Rate-Limited Issuance

draft-ietf-privacypass-rate-limit-tokens

Tommy Pauly, Chris Wood, Steven Valdez, Scott Hendrickson, Jana Iyengar
Agenda

Recap of differences from Basic tokens

Open Issues
Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin
 - Attesters learn **stable mapping** between per-client secret and per-origin secret, without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens
 - Issuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded
Changes from basic type

Challenge flow adds a per-issuer HPKE key to use to encrypt token requests.
Issuance protocol adds
1. An HPKE-encrypted inner request that contains Origin name
2. An anonymous origin name the Attester uses to keep counts
3. A token limit per time that the issuer communicates to the Attester
4. A blinded key signature to prove that the Client doesn't cheat
Basic Token Request

```c
struct {
    uint16_t token_type = 0x0002
    uint8_t token_key_id;
    uint8_t blinded_msg[Nk];
} TokenRequest;
```
Rate-Limited Token Request

```
struct {
    uint16_t token_type = 0x0003;
    uint8_t request_key[Npk];
    uint8_t issuer_encap_key_id[32];
    uint8_t encrypted_token_request<1..2^16-1>;
    uint8_t request_signature[Nsig];
} TokenRequest;
```

```
struct {
    uint8_t token_key_id;
    uint8_t blinded_msg[Nk];
    uint8_t padded_origin_name<0..2^16-1>;
} InnerTokenRequest;
```
Linkability with Malicious Issuer

Issue #6

Malicious Issuer reuses Issuer Origin Secret across different origins. This causes the Attester to trip the check to prevent a Client from pretending that one origin is actually two.

Current protocol has the Attester fail the token request immediately in this case. This failure can be used as a signal on the redemption path to identify the client.
Proposed Fix

Issue #6

Attesters should not silently drop requests due to mapping collision
 Silent drops allow malicious Issuers to leak a signal
 Silent drops also don't penalize malicious Clients on future requests

Instead, Attesters need to flag these collisions to re-evaluate trust in Issuers or Clients
 A malicious Issuer will cause collisions across Clients; if so, the Attester should start blocking this Issuer
 A malicious Client can similarly be blocked for future token requests
Document should go deeper on how the Attester trusts an Issuer, in addition to causing collisions

Acceptable lengths of Issuer Policy Window (the time for the rate limit)

Acceptable rate limit values

Number of origins served to create an anonymity set
Alternative Fix: ZKP Anonymous Origin

A Zero-Knowledge proof was suggested as an alternate approach

Rather than relying on the Attester confirming the values from the Client and Issuer, the Client encrypts the origin to the issuer and provides a ZKP the Attester can verify.

Would rely on new crypto that isn't specified yet.
More analysis of protocol impact would be needed.

Recommended as a candidate for future token types

Could be bundled with other features that would require Attester state
Other Open Issues

#1 - One Bit Token Key ID
 Simplifies consistency checks, limits key rotation schemes.

#2 - Hide Issuer Rate Limit from Attester
 Potential future extension/token type?

#5 - Rate limit against non-challenger origin
 Expand discussion around origin_info with multiple origins.

#8 - Clarify Attester anomaly detection/reaction
 Related to sidebar on issue #6, add expanded discussion in spec.
Next Steps

Update document as discussed
Track CFRG dependency (draft-irtf-cfrg-signature-key-blinding)

Questions?