Source Address Validation in Intra-domain Networks (Intra-domain SAVNET) Gap Analysis, Problem Statement, and Requirements

Dan Li, Jianping Wu, Lancheng Qin, Mingqing Huang, Nan Geng

Nov 11, 2022
Goals

- Provide the *gap analysis* of existing intra-domain SAV mechanisms
- Summarize the *fundamental problems* of existing intra-domain SAV mechanisms
- Define the *requirements* for the new intra-domain SAV mechanism

Versions

- `draft-li-savnet-intra-domain-problem-statement-00`, IETF 114 SAVNET WG
- `draft-li-savnet-intra-domain-problem-statement-01`, Sep 25, 2022
- `draft-li-savnet-intra-domain-problem-statement-02`, Oct 22, 2022
- `draft-li-savnet-intra-domain-problem-statement-03`, IETF 115 SAVNET WG
Gap Analysis in Version-00

Scenario #1: Multi-homed Subnet

Scenario #2: Spoofing from inbound direction
Gap Analysis in Version-00

Scenario #3: Partial deployment

Scenario #4: Misbehaved router
Comments on Version-00

Version-00

1. Introduction
2. Terminology
3. Gap Analysis
 3.1. Vulnerability in Inbound Direction
 3.2. Multi-homed Subnet
 3.3. Partial Deployment
 3.4. Misbehaved Edge Router
4. Problem Statement
 4.1. Limitation in Accuracy
 4.2. Misaligned Incentive
5. Requirements
 5.1. Accurate Path Discovery
 5.2. All-round Protection
 5.3. Incremental Deployment and Incentive
6. Security Considerations
7. Acknowledgments
8. Normative References
Authors' Addresses

- Why could not you deploy SAV at all routers in the intra-domain network?
- Defining network elements are trusted vs untrusted is hard
- Misaligned incentive means “the costs of deploying SAV are paid by an operator itself while its benefits are only experienced by other operators”, but an intra-domain network is rarely managed by multiple operators
- Are we talking about non-IP packets as well?
-
Main Updates Compared to Version-00

- Updates in gap analysis
 - Explain the reasons for partial deployment
 - Remove the scenario of “misbehaved router”

- Updates in problem statement

- Updates in requirements

- Two new sections
Reasons for Partial Deployment

- There are two main reasons for partial deployment
 - **Technical limitations** make it hard to deploy SAV on all routers
 - ACL-based SAV requires manual configuration in dynamic networks
 - Strict uRPF ingress filtering blocks legal traffic in the scenario of asymmetric routing
 - Some routers cannot support SAV due to *router capabilities, versions, and vendors*

- Behavior gap in the scenario of partial deployment
 - When ingress filtering is partially deployed, spoofing traffic from undeployed edge routers cannot be blocked by other routers
Main Updates Compared to Version-00

- Updates in gap analysis

- Updates in problem statement
 - Remove the problem of “misaligned incentive”
 - Add the problem of “high operational overhead”
 - Revise the description of other problems

- Updates in requirements

- Two new sections
Problem Statement

- **Problem #1: Inaccurate validation**
 - Behavior gap: improper block under asymmetric routing
 - Reason: conducting SAV based on local FIB which may not match the real data-plane forwarding path from the source

- **Problem #2: Limited protection**
 - Behavior gap: failing to block spoofing traffic from outside AS and undeployed edge router
 - Reason: only working for traffic from directly connected subnets

- **Problem #3: High operational overhead**
 - Behavior gap: manual update when routing state changes
 - Reason: failing to adapt to dynamic or asymmetric routing scenarios
Main Updates Compared to Version-00

- Updates in gap analysis
- Updates in problem statement

- Updates in requirements
 - Remove the requirement of “direct incentive”
 - Add the requirement of “acceptable overhead”
 - Revise the description of other requirements

- Two new sections
Requirements for New Intra-domain SAV Mechanism

- **Requirement #1:** The mechanism MUST ensure accurate SAV
 - Match real data-plane forwarding path
 - Avoid improper block under asymmetric routing

- **Requirement #2:** The mechanism MUST work for all kinds of intra-domain spoofing traffic
 - Validate traffic from all directions
 - Block spoofing traffic (from outside AS and undeployed edge router) as close to the source as possible

- **Requirement #3:** The mechanism MUST not induce much overhead
 - Minimize manual update
 - Avoid data-plane packet modification
 - Limit the number of control-plane protocol messages
Main Updates Compared to Version-00

- Updates in gap analysis
- Updates in problem statement
- Updates in requirements
- Two new sections
 - Intra-domain SAVNET work scope
 - Security considerations
Two new sections

- **Intra-domain SAVNET work scope**
 - All **IP-encapsulated scenarios** are in scope
 - including both IPv4 and IPv6 addresses
 - Non-IP packets are out of scope

- **Security considerations**
 - SAVNET focuses on routing protocol-based mechanisms, so the security scope of intra-domain SAVNET should be **similar to that of intra-domain routing protocols**
 - Ensure integrity and authentication of control-plane protocol messages
 - Does not provide protection against compromised routers that poison existing control-plane protocols
Thanks!
Backup slides
Ingress filtering is typically deployed at the edge router connecting a subnet.

- Blocks spoofing traffic from directly connected subnet.
Gap #1: Improper Block

- **Scenario 1: Multi-homed Subnet**
 - Router 1 only advertises 166.1.0.0/16 in IGP
 - Router 2 only advertises 166.0.0.0/16 in IGP

Behavior

- If applying strict uRPF
 - Improper block
- If applying ACL-based SAV
 - Manual update given prefix or topology update in Subnet 1
Gap #2: Vulnerability in Inbound Direction

Scenario 2: Spoofing from Inbound Direction

Behavior

- Ingress filtering does not work for inbound traffic
 - Spoofing traffic (with intra-domain source addresses) can easily enter from inbound direction
Gap #2: Vulnerability in Inbound Direction

Scenario 3: Reflection attack
- Attacker: Subnet 1
- Victim: Subnet 2
- Reflective server: Subnet 3

Behavior

When partially deployed:
- Deployed subnet cannot forge source addresses
- Undeployed subnet can forge source addresses of deployed subnet to conduct reflection attack