Practically-exploitable Cryptographic
Vulnerabilities in Matrix °

IETF 115 London, PEARG, 2022-11-09

Martin Albrecht (Royal Holloway) martin.albrecht@rhul.ac.uk
Sofia Celi (Brave Software) cherenkov@riseup.net
Benjamin Dowling (University of Sheffield) b.dowling@sheffield.ac.uk
Dan Jones (Royal Holloway) dan.jones@rhul.ac.uk

s, The
Universit) ROYAL
e @ brave

Of
Sheffield.

?Full paper available at https://nebuchadnezzar-megolm.github.io/.

https://nebuchadnezzar-megolm.github.io/

Matrix is a standard for secure, decentralised, real-time messaging.

Mission®:

= Short-term Interoperable messaging and calls.

= Long-term Underlying messaging and data synchronisation for
applications.

Ihttps://matrix.org/faq/#what-is-matrix's-mission%3F

https://matrix.org/faq/#what-is-matrix's-mission%3F

Matrix

ece e Gl Server APt | MatrixSpec X |+

« C O 8 ntpsijspec matrixorgiunstal . to-enc. auw &

& & W = »

matrix| specification — unstable version Foundation FAQs Blog

11711 Client behaviour 11.12. End-to-End Encryption

11.2 Security

considerations Matrix optionally supports end-to-end encryption, allowing
fooms to be created whose conversation contents are not
1112 End-to-End Encryption
decryptable or interceptable on any of the participating

111211 Key Distribution
111211 Overview
1112112 Key algorithms. 11.12.1. Key Distribution
111213 Device keys
111214 Uploading keys
111215 Tracking the
device list for a user

homeservers.

Encryption and Authentication in Matrix is based around public-
key cryptography. The Matrix protocol provides a basic
mechanism for exchange of public keys, though an out-of-band
channel is required to exchange fingerprints between users to

111216 Sending build a web of trust.

encrypted attachments
1112161 Extensions to 11121, Overview
mroemmessage 1. Bob publishes the public keys and supported algorithms
msgtypes

for his device. This may include long-term identity keys,

111217 Claiming one-time and/or one-time keys.

keys

1112.2 Device verification . . .
1112.21 Key verification | Bobs Hs | | Bob's Device |
framework
1112.2.2 Short ! |
Authentication Strina

/keys/upload

[https://spec.matrix.org/unstable/]

https://spec.matrix.org/unstable/

Element (flagship client)

® @ x4

e
@ o
& 2@0@0Q

[https://element.io/images/Element-Home-Hero_1.png]

https://element.io/images/Element-Home-Hero_1.png

Why should we care?

Element has over 60 million users?

Matrix has users including...

S

AlPosts This WeekInMatrix Securty ~ Categories RSS Feed

Matrix and Riot confirmed as the
basis for France's Secure Instant
Messenger app

2018-04-26 — In the News — Matthew Hodgso
Hifolks,

We're incredibly excited that the Government of France has confirned it s in the process of
deploying a huge private federation of Matrix homeservers spanning the whole government,
‘and developing a fork of Riot.m for use as their official secure communications client! The
goal s to replace usage of WhatsApp or Telegram for official purposes.

Its situation ' aworld

genuinely care , open P based -

and Matrix's decentralisation and end-to-end encryption is a perfect it for intra- and inter-
to France for and

supporting FOSS! We understand the whole project s going to be released entirely open
source (other than the operational bts) - development is well under way and an early proof
of concept is already circulating within various government entites.

@ & D

AlPosts This WeekinMatrix Securty ~ Categories RS Feed

Germany’s national healthcare
system adopts Matrix!

General, News

Hifolks,

y the national
of in Matrix as the open standard on
which to base all its interoperable instant messaging standard - the Ti-Messenger.

gematik has released a concept paper that explains the initiative in full.

=TL;DR
With the Tl-Messenger, gemati s creating a nationwide decentralised prvate

communication network - based on Matrix - to support potentially more than 150,000
X Il pr

messaging for the as wellas the
ability to share healthcare based data, images and files.

Initially every healthcare provider (HCP) with an HBA (HPC ID card) wil be able to choose

’https://archive.ph/2022.08.11-121218/https://element.io/

https://archive.ph/2022.08.11-121218/https://element.io/

Secure messenger

End-to-End Encryption

= Confidentiality
= Integrity

= Authentication

= Partial Forward Secrecy?
= Post-compromise Security?

= Some form of Deniability?

Matrix Overview

= User, device and homeserver.

= A homeserver is a server that stores the communication history and
account information for a user.

= A user represents a user/client and has many devices (phone,
desktop, etc).

Alice

= Each user has a cryptographic identity used to: mpka

1. achieve trust between user’s set of devices, and gf’ 3%
2. record the result of out-of-band verification
between users. spka upka
Device Da 1

= Each device has a cryptographic identity used to
communicate through the Olm and Megolm (apkas, ipka.)

protocols. :’X/J

ipka1 epkay fpka

Tayse
Ton®

linking everything together

Alice

mpky

User Cross-
signing Keys
2,

%,
0

spky upky,

a‘»‘w TSy

B

o >
(apka1,ipka) (apkaz,ipkaz2) (apka.n,ipka.n)

-
S
o
4

ipka 1 epkay fpka

Device Keys

Tgyse
Ton®

Cross-signing: linking everything together

User Cross-
signing Keys

Y

-
S

o

¥

Device Keys
T H)’se
Ton®

ipka 1 epkay fpka

Alice Bob
mpky mpkg
upky upkg SPAkB.
%ﬁ, 29 &» “:4&
i

R "
(apka1,ipka) (apkaz,ipkaz2) (apka.n,ipka.n)

Lo ey
(apks.1,ipke1) (apks.z2,ipks2) (apks.m,ipks.m)

2
5%,
Uayse
23
o

ipkg1 epkg 1 fokg 1

Cross-signing: linking everything together

User Cross-
signing Keys
2

Y

R » Lo -
(apka1,ipka1) (apkaz2,ipkaz2) (apka.n, ipka.n) (apks.1,ipke1) (apke.a,ipke2) (apke.m,ipke.m)

»
o
N AR TAREY
< w\ ¥ & w\ *

g1 ¥/ [5\¢ ¥/ 15\%
.; - -
a

ipka 1 €pkaq foka ipkg,1 epkg fpkg

= Olm: pairwise secure channels between devices.
= Modified Signal's 3DH plus Double Ratchet algorithm.

= Connected to device's cryptographic identity.

10

= Megolm: group messaging through composition of unidirectional
channels.

= Effectively, Signal "Sender keys".

= Olm channels are used as a signalling layer to distribute the inbound

session/sender keys (i.e. key material).

11

Session setup and key distribution:

¢o = Olm.Encrypt(kag, (S gpk, Tmg))

Megolm.Init |

|

= Olm.Encrypt(kac, (S gox, om
(Ggsk-, Ggph Umg) a T ncryp(A (gpk'g g)) ¥

Messaging:

Megolm.Encrypt(S 4, p)

S)

(9)

12

Attacks

Attack 1a — Membership events are unsigned

Group membership is managed through events:

Alice A Homeserver H Bob B

m.room.member(invite, A, B, G)

m.room.member(invite, A, B, G) § m.room.member(invite, A, B, G)

E
N

m.room.member(join, B, A, G)

@~

m.room.member(join, B, A, G) m.room.member(join, B, A, G)

E
N

13

Attack 1a — Membership events are unsigned

Group membership is managed through unsigned events:

Alice A Homeserver H Bob B
m.room.member(invite, A, B, G) m.room.member(invite, A, B, G)
A) 7
m.room.member(join, B, A, G) m.room.member(join, B, A, G)
A) 7

14

Attack 1a — Membership events are unsigned

What caused this attack?

= Assumption that only 'user messages’ should be encrypted.

= Practical issues

15

Attack 1b — Server controls the list of user’s devices

= To send a message to a user, clients need a list of their devices.

= This list is provided by the homeserver.

16

Attack 1b — Server controls the list of user’s devices

What caused this attack?

= To stop this attack, users need a way to advertise a list of their
trusted devices (that the homeserver cannot modify).
— Cross-signing provides such a list!

= [s this too impractical? Too high a user burden?

= Arguably, yes. For now!

17

Attack 2 — QOut-of-band Verification

How do two parties ensure their connection is not being MITM-ed?
Out-of-band verification.

Short Authentication String (SAS) protocol ~

1. Key exchange to generate a shared secret.

2. Compare the shared secret out-of-band
(using short strings of emojis).
If they don't match, then abort!

3. Send correct cryptographic identities to each other over a secure
channel (constructed using the shared secret).

This attack targets step 3. The homeserver tricks device's into sharing a
homeserver-controlled identity (rather than their own).

18

Attack 2 — QOut-of-band Verification

How does the homeserver trick device's into sending a
homeserver-controlled identity (rather than their own)?
= Two types of verification:
1. Between two users
2. Between two devices (of the same user)
= For step 3, each party sends the other an
m.key.verification.mac message containing a “key identifier”
field:
1. For two users, this field contains the fingerprint of their master
cross-signing key mpk.
2. For two devices, this field contains their device identifier.

19

Attack 2 — QOut-of-band Verification

How does the homeserver trick device's into sending a
homeserver-controlled identity (rather than their own)?

Attack:

= Homeserver assigns their target a device identifier that is also a
master cross-signing key fingerprint that the homeserver generated.

= When the target sends an m.key.verification.mac message with
their device identifier, the receiving device interprets it as a

cross-signing key fingerprint and signs it!

19

Attack 2 — QOut-of-band Verification

What caused this attack?

= Lack of domain separation between cross-signing key identifiers and
device identifiers.
— avoid using server-controlled inputs in the out-of-band
verification process.

20

Attack 3 — Semi-trusted Impersonation

When a user adds a new device, they'd like that device to be able to
decrypt messages previously sent to that user.

Key Request Protocol =~

Das Homeserver H Dasz

Megolm.Encrypt(S g, p)

Cannot decrypt N
(missing Sgpk) m.room_key_request(gpk)

m.room_key_request(gpk) ! m.room_key_request(gpk)

@~

"1. Day verified
as Alice's device?
2. Shared Ggp

Olm.Enc(m.£ ded, key(Dg1, gpk, &
(m.forwarded_room_key(Dg 1, gpk, Sgpi)) with Da before?

A~

Missing checks:

1. Dp verified
as Alice’s device?
2. Did | request
gpk?

21

Attack 3 — Semi-trusted Impersonation

When a user adds a new device, they'd like that device to be able to
decrypt messages previously sent to that user.

Attack:

Da1 Homeserver H Dy

(G/gsk’ G/gplc Omg)

Olm.Enc(m.forwarded_room_key(Dg,1,gpK, &) + Megolm.Init(1")
VA

<
Accept &/, ,

as Dg1's session

22

Attack 3 — Semi-trusted Impersonation

What caused this attack?

= |mplementation mistake!

= Key Request Protocol was underspecified

23

Attack 4 — Trusted Impersonation

Recall Megolm session setup:

¢o = Olm.Encrypt(kag, (S gpk, Omg))

Megolm.Init |

|

(6 S) a1 = Olm.Encrypt(kac, (Sgor. ome)) | [@e
gsks Ogpk; Omg ? locece

What if we could send (Sgpk, omg) over Megolm instead of Olm?

Could we send it over a Megolm session placed via the semi-trusted
impersonation attack?

24

Attack 4 — Trusted Impersonation

Device Dy impersonates Dg 1 to Da1:

Da1 Homeserver H Dy

(Ssk: Sigp Timg)
Olm.Enc(m.forwarded_room_key(Dg,1,8PK, &,,)) +— Megolm.Init(1")
/ A)

Accept &,
as Dp1's session

Semi-Trusted
Impersonation

(62510 Gzpk”ro-rt\g)
Megolm.Encrypt(&g,,. m.room_key(Sy 4, 0ng)) | < Megolm.Init(1")

<
A}
«
Accept &,
as Dp1's session

(not forwarded)

25

Attack 5 — Confidentiality Break

Introduce two new sub-protocols:

1. Megolm Key Backups
= Inbound Megolm sessions S are encrypted then backed up on the
server.
= A recovery key (shared between a user’s devices) is used to decrypt
them.

2. Secure Storage and Secret Sharing (S5SS)

= Provides functionality to backup and share account-level secrets.
E.g. cross-signing keys and the Megolm backups recovery key.

= “Secret Sharing” between devices through synchronous
request-response protocol

= “Secure Storage” through backups on the homeserver (through a
shared symmetric key).

26

Attack 5 — Confidentiality Break

When a user verifies their new device, it will use SSSS to request
account-level secrets from the user’s existing devices.

This includes the recovery key used for Megolm key backups, i.e.

Da1 Homeserver H Dao
k Out-of-band Verification

m.secret.request(m.megolm_backup.vl)
7

yi
<

\
"1 Da 1 verified
Olm.Enc(m.secret.send(m.megolm_backup.vi, rk)) as Alice’s device?

<

1. Do, verified '
as Alice's device?
2. Did | request
this secret?
Accept rk.

27

Attack 5 — Confidentiality Break

Da1 Homeserver H Dy

(S st Sigpi: Ting)
Olm.Enc(m.forwarded_room_key(Da o, gpk , G’gpk)) +— Megolm.Init(1")
,

Accept &,
as Dj»'s session

Semi-Trusted
Impersonation

Out-of-band Verification

m.secret.request(m.megolm_backup.vl)
7

yi
<

\
" Generate rk
Megolm.Encrypt(&),,, m.secret.send(m.megolm_backup.vi, rk))
1. Dao verified |
as Alice's device?
2. Did | request
this secret?

Accept rk.

28

Attacks 4 & 5 — Protocol Confusion

What caused these attack?

= Implementation mistake!

= Looking deeper... how could the specification discourage similar
bugs in the future?

29

Lessons Learned

Difficult Problems!

Matrix aims to solve some difficult problems:

1. Secure (Group) Messaging
. in a multi-device setting
... that is scalable to thousands of devices in a single group.

N

. Backups and history sharing.

3. Authentication and identity verification
. cross-signing to reduce user burden of out-of-band verification.

4. Federation.

5. Supporting a variety of clients across many platforms.

30

Revisited: Secure messenger

End-to-End Encryption? Yes

= Confidentiality? Yes
= Integrity? Yes

= Authentication? Yes

= Partial Forward Secrecy? Maybe?
(Forward Secrecy? No)

= Post-compromise Security? Maybe?

= Some form of Deniability? Maybe?

31

Managing Complexity

Formal proofs!
(and security analysis)

Why?

= Require clear and consistent thinking about threat models.

= |dentify gaps in the specification.
Requires a more detailed and prescriptive specification.

= Encourage a more compact, provable design.

32

Other thoughts

Matrix homeservers accumulate a wealth of metadata
We need design that is generated by inputs of several places: formal
analysis, research, standardization...

33

	Matrix Overview
	Attacks
	Lessons Learned
	Other thoughts

