RFC 6421: Roadmap to Secure RADIUS

Bernard Aboba
History

- Limitations of RADIUS security have been long understood.
 - Security of RFC 2058 (RADIUS Authentication), published in January 1997, described as “barely adequate” during IESG review.
 - As RADIUS usage expanded from dialup networking to VPN and 802.11, additional concerns emerged.
- RFC 3579 (RADIUS/EAP), published in September 2003 describes known attacks and potential solutions.
 - Section 4.3 (Security Issues) is 8 pages long!
 - Includes analysis of security issues (including dictionary and known-plaintext attacks)
 - Describes privacy issues (leaking of geographic location) that emerged in 802.11 use.
 - Section 4.2 specifies RADIUS over IPsec for security services (confidentiality, authentication and replay protection)
Roadmap for Securing RADIUS

● IETF 66 Montreal, July 2006: Security Area Directorate requests RADEXT WG to review security deficiencies and add a work item to the RADEXT WG charter.
● March 2008: David Nelson submits draft-nelson-radext-crypto-agility-requirements-00
● November 2011: RFC 6421 (Crypto-agility Requirements for RADIUS) published.
 ○ Summarizes state of RADIUS security
 ○ Describes crypto-agility requirements
 ○ Lays out a two-stage process for standardization of Secure RADIUS
 ■ Stage 1: Publication of experimental RFCs
 ■ Stage 2: Promotion of proposal(s) to the Standards Track.
RFC 6421: Crypto-Agility Requirements

- **Section 1.3: Standards Track Publication Requirements**
 - Evaluation against requirements.
 - Summary of deployment experience.
 - Evidence of multiple interoperable implementations.

- **Section 2: Definition of crypto-agility**
 - “Ability of a protocol to adapt to evolving cryptography and security requirements.”
 - “Negotiation of cryptographic algorithms MAY occur within the RADIUS protocol, or within a lower layer such as the transport layer.”
 - Proposals focused on the transport layer approach using (D)TLS.
 - “Proposals MUST NOT introduce generic new capability negotiation features into the RADIUS protocol or require changes to the RADIUS operational model.”
 - “A proposal should focus on the crypto-agility problem and nothing else”
 - “Proposals SHOULD NOT require new attribute formats”.

- **Section 3: Current state of RADIUS security**
RFC 6421 Crypto-Agility Requirements (cont’d)

● Section 4.2 (Security Services):
 ○ MUSTs: per-packet integrity and authentication, per-packet replay detection, cryptographic algorithms deemed “acceptable” by NIST with no deprecation date, strong & fresh session keys
 ○ RECOMMENDED: confidentiality, support for X.509 certificates, pre-shared keys.
 ○ OPTIONAL: encryption and E2E security of individual RADIUS attributes.

● Section 4.3 (Backward Compatibility)
 ○ An implementation that supports both crypto-agility and legacy mechanisms MUST be able to talk with legacy RADIUS clients and servers (using the legacy mechanisms).
 ■ Proposals met requirement by using a separate port.

● Section 4.4 (Interoperability and Change Control)
 ○ MUSTs: IETF change control, interoperability between independent implementations.

● Section 4.6 (Automated Key Management)
 ○ AKM is RECOMMENDED for RADIUS and REQUIRED for cryptographic modes of operation requiring frequent key changes.
 ■ Proposals met requirement via (D)TLS.
RFC 6614: TLS Encryption for RADIUS, published May 2012
- Section 1: Use in roaming networks such as eduroam
 - Certificate verification options
 - TLS-PSK configuration
- Section 1.3: Open questions
- Section 2.1: Use of TCP port 2083
- Section 2.3: Connection setup
 - Support for TLS 1.1/1.2
 - Required ciphersuites
 - PKI support required, TLS-PSK support optional, certificate fingerprint support optional
- Section 2.4: Connecting client identity
- Section 2.5: single TCP port for all packet types
- Section 3: Informative: design decisions
- Section 4: Compatibility with other transports
- Section 5: IANA Considerations
- Section 6: Security Considerations
 - Confidentiality required.
Documents Published as Experimental (cont’d)

- RFC 7360: RADIUS over DTLS, published September 2014
 - Section 1: Issues encountered in RADIUS over IPsec
 - Section 2.1: Changes to RADIUS
 - “Requires that RADIUS remain largely unchanged to ensure the simplest possible implementation and widest interoperability”
 - Section 3.2 Server Behavior, Section 4 Client Behavior
 - Includes ciphersuite requirements
 - Section 6: Implementation Guidelines
 - Support for both TLS-PSK and PKI authentication
 - Section 8: IANA considerations
 - Allocation of UDP port 2083.
 - Section 9: Implementation status (radsecproxy & jradius)
What Happened Next…

- 16+ years since the IETF Security Area first initiated work on RADIUS crypto-agility.
- Concerns relating to RADIUS privacy and security issues have grown.
 - Shared secret cracking increasingly feasible.
 - Location APIs have magnified impact of location leaks.
- Experimental proposals have been in the field for 8-10 years.
 - Some implementation and deployment experience.
 - Limited market penetration. Why?
 - PKI operational issues?
 - Gaps in TLS-PSK specification?
 - Limitations of open source libraries?
 - Lack of a testing and certification process (e.g. WFA)
Where Do We Go From Here?

- Time to move ahead on Phase 2 of the RFC 6421 process.
- Replacing a core element of the Internet architecture will take time.
 - Secure RADIUS (SRADIUS) not a complex patch (2000 lines), but vendors likely to make it available only on new devices.
 - Mixed deployments (legacy RADIUS and SRADIUS) likely to persist until all legacy clients are retired.
- Need to get device vendors on board
 - Address implementation, interop and deployment blockers.
 - Support for TLS-PSK?
 - May require updates to open source libraries.
 - Cooperation with industry for test and certification.
 - Reference deployments to establish credibility.
- RADIUS deprecation the final (not initial) step.
 - Needs to be coordinated with standards track publication.