
Signaling In-Network Computing
operations (SINC)

draft-zhou-sfc-sinc-00

David Lou, Luigi Iannone, Yujing Zhou, Zhangcuimin

IETF-115 : Nov 2022, London+Online

RTGWG WG

1

Motivation*

❖ Recent research has shown that network devices undertaking some computing tasks can
greatly improve the overall network and application performance in some scenarios

❖ Their implementation is mainly based on the programmable network devices by using P4 or
other languages.

❖ Also, for complex network topologies, such as DC, traffic steering is needed to route the
packet to the programmable network devices.

❖ We argue that for some use cases, it is useful to provide an explicit and general way in the
data/control planes to signal the in network computation.

*More extensive overview of use cases presented at COINRG interim Sep. 2022
https://datatracker.ietf.org/doc/agenda-interim-2022-coinrg-03-coinrg-01/ 2

https://datatracker.ietf.org/doc/agenda-interim-2022-coinrg-03-coinrg-01/

SINC Use Case
⚫ Existing Weak points of distributed system:
1) The nodes among distributed nodes will generate
more traffic in order to reach consensus
2) CPU and GPU chip throughput is insufficient,
therefore packet loss is caused

The increase in the number of servers does not lead to
a linear increase in server performance.

Traditional way:

1 2 3

PS：
Parameter

server0
0 1

23

All-Reduce

❖ PS aggregate the gradients, thus PS
will suffer from in-cast issue.

❖ PS can easily become a bottleneck

❖ The overall data transfer is
increasing;

❖ The communication pattern involved
may lead to higher network latency

0 1

23

switch

Unaggregated data

Aggregated Data

NetReduce:

❖ Comparing with the host oriented solutions,
in-network aggregation could potentially
reduce nearly half the aggregation data

❖ NetReduce is >1.5x faster, and has better
scalability than ring all-reduce.

3

SINC Use Case
NetLock: NetSequencer:

❖ For SINC :
The lock manager can be abstracted as Compare An
d Swap (CAS) or Fetch-and-Add (FA) operations.

The test results in NetLock[1] show that the lock
manager running on a switch is able to answer
100 million requests per second, nearly 10 times
more than what a lock server can do.

❖ For SINC:
Switches could realize the sequencer[2] by using a
“Fetch-and-Add (FA)" operation.

Compared with Gbps-level throughput of servers,
network devices have Tbps-level throughput and line-
rate processing capabilities

[1] Yu Z, Zhang Y, Braverman V, et al. Netlock: Fast, centralized lock management using programmable switches[C]//Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for computer communication. 2020: 126-138.
[2] Design Guidelines for High Performance RDMA Systems, https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

4

In-Network Operations and Data

❖ The core idea of SINC is to offload “bottleneck” computing operations to the network devices in order to

improve the system performance

❖ The network devices executing computing operations should not affect the forwarding performance of

data plane

❖ Generic "simple and basic" operators are desired to support different scenarios

❖ An explicit and general mechanism is required to tell the switch what, where and how

Use Case Operation Description

NetReduce Sum value (SUM) The network device sums the collected parameters together
and outputs the result

NetLock Compare And Swap or
Fetch-and-Add (CAS or FA)

By comparing the request value with the status of its own lock, the network device
sends out whether the host has the
acquired lock. Through the CAS and FA, host can implement shared and exclusive lo
cks.

NetSequencer Fetch-and-Add (FA) The network device offers a counter service and provides a
monotonically increasing sequence number for the host.

5

Hosts Hosts

SFC Ingress Proxy SFC Egress Proxy

SINC Switch/Router

SINC
Service

SINC Overview

SINC-capable switches/routers executes
all or part of the data computation
during the transmission

A host sends out packets
containing data
operations to be
executed in the network

SFC Ingress Proxy
encapsulates the packet
with NSH

SFC Egress Proxy
removes the NSH

6

IP

SINC

payload

UDP

IP

SINC

payload

UDP

SINC Header
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Reserved |L| Group ID |
+-+
| No. of Data Sources | Data Source ID |
+-+
| SeqNum |
+-+
| Data Operation | Data Offset |
+-+

❖ Loopback flag (L):
❖ Zero (0) -> be sent to the destination.
❖ One (1) -> be sent back to the source node.

❖ Group ID: Identifies different groups
❖ Number of Data Sources: Total number of data source nodes that are part of the group.
❖ Data Source ID: Unique identifier of the data source node of the packet.
❖ Sequence Number (SeqNum):

The SeqNum is used to identify different requests within one group.
❖ Data Operation: The operation to be performed, like ADD, SUM, MAX, MIN
❖ Data Offset: The in-packet offset from the SINC context header to the data required by the

operation.

To associate and
forward the message
with to the right
computing service

7

SFC is one possible way to steer traffic to the right in-network SINC-capable switch where SINC is a Service Function (SF)

Case 1: hosts do support SINC

SFC for Signal In-Network Computing

IP

SINC

payload

UDP

IP

SINC

payload

UDP

Host A Host BIngress
SFC Proxy

Egress
SFC Proxy

SFF SFFSFF

SINC SF

SINC SW/R

NSH

IP

UDP

SINC NSH

UDP

IP

payload

SINC

NSH

UDP

SINC NSH

IP

payload

SINC

NSH

UDP

SINC NSH

IP

payload

SINC

NSH

IP

UDP

SINC NSH

UDP

IP

payload

SINC
COPY

IP

UDP

IP

UDP

SINC NSH Encapsulation
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|ver|O|U| TTL | Length |U|U|U|U|MD Type| Next Protocol |
+-+
| Service Path Identifier (SPI) | Service Index |
+-+
| SINC Header |
+-+

NSH Base Header
MD type = 0x1

NSH Service Path
Header

SINC Context Header

❖ NSH Base Header:
❖ Use the NSH Meta Data (MD) fixed-length context headers to carry the data operation information

❖ MD type = 0x4 was used in the draft because the size of the original design of the SINC header is not
16 bytes. It will be updated in the next version of the draft.

❖ NSH Service Path Header: as defined in RFC 8300.
❖ SINC Context Header: as defined SINC Header. SFC Proxy copy these information in SFC header.

9

Next Step

• Encourage discussion on the mailing lists of the RTG WG and
SFC WG

• Update the draft based on comments and remarks

• Design the control plane with a possible separate draft

• Welcome to contributions and co-authors

10

