
Forward Erasure Correction for QUIC loss recovery

François Michel
Olivier Bonaventure

1

Imperfect links

Packet losses can happen for at least 2 reasons
● Congestion on the routers/CPE
● Medium imperfections

Besides throughput, those losses can impact the app’s responsiveness

A first look at starlink performance, IMC2022

2

What we can do: Forward Erasure Correction

Sender Receiver
DATA 1

DATA 2

DATA 3

END

R=DATA 1 ⊕ DATA 2 ⊕ DATA 3

5ms

5ms

5ms

DATA 2=
R
⊕

DATA 1
⊕

DATA 3
3

QUIC + FEC

QUIC’s design make it easy to design and experiment with FEC

● Explore several erasure correcting codes
● Several use-cases (H3, MoQ?)

4

QUIC + FEC on Starlink

● Simple implementation using Cloudflare’s quiche
● H3 50kB uploads over Starlink
● Repair frames sent at the end of the upload, within what is allowed by the cwin

Med(DCT) Med(DCT) FEC pct95(DCT) pct95(DCT) FEC

All transfers 248 ms 247 ms 382 ms 373 ms

Transfers with losses 287 ms 277 ms 395 ms 386 ms

Transfers with losses in
the 10 last pkts

311 ms 279 ms 560 ms 447 ms

No harm in median among all transfers
Noticeable improvement when losses happen 5

draft-michel-quic-fec

A design to experiment with different implementations

● Distinguishes packet acks from symbol acks (c.f. RFC9265)
● Negociates a coding window to avoid over-complicated packet recoveries
● Compatible with different error correcting codes

○ ID frame common to every ECC
○ REPAIR frame specific to the ECC used
○ Negotiated through transport parameters

6

FEC and IPR

Several erasure correcting codes are under active patents

● Raptor codes (until 2030): https://datatracker.ietf.org/ipr/2554/
● RLC (until 2034)

Some of them, such as Reed Solomon & LDPC are not under patents

● Interesting but not fountain codes

7

https://datatracker.ietf.org/ipr/2554/

A good candidate: draft-irtf-nwcrg-tetrys ?

● Fountain-code
● No IPR disclosure
● Described as “patent-free”

8

Next steps: let’s experiment together !

If your use-cases may benefit from QUIC-FEC, here’s how we could start :

● Discuss the draft on the mailing list
● Implementing draft-michel-quic-fec
● Using Tetrys-like ECC as encoder/decoder for experiments

○ We have a rust lib for the encoder/decoder with bindings for C/C++.
■ Send us an e-mail to get it and experiment with us: francois.michel@uclouvain.be

● Please, do it with us, not on your own ! :-)

9

mailto:francois.michel@uclouvain.be

backup slide

10

netem badly imitates real losses

Wi-Fi & latency Starlink & loss bursts

11

