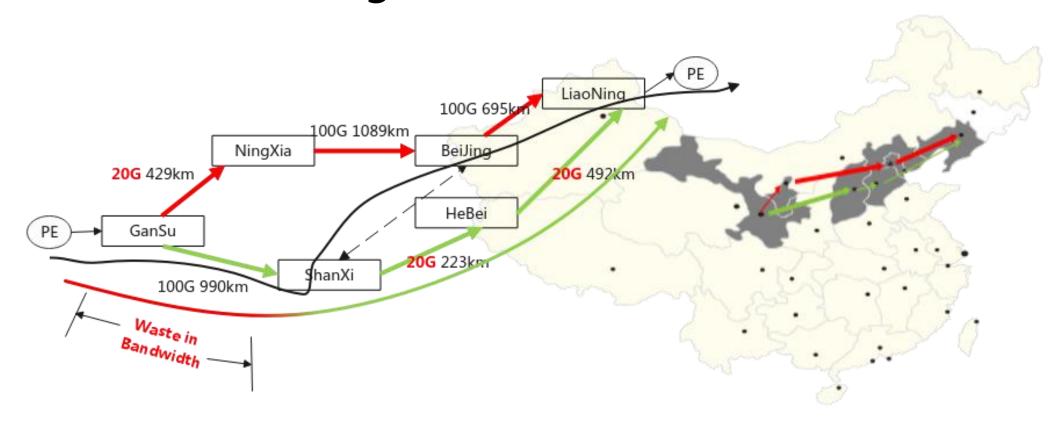
Documents


 Requirements and Use Cases of DB-ORS (Database-based Open Resource Service)

https://datatracker.ietf.org/doc/draft-zhou-alto-dbors-requirement-usecase/

Database-based Open Resource Service Framework

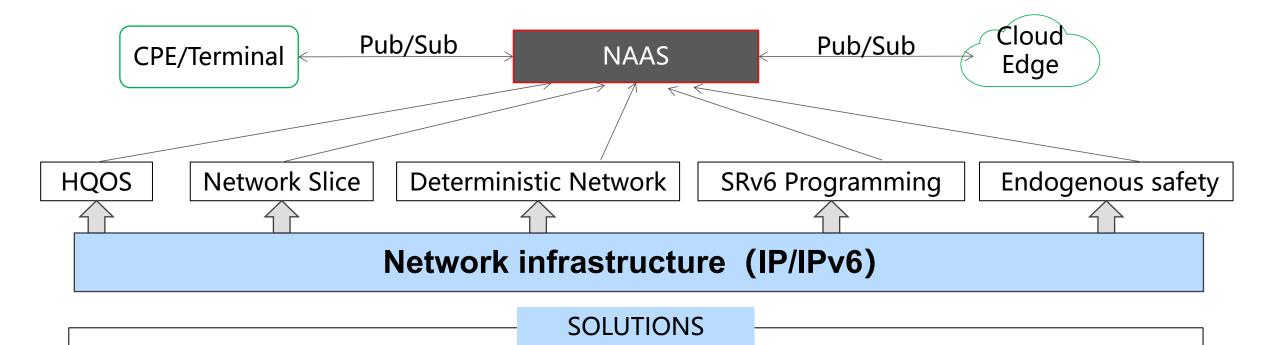
https://datatracker.ietf.org/doc/draft-zhou-alto-dbors-framework/


Challenges in Current Network

Challenge in fine-granularity service provisioning:

Capabilities of the network remain invisible, thus differentiated services are not achieved. Applications with various requirements can not be distinguished and served customarily.

Challenges in Current Network


Challenge in network resources utilization:

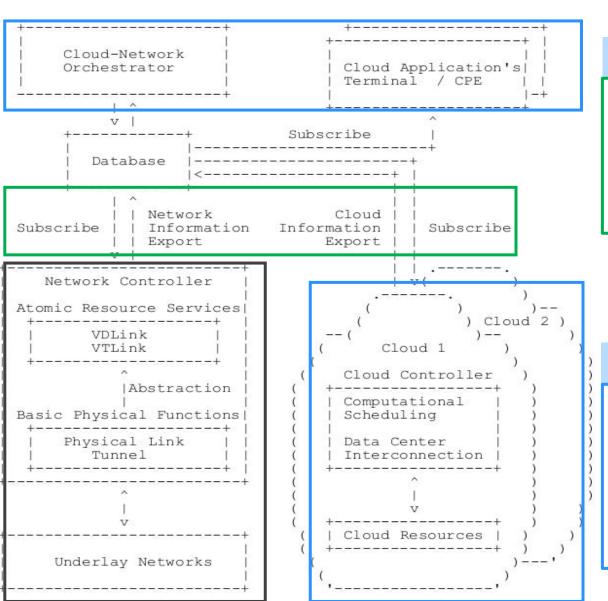
Due to the **bandwidth restrictions** in the Shanxi-Hebei and Hebei-Liaoning sections, the bandwidth provided by the network for applications can not achieve 100 G, and the **bandwidth resources from GanSu to ShanXi is wasted**.

Requirements of DB-ORS

- Fine-granularity services provisioning
 - Conventional networks only provide clients with coarse-grained connection services.
 - Services which propose diverse network requirements such as ultra-low latency and high reliability emerge increasingly, and therefore differentiated service treatment is desired.
- Network resources utilization enhancement
 - The network resources are not orchestrated appropriately and the resource utilization proves to be relatively low for about 30%-50%.
 - The complexity of the network results in low bandwidth utilization of the real data load.

Pivotal Concepts in DB-ORS

- Besides bandwidth for instance, the network has also been endowed with various other capabilities including deterministic quality, network slicing, endogenous security, etc.
- Referring to the concept of Software-as-a-Service (SAAS), capabilities of the network are abstracted into services, namely Network-as-a-Service(NAAS).
- Applications (cloud, terminal, and CPE) subscribe corresponding customized network services.


Framework of DB-ORS

Service subscription

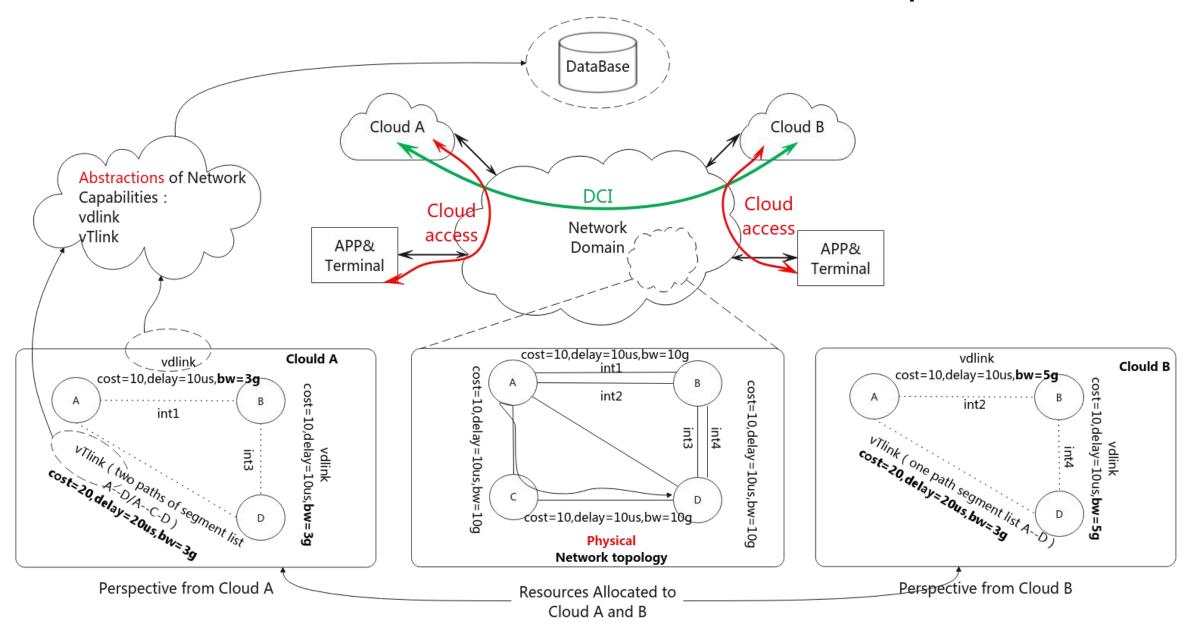
- Programmability of DB-Agent
- Efficiency of a 'watch' mechanism
- Simplicity of API and Extensibility

Service abstraction

- VDlink
- VTLlink
- Node
- EPE Link

Service publication

Distribute database, e.g ETCD:


- Key-value model
- Standard schema template

Service re-orchestration

- Application identification
- Network path calculation
- Service orchestration & binding

https://datatracker.ietf.org/doc/draft-zhou-alto-dbors-framework/

Usecase of DB-ORS: abstract network capabilities

Usecase of DB-ORS: publish and subcribe services

Perspective of Cloud A:

Link	Link type	Logic Link ID	cost	delay	max bw	END.X/INT	BSID (segmentlist)
АВ	vdlink	536870913	10	10us	3g	3e::1/int1	
BD	vdlink	536870914	10	10us	3g	3e::2/int3	
AD	vTlink	805306369	20	20us	5g	- (4BA::1 (sl1:ADd sl2:ACD)

Perspective of Cloud B:

J.							
Link	Link type	Logic Link ID	cost	delay	max bw	END.X/INT	BSID (segmentlist)
АВ	vdlink	1073741825	10	10us	5g	3a::2/int2	-
BD	vdlink	1073741826	10	10us	5g	3a::2/int4	
AD	vTlink	1342177281	20	20us	5g	-	4FE::1 (sl1:AD)

Key-Vaule in DataBase

Cloud_A/VTLink/Logic_id 536870913

Cloud_A/VTLink/Logic_id /linktype vdlink

Cloud A/VTLink/Logic id /delay 10

.....

Stardard Schema Template

```
"$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Abstract definition of CN2-DCI network resources.",
  "description": "version v1.0.0",
  "properties": {
    "vTLink": {
      "description": "Logic top",
      "type": "array",
      "item": {
        "type": "object",
        "properties": {
          "id": {
            "description": "logic link id",
            "type": "string"
          "delay": {
            "description": "link delay",
            "type": "string"
}}}}
```

Differences between DB-ORS & ALTO

	ALTO	DB-ORS		
Scenario	Universal model of network capability exposure for various scenarios	Focus on abstraction of network capabilities, especially for the integration of the cloud and the network		
Abstraction	Coarse-granularity, simple descriptions	Fine-granularity, explicit and diversified abstractions		
Application	Endpoints selection in the Application layer	Traffic steering and redirection in the Network layer		
Framework	C/S framework with a unique ALTO server	C/S framework with a distributed database as the server		
API	Unified REST+JSON	Unified REST+JSON		
Expandability Easy to expand		Easy to expand		

Conclusions and Considerations

What have we done & what do we expect?

- Solve the mentioned problems.
- More perceptions and drafts are expected in the future.
- Promote standardization, cooperate with working groups who have resonated with this issue.

Considerations in the future?

- More abstraction of network capabilities.
- Safety considerations.
- Service affinity.