
Shivan Kaul Sahib
Alex Davidson
Pete Snyder
Chris Wood

STAR: Distributed Secret Sharing for 
Threshold

Aggregation Reporting

PPM WG, IETF 115

1



Idea: k-anonymity for clients reporting 
measurements to an untrusted server

2



Goals

● Cheap: low computational overhead and network usage 
for clients and servers

● Simple: easy to implement, well-known crypto
● Private: practical privacy guarantees

3



Central Idea: use Shamir’s Secret Sharing

● Client wants to send a telemetry value to the server, but only wants the 
server to see it if there are >= K submissions of the same value
○ { “city”: “Vancouver” }

● Client generates a symmetric key by hashing its measurement
● Client encrypts its measurement using that key
● Client generates a secret share of that key, and sends it to the server 

along with encrypted message.
—

● Iff server gets K shares of a key, it can recover the original key.
● Once it has the key, it can decrypt the encrypted message

4



Central Idea

● Use anonymizing proxy
○ OHAI

● Use Randomness Server
○ Client sends blinded input value to Randomness Server to get salt
○ To mitigate server brute-force computing all possible input values
○ Use VOPRF so Randomness Server does not learn input value

5



DoS attack using corrupt reports

1. Client wants to prevent recovery of a given telemetry value
2. Sends a random secret share for a given tag
3. Addressed with VSS, where the share commitments 

become the tag
○ VSS allows checking if a particular share is valid, even before 

recovery

4. Adds O(k) cost in bandwidth and computation

6



Implementation

● Shipping in Brave browser for telemetry 
● Rust: https://github.com/brave/sta-rs
● Go: https://github.com/chris-wood/star-go/ 
● WASM bindings: 

https://github.com/brave/sta-rs/tree/main/star-wasm 

7

https://github.com/brave/sta-rs
https://github.com/chris-wood/star-go/
https://github.com/brave/sta-rs/tree/main/star-wasm


● Specify verifiable and unverifiable secret sharing
● Refactor document to be easier to implement
● Add (many) more details on cryptographic APIs and 

functions
● Specify protocol message types for IANA
● Discuss garbage reports

What’s new in -02

8



Garbage reports

1. Client generates a key from message X, but encrypts and 
sends message Y. Recovery happens correctly, but the 
value will be garbage. 
a. Throwing out the batch will again cause DoS
b. Majority vote?

2. Deterministic Blind Signatures instead of an OPRF allow 
the aggregation server to check which encrypted message 
corresponds to the right key
a. Requires signature to be carried in encrypted message

9



SUPER STAR

10

Secret Sharing Scheme Signature Scheme/Protocol Client threat mitigated

Shamir Secret Sharing OPRF None

Verifiable Secret Sharing OPRF Bad shares (DoS)

Shamir Secret Sharing Blind Signatures Bad ciphertext

Verifiable Secret Sharing Blind Signatures Both



● There seems to be strong interest in STAR

● We addressed feedback from the WG and it improved the document

● We should do this formally within the WG!

11



(extra slides)

12



RSA Blind Signatures

1. Derive encryption key using signature: H(sign, msg)
2. Encrypt msg and signature: K(msg, sign)
3. Generate share S
4. Send S to server
5. Once server gets N Ses, it gets key
6. It decrypts to get msg and sign. It validates sign with pubk
7. It then generates the key using H(sign, msg)
8. It checks recovered key is == generated key

13



Central Idea: use Shamir’s Secret Sharing

● Compute symmetric key K by hashing measurement x: K = H(x, rand)
● Client encrypts x using K: M = Encrypt(K, x)
● Client generates secret share of key: SecretShare(K)i
● Client sends server: M, SecretShare(K)i

—
● Server gets: M, SecretShare(K)i
● After N secret shares, recover K: K = Recover(SecretShare(K)i..N)
● Use K to decrypt M: x = Decrypt(K, M)

14


