
Supply Chain Integrity,
Transparency, and Trust

(SCITT)
IETF#115 WG

10 November 2022

Note Well
•Any submission to the IETF intended by the Contributor for publication as all or part of an IETF Internet-Draft or RFC and any
statement made within the context of an IETF activity is considered an "IETF Contribution". Such statements include oral
statements in IETF sessions, as well as written and electronic communications made at any time or place, which are addressed to:

• The IETF plenary session
• The IESG, or any member thereof on behalf of the IESG
• Any IETF mailing list, including the IETF list itself, any working group or design team list, or any other list functioning under

IETF auspices
• Any IETF working group or portion thereof
• Any Birds of a Feather (BOF) session
• The IAB or any member thereof on behalf of the IAB
• The RFC Editor or the Internet-Drafts function

•All IETF Contributions are subject to the rules of RFC 5378 and RFC 8179.
•Statements made outside of an IETF session, mailing list or other function, that are clearly not intended to be input to an IETF
activity, group or function, are not IETF Contributions in the context of this notice. Please consult RFC 5378 and RFC 8179 for
details.
•A participant in any IETF activity is deemed to accept all IETF rules of process, as documented in Best Current Practices RFCs and
IESG Statements.
•A participant in any IETF activity acknowledges that written, audio and video records of meetings may be made and may be
available to the public.

https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc8179
https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc8179

Agenda

• Welcome and Introduction (5 min): Chairs
• Problem Statement (5 mins): Orie Steele
• Software Supply Chain Uses Cases (15min): Yogesh Deshpande
• Architecture (30 mins): Antoine Delignat-Lavaud
• SCITT Receipts (15 min): Maik Riechert
• Hackathon Report (30 min): Henk Birkholz, Orie Steele
• AOB (Open Mic) & Next Steps (15 min): Chairs
• Wrap-up and Conclusion (5 min): Chairs

https://datatracker.ietf.org/doc/draft-birkholz-scitt-software-use-cases/
https://datatracker.ietf.org/doc/draft-birkholz-scitt-architecture/
https://datatracker.ietf.org/doc/draft-birkholz-scitt-receipts/

Updates From Last Time

• Working group formed Thank you Roman
• Chairs selected
• Continue with our regular conference calls – switching to IETF tools

Supply Chains

Adam Hayes – Investopedia
“A supply chain is a network of individuals and companies who
are involved in creating a product and delivering it to the
consumer. Links on the chain begin with the producers of the raw
materials and end when the van delivers the finished product to
the end user.”

https://www.investopedia.com/terms/s/supplychain.asp

Problem Statement

Software is an inherent part of everyday digitally-enabled life, from
smartphones to IoT to datacenters. Widely discussed attacks on the
software supply chain have helped raise awareness of the risks.

Many other vulnerabilities highlight the need for greater visibility into
supply chain integrity, transparency, and trust to make an informed
decision.

Use Case:
Software Supply Chain focusing on SBOM as evidence to a claim

https://datatracker.ietf.org/doc/draft-birkholz-scitt-software-use-cases/

Transparency and Trust

“Transparency does not prevent dishonest or compromised Issuers, but
it holds them accountable
Any Artifact that may be used to target a particular user that checks for
Receipts must have been recorded in the tamper-proof Registry,
and will be subject to scrutiny and auditing by other parties.”
SCITT: An Architecture for Trustworthy and Transparent Digital Supply Chains

https://datatracker.ietf.org/doc/draft-birkholz-scitt-architecture/

Software Supply Chain Uses
Cases
Yogesh Deshpande

End UsersIntegrator

I # 1

I # 2

I # 3

Software Supply Chain
Producers

Operating
Systems

W

L

M

Companies

C # 1
U # 1

U # 2

U # 3

U # 4

C # 2

Component
Vendors

A

X

B

Z

Package
Managers

N

R

P

W

Source
Code
G T

J

Integrator problems

• Integrators need to know the current state of each published
component

• Integrators have no standard way to receive this information
• Even if this information is delivered, via a standard way example:

(SBOM) how can the integrator ensure:
• The producer's identity is trustworthy by the integrator
• The supplied component information is not unexpected modified or

maliciously tampered with ?
• How does an integrator deal with the situation, when a Malware is detected

later?

An operating system software producer has built and shipped binaries to a
device integrator.

OS producer Device Integrator

Software
 Binary

Operating System Produced

1. A device integrator has received an operating system binary and has integrated
additional software components to produce a device executable

2. Device executable is shipped to the device distributor.

Device DistributorDevice Integrator

Device Software

Device Executable Produced

1. Later it is revealed there is a potential compromise when an anomaly is
detected in devices sold by a particular distributor

2. The consumers of the device are complaining to the distributor.

Device Deployed

Anomaly reported in distributed devices with specific
device executables

1. The distributor in a panic demands information about the operating system and software loaded by
the device integrator.

2. The device integrator panics and demands the specific environment and architecture details associated
with the built operating systems binary to confirm that the software was produced without tampering
by the operating system producer.

Confusion, Fear and Panic...

Unfortunately, there is no way for the integrator to know if the binary was
compromised, and so the integrator is concerned they may have delivered malware
(unknowingly) to their customers.

Deadlock continues …

1. The operating system software producer is now trying to show that it did all the steps correctly!

2. OS producer discloses information about the binary they delivered

3. They also demonstrated the Build Environment and the Architecture they used during the build

4. However, there is no verifiable proof of the statements made by the OS producer ??

5. The device integrator and the chain downline all the way up to the end user, now have to trust
without any means of verifying the claims made by the OS producer ?

6. OS producer thinks that the Device Integrator has made a mistake that led to this situation ?

7. There is no clear resolution of this deadlock, as there is no standard means to conclude based on
verification

• Device distributors need to assess the risk of vulnerabilities in the
binaries they distribute

• System integrators need to assess the risk of vulnerabilities in the
• Software they produce
• Binaries they consume from OS producers

• OS binary producers need to assess the risk of vulnerabilities in the
• Software they produce
• Software they consume from others
• Binaries they distribute

Customer Problems

What is SCITT
Supply Chain, Integrity & Trust (SCITT) is a set of specifications aimed at
providing Integrity, Transparency and Trust in the exchange of products
across end-to-end supply chains

IETF: SCITT Working Group

Defining compact, integrity protected protocols supporting
interoperability across multi party supply chains

Focused on software supply chain use cases, including firmware,
package repositories, container registries, services, …

We’re inspired by COSE, RATs, TEEP, SUIT…

Outcome of 114 meeting for focus of execution
Hardware will come later, as a superset of software

Architecture
Antoine Delignat-Lavaud

Architecture Introduction – Core
Concepts

Are these
artifacts authentic? Artifact: source or binary

package, container, script,
firmware, git tag, installer…

Verifier (integrator)

Issuer: entity that can provide
information about the artifact
(developer, distributor, SCM,
build or CI system, auditor)

Registry/Notary service:
an authority partially trusted

by the consumer to verify and
record information from issuers

Statement:
Information about
the artifact

Transparent Claim:
Registered information

Claim:
Signed information

https://datatracker.ietf.org/doc/draft-birkholz-scitt-architecture

https://datatracker.ietf.org/doc/draft-birkholz-scitt-architecture

Claim Issuance

• The issuers serializes a statement using any format of their
choice (JSON, XML, SPDX, CycloneDX, SLSA, Reference to
external storage…)

• The issuer publishes its signing key using any DID method.
This provides a stable long-term identifier for the issuer
independent of its short-lived credentials (certificates,
signing keys, etc.)

• The issuer signs a SCITT claim, which is an instance of a
COSE signed statement with specific additional headers:

• issuer is the issuer’s DID
• feed is the identifier for the artifact the statement

refers to, for instance a firmware image
• cty is the format of the serialized statement (specified

using mediatype)

Header Value

issuer did:web:firmware.sec.fpga.com

alg ES384

kid 20220101

feed C910 FPGA Firmware

cty application/x-c910-firmware-image

registration_info timestamp, version number, …

Serialized Statement [COSE Payload]

Signature 3045022100e7d0…

COSE_Sign1

Sections 5.1, 6.2

Claim Registration

23

• Some entity submits the signed claim to the registry

• The issuer is authenticated and checked against the
registration policy to validate the COSE signature

• The registry may apply any additional policy checks
including:

• Issuer type and identity
• Policies that depend on prior registered claims
• Policies that inspect the cty and payload

• Registry returns a SCITT receipt as proof of registration

Register Claim

Sections 5.2, 6.4

Validation & Audit

24

Register Claim

• Most consumers of the artifact will pick a trusted
notary. They check that they get a transparent claim
associated with the artifact by validating the SCITT receipt

• Some sophisticated consumers may additionally check
details of the claim, re-verify the issuer’s signature, or
apply additional policies before they accept the artifact

• Finally, the most suspicious consumers (auditors) do not
fully trust the notary. They may fully re-play the
registration of all claims in the registry and examine
collected receipts from verifiers

Should there be a standard way for auditors
and verifiers to query the registry?

Sections 5.3, 6.5

Sections 4, 10.1
What Are the Security Goals of SCITT?

Accountability of:
• issuers: the registry can be used to detect and blame issuers for incorrect or

equivocal claims
• notaries: if users detect inconsistent receipts, or a receipt that does not

comply with the service’s registration policy, or a receipt inconsistent with
the registry, or fail to retrieve or replay the registry, the service operator can
be held accountable.

Auditability of:
• claims: if verifiers check receipts, all claims they may accept must be

registered on the ledger
• registration policies: auditors can replay registration for all claims to verify

the correct policy was met at the time each claim was registered.Separate threat model document

Issuer Accountability

Transparent Registry

Claim
1

Claim
2

Public non-repudiable
evidence exists to
blame the developer

Good code

Malware21

Feed=libACME-x86

Feed=libACME-x86Auditor

Notary Bad issuer

Bad issuer tries to serve Malware
to Alice but not to Bob

Alice

Bob

digest

digest

Section 10.1.1

Transparency Service Accountability

Registry 1

Fresh Receipt

Fresh Receipt

Version
2

Version
1

+

+

Registry 2

1 2

2

1

Incompatible receipts
means the notary endorsed
inconsistent registries

Bad notary tries to roll back
Bob’s version with a receipt
from a forked registry

Bad Notary

Section 10.1.1

SCITT Policies & Standardization

Issuance Policy Registration Policy Validation Policy

- Do I trust the registry that issued
the receipt?

- Do I re-check the issuer’s signature?
- Do I check the freshness of the claim

or of its receipt?
- Do I look at information in the statement?

- Is this issuer trustworthy?
- Do I accept this type of claim?
- Is the submitter authenticated or

authorized to use this registry?
- Is the claim recent enough?
- Does this claim replace an existing one?
- Is it spam / too large for ledger?

? ??

- Is the statement valid, and correct?
- Do I accept responsibility for it?
- What format do I use to serialize the

statement?
- What artifact does it refer to?

Unspecified: issuers can enforce
any policy they want

Unspecified: verifiers can enforce
any policy they want

Standardized: some policies should have
universal semantics for all verifiers

Should I sign this statement? Should I register this claim? Should I accept this receipt?

Section 5.2.2, 6.3

Updated in draft 02

SCITT Standard Registration Policies

Header Value
Issuer did:web:issuer.com
Feed X

…….
Registration
info

Payload

Signature 3045022100e7d0…

Followed & notified by issuers Enforced by notaries
Benefits all verifiers, regardless
of where the claim is registered

Key Value

register_by 221201120000

ver 11

…

Transparent Registry

Issuer=did:web
:issuer.com

Feed=x

< register_by?

ver < 11?
Header Value

Issuer did:web:issuer.com

Feed X

…….

Registra
tion
info

Payload 1

Header Value

Issuer did:web:issuer.com

Feed X

…….

Registra
tion
info

Payload 1

Key Value

ver 10

Key Value

ver 11

Claim 1 Claim 2

Claim 2 > Claim 1 in registry
Should there be a mechanism for notaries to indicate to verifiers which

registration policies were applied without involving issuers?

How Does the Architecture Meet
Customer Requirements?
Customer Requirements: Supply chain parties need to assess the risk of
software vulnerabilities over time
Alt: Supply chain producers and consumers wish to communicate a secure and
constant stream of updates for the state of their software
Architecture supports uniform methods the following:

• issuing statements about software
• verifying the integrity, authenticity, and timeliness of statements
• creating consistent, append-only, verifiable records of statements

User defined
• Policy for determining which statements are trusted
• Assessments of risk based on trusted statements

SCITT Receipts
Maik Riechert

What Is a SCITT Receipt?

• Proof that a SCITT claim has been successfully registered in a
Transparency Service

• Registration means:
• Apply registration policies (at minimum, verify claim issuer/identity)
• Store the claim in the registry
• Produce a receipt
• Return the receipt to the submitter
• Receipt enables offline verification of the claim

Why Are Receipts Like
Countersignatures?
• SCITT Transparency Service acts like an electronic notary

• Certifies the authenticity of the claim signature
• Certifies any additional registration policies apply to the claim

• On a technical level, treating it like a countersignature:
• Allows embedding of receipts in the unprotected header of the claim
• Instead, re-use elements of COSE countersignatures

(Countersign_structure)

Why Do We Need a New Format?

• Isn’t a standard COSE countersignature enough?
• Not quite, because Transparency Services don’t countersign claims
• Rather, they sign a Merkle tree root

• Proposed/abandoned to hide those details in existing COSE concepts:
• New COSE algs and structured “signature”
• Discussed on the community mailing list

• Need more transparency (mailing list discussion) 1

1: https://mailarchive.ietf.org/arch/msg/cose/u0snos1yKnTQHwdNMOY6g8PevXk/

https://mailarchive.ietf.org/arch/msg/scitt/t7ntPDqqp6qtt060SN-_YfSFSI4/
https://mailarchive.ietf.org/arch/msg/cose/u0snos1yKnTQHwdNMOY6g8PevXk/

SCITT Receipt Format (DRAFT)

Receipt = [
 protected: bstr .cbor { * label => value },
 proof: any
]

• Each receipt has a protected header from the Transparency Service:
• Service ID (lookup of service parameters)
• Tree Algorithm (CCF, QLDB, Trillian, …)
• Issued At (time of registration)

• proof type depends on the tree algorithm parameter

Should Receipts Become a New
Standard COSE Message Type?
• Discussed in COSE WG on Tuesday
• No immediate objection
• Will continue working on receipts and engage with COSE WG

Hackathon Report
Henk Birkholz, Orie Steele

Detached COSE Envelopes

• RFC 9052 says: "One feature that is present in CMS that is not present in this standard is
a digest structure."

• COSE_Hash_Find in RFC 9054 defines:
• COSE_Hash_Find = [
• hashAlg : int / tstr,
• hashValue : bstr

]

• Plus: Location hints via resolvable {C/U}RI or{C/U]RL
• Proposal:

Define Detached COSE Envelopes for Signed Statements for SCITT applications

38

https://www.rfc-editor.org/rfc/rfc9052.html
https://www.rfc-editor.org/rfc/rfc9054.html

Detached COSE Envelopes

Why?
• 1st: Content-Addressable Storage support
• 2nd: Statements can be BIG!
• 3rd: Statements can be confidential or require scoped access-control
• 4th: Legal or Personally Identifiable Information (PII) requirements 39

We Are Not the Curators
of a Thousand Semantics

• Most Statements (from one or multiple Signed Statement Issuers) are
semantically related

• Dependencies are impacted by the Statements, yet statement payload
is agnostic to SCITT

• Proposal:
Define a small set of named and registered standard Statement
structures
(for example: see ‘Detached COSE Envelopes’)

40

We Are Not the Curators
of a Thousand Semantics

Why?
• There are Statement types that appear to be somewhat universal,

such as
• Revocation (Statement refresh)
• Endorsement

• In support of system design and dependency graph construction
41

References to Transparent Statements

• Most semantics can be clumped into a "refers-to" relationship
• Semantics related to standardized, registered Statement structures can

be inferred by Statement content
(see ' Curators of a Thousand Semantics ')

• Proposal:
For agnostic statements or detached statement content
a type of pointer/reference is useful and should be defined
(see ‘Detached COSE Envelopes’)

42

References to Transparent Statements

Why?
• Supporting systems and application use cases is vital in SCITT
• Consumers want to query auditable, interconnected statements
• Many use cases rely on generation of directed property graphs

composed of Transparent Statement
• Example:

Remediation Guidance for a Vulnerability Disclosure Report
for an SBOM for a software artifact SWID

43

Vital Lesson on Statement References

44

Statement Signed
StatementIssuer 1

IssuanceValidation

Statement Signed
StatementIssuer 2

IssuanceValidation

Transparent
Statement

Transparent
Statement

Registration

Registration

NO
!

Vital Lesson on Statement References

45

Statement Signed
StatementIssuer 1

Statement Signed
StatementIssuer 2

Transparent
Statement

Transparent
Statement

YE
S!

IssuanceValidation

IssuanceValidation Registration

Registration

Claim 1 Claim 2 Claim 3Receipt 1

Device Driver
Author OS Vendor Cloud Service

Provider

Receipt 2 Receipt 3

Transparency Service 1

Claim1: GPU hardware version 1.2.3, Firmware measurements sha256:0xdeadbeef, FIPS certified.
Claim2: Vendor name XYZ, FIPS compliant build version “FIPS-4.5.6”
Claim3: Receipt 1, Receipt 2, Workload Measurements, and SLA promises

�
�

Vital Lesson on Scoping Examples:
“Auditor’s View”

Device Driver
Author

Claim 1 Claim 2 Claim 3Receipt 1

OS Vendor Cloud Service
Provider

Receipt 2 Receipt 3

Transparency
Service 1

Transparency Service
2

Transparency Service
3

Claim1: GPU hardware version 1.2.3, Firmware measurements sha256:0xdeadbeef, FIPS certified.
Claim2: Vendor name XYZ, FIPS compliant build version “FIPS-4.5.6”
Claim3: Receipt 1, Receipt 2, Workload Measurements, and SLA promises

Vital Lesson on Scoping Examples:
“Auditor’s View”

Vital Lesson on Scoping Examples
“Device Driver’s View”

Claim 1 Receipt 1

Transparency
Service 1

Device Driver
Author

AOB (Open Mic) & Next Steps

Wrap-Up and AOB

Next Steps

• Continued participation on mailing list and in community
meetings

• Mailing List
• Community Meetings

• Review related IETF drafts
• Countersigning COSE Envelopes in Transparency Services
• An Architecture for Trustworthy and Transparent Digital Supply Chains

• Resources
• scitt-api-emulator
• scitt-ccf-ledger

https://www.ietf.org/mailman/listinfo/scitt
https://docs.google.com/document/d/1vf-EliXByhg5HZfgVbTqZhfaJFCmvMdQuZ4tC-Eq6wg/edit
https://datatracker.ietf.org/doc/html/draft-birkholz-scitt-receipts
https://datatracker.ietf.org/doc/html/draft-birkholz-scitt-architecture
https://github.com/microsoft/scitt-api-emulator
https://github.com/microsoft/scitt-api-emulator
https://github.com/microsoft/scitt-api-emulator
https://github.com/microsoft/scitt-api-emulator
https://github.com/microsoft/scitt-ccf-ledger
https://github.com/microsoft/scitt-ccf-ledger
https://github.com/microsoft/scitt-ccf-ledger
https://github.com/microsoft/scitt-ccf-ledger

	Supply Chain Integrity, Transparency, and Trust (SCITT)
	Note Well
	Agenda
	Updates From Last Time
	Supply Chains
	Problem Statement
	Transparency and Trust
	Software Supply Chain Uses Cases
	Slide 9
	Integrator problems
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	What is SCITT
	IETF: SCITT Working Group
	Architecture
	Architecture Introduction – Core Concepts
	Claim Issuance
	Claim Registration
	Validation & Audit
	What Are the Security Goals of SCITT?
	Issuer Accountability
	Transparency Service Accountability
	SCITT Policies & Standardization
	SCITT Standard Registration Policies
	How Does the Architecture Meet Customer Requirements?
	SCITT Receipts
	What Is a SCITT Receipt?
	Why Are Receipts Like Countersignatures?
	Why Do We Need a New Format?
	SCITT Receipt Format (DRAFT)
	Should Receipts Become a New Standard COSE Message Type?
	Hackathon Report
	Detached COSE Envelopes
	Detached COSE Envelopes (2)
	We Are Not the Curators of a Thousand Semantics
	We Are Not the Curators of a Thousand Semantics (2)
	References to Transparent Statements
	References to Transparent Statements (2)
	Vital Lesson on Statement References
	Vital Lesson on Statement References (2)
	Vital Lesson on Scoping Examples: “Auditor’s View”
	Vital Lesson on Scoping Examples: “Auditor’s View” (2)
	Vital Lesson on Scoping Examples “Device Driver’s View”
	AOB (Open Mic) & Next Steps
	Wrap-Up and AOB
	Next Steps

