
Practically-exploitable Cryptographic
Vulnerabilities in Matrix a

IETF 115 London, PEARG, 2022-11-09

Martin Albrecht (Royal Holloway) martin.albrecht@rhul.ac.uk
Sofía Celi (Brave Software) cherenkov@riseup.net
Benjamin Dowling (University of Sheffield) b.dowling@sheffield.ac.uk
Dan Jones (Royal Holloway) dan.jones@rhul.ac.uk

aFull paper available at https://nebuchadnezzar-megolm.github.io/. 1

https://nebuchadnezzar-megolm.github.io/


Matrix

Matrix is a standard for secure, decentralised, real-time messaging.

Mission1:

• Short-term Interoperable messaging and calls.
• Long-term Underlying messaging and data synchronisation for

applications.

1https://matrix.org/faq/#what-is-matrix's-mission%3F

2

https://matrix.org/faq/#what-is-matrix's-mission%3F


Matrix

[https://spec.matrix.org/unstable/]

3

https://spec.matrix.org/unstable/


Element (flagship client)

[https://element.io/images/Element-Home-Hero_1.png]

4

https://element.io/images/Element-Home-Hero_1.png


Why should we care?

Element has over 60 million users2

Matrix has users including...

2https://archive.ph/2022.08.11-121218/https://element.io/

5

https://archive.ph/2022.08.11-121218/https://element.io/


Secure messenger

End-to-End Encryption

• Confidentiality
• Integrity
• Authentication

• Partial Forward Secrecy?
• Post-compromise Security?
• Some form of Deniability?

6



Matrix Overview



Parties

• User, device and homeserver.
• A homeserver is a server that stores the communication history and

account information for a user.
• A user represents a user/client and has many devices (phone,

desktop, etc).

7



Parties

• Each user has a cryptographic identity used to:
1. achieve trust between user’s set of devices, and
2. record the result of out-of-band verification

between users.

• Each device has a cryptographic identity used to
communicate through the Olm and Megolm
protocols.

Alice

mpkA

spkA upkA

m
sk

A

m
sk

A

Device DA,1

(apkA,1, ipkA,1)

ipkA,1 epkA,1 fpkA,1

as
k B,

1 askB
,1

ask
B
,1

8



Cross-signing: linking everything together

Alice

(apkA,1, ipkA,1)

De
vic

e
Ke

ys

ipkA,1 epkA,1 fpkA,1

as
k B,

1 askB
,1

ask
B
,1

mpkA

spkA upkA

Us
er

Cr
os

s-
sig

ni
ng

Ke
ys

msk A

mskA

sskA

(apkA,2, ipkA,2)

· · ·
(apkA,n, ipkA,n)

sskA

sskA

Bob

mpkB

spkBupkB

(apkB,1, ipkB,1) (apkB,2, ipkB,2)

· · ·
(apkB,m, ipkB,m)

mskBmsk B

sskB sskB

sskB

ipkB,1 epkB,1 fpkB,1

as
k B,

1 askB
,1

ask
B
,1

uskAuskB

9



Cross-signing: linking everything together

Alice

(apkA,1, ipkA,1)

De
vic

e
Ke

ys

ipkA,1 epkA,1 fpkA,1

as
k B,

1 askB
,1

ask
B
,1

mpkA

spkA upkA

Us
er

Cr
os

s-
sig

ni
ng

Ke
ys

msk A

mskA

sskA

(apkA,2, ipkA,2)

· · ·
(apkA,n, ipkA,n)

sskA

sskA

Bob

mpkB

spkBupkB

(apkB,1, ipkB,1) (apkB,2, ipkB,2)

· · ·
(apkB,m, ipkB,m)

mskBmsk B

sskB sskB

sskB

ipkB,1 epkB,1 fpkB,1
as

k B,
1 askB

,1

ask
B
,1

uskAuskB

9



Cross-signing: linking everything together

Alice

(apkA,1, ipkA,1)

De
vic

e
Ke

ys

ipkA,1 epkA,1 fpkA,1

as
k B,

1 askB
,1

ask
B
,1

mpkA

spkA upkA

Us
er

Cr
os

s-
sig

ni
ng

Ke
ys

msk A

mskA

sskA

(apkA,2, ipkA,2)

· · ·
(apkA,n, ipkA,n)

sskA

sskA

Bob

mpkB

spkBupkB

(apkB,1, ipkB,1) (apkB,2, ipkB,2)

· · ·
(apkB,m, ipkB,m)

mskBmsk B

sskB sskB

sskB

ipkB,1 epkB,1 fpkB,1
as

k B,
1 askB

,1

ask
B
,1

uskAuskB

9



Olm

• Olm: pairwise secure channels between devices.
• Modified Signal’s 3DH plus Double Ratchet algorithm.
• Connected to device’s cryptographic identity.

10



Megolm

• Megolm: group messaging through composition of unidirectional
channels.

• Effectively, Signal “Sender keys”.
• Olm channels are used as a signalling layer to distribute the inbound

session/sender keys (i.e. key material).

11



Megolm

Session setup and key distribution:

Megolm.Init

(Sgsk,Sgpk, σmg)

c0 = Olm.Encrypt(kAB, (Sgpk, σmg))

c1 = Olm.Encrypt(kAC, (Sgpk, σmg))

Messaging:

Megolm.Encrypt(Sgsk, p)

(c)

c

c

12



Attacks



Attack 1a – Membership events are unsigned

Group membership is managed through events:
Alice A Homeserver H Bob B

m.room.member(invite,A,B,G)
m.room.member(invite,A,B,G) m.room.member(invite,A,B,G)

m.room.member(join,B,A,G)
m.room.member(join,B,A,G) m.room.member(join,B,A,G)

13



Attack 1a – Membership events are unsigned

Group membership is managed through unsigned events:
Alice A Homeserver H Bob B

m.room.member(invite,A,B,G) m.room.member(invite,A,B,G)

m.room.member(join,B,A,G) m.room.member(join,B,A,G)

14



Attack 1a – Membership events are unsigned

What caused this attack?

• Assumption that only ’user messages’ should be encrypted.
• Practical issues

15



Attack 1b – Server controls the list of user’s devices

• To send a message to a user, clients need a list of their devices.
• This list is provided by the homeserver.

16



Attack 1b – Server controls the list of user’s devices

What caused this attack?

• To stop this attack, users need a way to advertise a list of their
trusted devices (that the homeserver cannot modify).

→ Cross-signing provides such a list!
• Is this too impractical? Too high a user burden?
• Arguably, yes. For now!

17



Attack 2 – Out-of-band Verification

How do two parties ensure their connection is not being MITM-ed?
Out-of-band verification.

Short Authentication String (SAS) protocol ≈

1. Key exchange to generate a shared secret.
2. Compare the shared secret out-of-band

(using short strings of emojis).
If they don’t match, then abort!

3. Send correct cryptographic identities to each other over a secure
channel (constructed using the shared secret).

This attack targets step 3. The homeserver tricks device’s into sharing a
homeserver-controlled identity (rather than their own).

18



Attack 2 – Out-of-band Verification

How does the homeserver trick device’s into sending a
homeserver-controlled identity (rather than their own)?

• Two types of verification:
1. Between two users
2. Between two devices (of the same user)

• For step 3, each party sends the other an
m.key.verification.mac message containing a “key identifier”
field:

1. For two users, this field contains the fingerprint of their master
cross-signing key mpk.

2. For two devices, this field contains their device identifier.

19



Attack 2 – Out-of-band Verification

How does the homeserver trick device’s into sending a
homeserver-controlled identity (rather than their own)?

Attack:

• Homeserver assigns their target a device identifier that is also a
master cross-signing key fingerprint that the homeserver generated.

• When the target sends an m.key.verification.mac message with
their device identifier, the receiving device interprets it as a
cross-signing key fingerprint and signs it!

19



Attack 2 – Out-of-band Verification

What caused this attack?

• Lack of domain separation between cross-signing key identifiers and
device identifiers.
→ avoid using server-controlled inputs in the out-of-band

verification process.

20



Attack 3 – Semi-trusted Impersonation

When a user adds a new device, they’d like that device to be able to
decrypt messages previously sent to that user.

Key Request Protocol ≈
DA,1 Homeserver H DA,2

Megolm.Encrypt(Sgsk, p)
Cannot decrypt
(missing Sgpk) m.room_key_request(gpk)

m.room_key_request(gpk) m.room_key_request(gpk)
1. DA,1 verified
as Alice’s device?
2. Shared Sgpk
with DA,1 before?

Olm.Enc(m.forwarded_room_key(DB,1, gpk,Sgpk))

Missing checks:
1. DA,2 verified

as Alice’s device?
2. Did I request

gpk?

21



Attack 3 – Semi-trusted Impersonation

When a user adds a new device, they’d like that device to be able to
decrypt messages previously sent to that user.

Attack:
DA,1 Homeserver H DH

(S′
gsk,S

′
gpk, σmg)

← Megolm.Init(1n)Olm.Enc(m.forwarded_room_key(DB,1, gpk′,S′
gpk))

Accept S′
gpk

as DB,1’s session

22



Attack 3 – Semi-trusted Impersonation

What caused this attack?

• Implementation mistake!
• Key Request Protocol was underspecified

23



Attack 4 – Trusted Impersonation

Recall Megolm session setup:

Megolm.Init

(Sgsk,Sgpk, σmg)

c0 = Olm.Encrypt(kAB, (Sgpk, σmg))

c1 = Olm.Encrypt(kAC, (Sgpk, σmg))

What if we could send (Sgpk, σmg) over Megolm instead of Olm?

Could we send it over a Megolm session placed via the semi-trusted
impersonation attack?

24



Attack 4 – Trusted Impersonation

Device DH impersonates DB,1 to DA,1:
DA,1 Homeserver H DH

(S′
gsk,S

′
gpk, σ

′
mg)

← Megolm.Init(1n)Olm.Enc(m.forwarded_room_key(DB,1, gpk′,S′
gpk))

Accept S′
gpk

as DB,1’s sessionSe
m

i-T
ru

st
ed

Im
pe

rso
na

tio
n

(S∗
gsk,S

∗
gpk, σ

∗
mg)

← Megolm.Init(1n)Megolm.Encrypt(S′
gsk, m.room_key(S∗

gpk, σ
∗
mg))

Accept S∗
gpk

as DB,1’s session
(not forwarded)

25



Attack 5 – Confidentiality Break

Introduce two new sub-protocols:

1. Megolm Key Backups
• Inbound Megolm sessions Sgpk are encrypted then backed up on the

server.
• A recovery key (shared between a user’s devices) is used to decrypt

them.
2. Secure Storage and Secret Sharing (SSSS)

• Provides functionality to backup and share account-level secrets.
E.g. cross-signing keys and the Megolm backups recovery key.

• “Secret Sharing” between devices through synchronous
request-response protocol

• “Secure Storage” through backups on the homeserver (through a
shared symmetric key).

26



Attack 5 – Confidentiality Break

When a user verifies their new device, it will use SSSS to request
account-level secrets from the user’s existing devices.

This includes the recovery key used for Megolm key backups, i.e.
DA,1 Homeserver H DA,2

Out-of-band Verification

m.secret.request(m.megolm_backup.v1)

1. DA,1 verified
as Alice’s device?Olm.Enc(m.secret.send(m.megolm_backup.v1, rk))

1. DA,2 verified
as Alice’s device?

2. Did I request
this secret?
Accept rk.

27



Attack 5 – Confidentiality Break

DA,1 Homeserver H DH

(S′
gsk,S

′
gpk, σ

′
mg)

← Megolm.Init(1n)Olm.Enc(m.forwarded_room_key(DA,2, gpk′,S′
gpk))

Accept S′
gpk

as DA,2’s sessionSe
m

i-T
ru

st
ed

Im
pe

rso
na

tio
n

DA,2

Out-of-band Verification

m.secret.request(m.megolm_backup.v1)

Generate rk
Megolm.Encrypt(S′

gpk, m.secret.send(m.megolm_backup.v1, rk))

1. DA,2 verified
as Alice’s device?

2. Did I request
this secret?
Accept rk.

28



Attacks 4 & 5 – Protocol Confusion

What caused these attack?

• Implementation mistake!
• Looking deeper... how could the specification discourage similar

bugs in the future?

29



Lessons Learned



Difficult Problems!

Matrix aims to solve some difficult problems:

1. Secure (Group) Messaging
... in a multi-device setting
... that is scalable to thousands of devices in a single group.

2. Backups and history sharing.
3. Authentication and identity verification

... cross-signing to reduce user burden of out-of-band verification.
4. Federation.
5. Supporting a variety of clients across many platforms.

30



Revisited: Secure messenger

End-to-End Encryption? Yes

• Confidentiality? Yes
• Integrity? Yes
• Authentication? Yes

• Partial Forward Secrecy? Maybe?
(Forward Secrecy? No)

• Post-compromise Security? Maybe?
• Some form of Deniability? Maybe?

31



Managing Complexity

Formal proofs!
(and security analysis)

Why?

• Require clear and consistent thinking about threat models.
• Identify gaps in the specification.

Requires a more detailed and prescriptive specification.
• Encourage a more compact, provable design.

32



Other thoughts



To think

Matrix homeservers accumulate a wealth of metadata
We need design that is generated by inputs of several places: formal
analysis, research, standardization...

33


	Matrix Overview
	Attacks
	Lessons Learned
	Other thoughts

