draft-agrawal-spring-srv6-mpls-interworking-10

Swadesh Agrawal, Cisco Systems (swaagraw@cisco.com) - Presenter
Zafar Ali, Cisco Systems (zali@cisco.com)
Clarence Filsfils, Cisco Systems (cfilsfil@cisco.com)
Daniel Voyer, Bell Canada (daniel.voyer@bell.ca)
Gaurav dawra, LinkedIn (gdawra.ietf@gmail.com)
Zhenbin Li, Huawei (lizhenbin@huawei.com)
Interworking (IW) scenarios

1. **Transport IW** - L3/L2 service continuity over a different intermediate transport

 1.1 **SRv6 over SR-MPLS-IPv4 (6oM)**

 Forward SRv6 encapsulated traffic destined to egress PE over MPLS domain.

 1.2 **SR-MPLS-IPv4 over SRv6 (Mo6)**

 Forward encapsulated label stack to egress PE over SRv6 domain.

2. **Service IW** - L3/L2 service signaling discontinuity i.e. SRv6 service SID based PE interworks with BGP MPLS based PE for service connectivity.
End.DTM SRv6 SID behavior

- The "Endpoint with decapsulation and MPLS table lookup" behavior.
- This behavior is executed on IW router (SRv6 domain to MPLS domain).

Pseudo Code

When N receives a packet destined to S and S is a local End.DTM SID, N does:

S01. When an SRH is processed {
S02. If (Segments Left != 0) {
S03. Send an ICMP Parameter Problem to the Source Address, Code 0 (Erroneous header field encountered), Pointer set to the Segments Left field, interrupt packet processing and discard the packet.
S04. }
S05. Proceed to process the next header in the packet
S06. } When processing the Upper-layer header of a packet matching a FIB entry locally instantiated as an End.DTM SID, N does:

S01. If (Upper-Layer Header type == 137(MPLS)) {
S02. Remove the outer IPv6 Header with all its extension headers
S03. Set the packet's associated FIB table to T
S04. Submit the packet to the MPLS FIB lookup for transmission according to the lookup result.
S05. } Else {
S06. Process as per [ietf-spring-srv6-network-programming] section 4.1.1
S07. }
End.DPM SRv6 SID behavior

- The "Endpoint with decapsulation and MPLS label push" behavior.
- This behavior is executed on IW router (SRv6 domain to MPLS domain).

Pseudo Code

When N receives a packet destined to S and S is a local End.DPM SID, N does:

S01. When an SRH is processed {
S02. If (Segments Left != 0) {
S03. Send an ICMP Parameter Problem to the Source Address, Code 0 (Erroneous header field encountered), Pointer set to the Segments Left field, interrupt packet processing and discard the packet.
S04. }
S05. Proceed to process the next header in the packet
S06. } When processing the Upper-layer header of a packet matching a FIB entry locally instantiated as an End.DTM SID, N does:

S01. Remove the outer IPv6 Header with all its extension headers
S02. Push the MPLS label stack associated with S
S03. Submit the packet to the MPLS engine for transmission
SRv6 Headend Behaviors

• H.Encaps.M

• H.Encaps.M.Red

Interconnecting Binding SIDs

• Binding Segment (BSID) is bound to SR policy [RFC8402].
• An SR-MPLS label can be bound to an SRv6 Policy and an SRv6 SID can be bound to an SR-MPLS Policy.
• These BSIDs in segment list of SR policy on headend represent intermediate domain of different dataplane type and act as interconnecting BSIDs.
Transport IW

The draft enhances two well-known solutions to create IW state in network:

- SR-PCE (SDN Controller) procedure provides a path that satisfies the intent (e.g. low latency), across multiple domains. SR PCE detects the data plane discontinuity.

- BGP Inter-Domain routing procedure advertises PE locator/IPv4 Loopback address LSP for best effort end to end connectivity.
Legends

- **SRv6 Capable (F function on node B:k:F::, Router-id: Ak::):**
- **SR-MPLS IPv4 Node (Prefix SID label: 1600k, Router-id: 1.1.1.k):**
- **SR-MPLS IPv4 and SRv6 Capable Node:**
SRv6 TE Policy
- B:2:End::
- B:4:BM-Red-7::
- B:8:End::
- B:10:End::

Node 1 does not know how to compute the traffic engineered path to node 10. Node 1 requests SR PCE to compute path to node 10 providing optimization objective, constraints (e.g., low latency).

IPv6
SA = A1::
DA = B:4:BM-Red-7::
SRH
(B:10:DT4::, B:8:End::, B:4:BM-Red-7::, SL=2)

SR PCE responds back to node 1 with SRv6 segments including End.BM BSID for MPLS policy at 4.

IPv6
SA = A1::
DA = B:4:BM-Red-7::
SRH
(B:10:DT4::, B:8:End::, B:4:BM-Red-7::, SL=2)

SR PCE computes low latency path via node 2, 5 and 8. SR PCE identifies its non-consistent data plane and kicks in interworking procedures at border node (4). It programs SR MPLS policy at 4 along low latency path in MPLS domain. This policy is bound to SRv6 End.BM behavior BSID.

IPv6
SA = A1::
DA = B:8:End::
SRH
(B:10:DT4::, B:8:End::, B:4:BM-Red-7::, SL=1)

MPLS
16005
16007
2

VPN prefixes with SRv6 Service SID B:10:D::, color: RED
SR-PCE (Mo6)

(Red, 10)SR-MPLS TE Policy
16002
16004
30007 (Binding SID for SRv6 Policy at 4)
16008
16010

SRv6 TE Policy (bound to MPLS BSID 30007)
- B:5:End::
- B:7:DTM:: (behavior: decap and MPLS lookup)
BGP (6oM)

- Advertise PE locators i.e. node 10.
- Its classic 6PE on IW nodes (4 & 7) over SR-MPLS-IPv4 domain. (RFC 4798)
- Leak locator in left domain IGP or advertise locator to ingress PE (node 1) in IPv6 BGP with SRv6 SID of node 4 End behavior.
BGP (Mo6): BGP LU LSP IPv6 encaped to next hop

- Existing BGP 3017 label cross-connect on border routers for each PE IPv4 loopback address.
- The lookups at the ingress border router are based on BGP 3107 label as usual.
- Just the SR-MPLS IPv4 LSP to next hop is replaced by an IPv6 tunnel with DA = SRv6 SID associated with End.DTM behavior of Egress IW node i.e. node 7.
- Ingress border router forwarding perform 3107 label swap and H.Encaps.M with DA = SRv6 SID associated with DTM behavior.
Gateway is router which supports both BGP SRv6 based L2/L3 services and BGP MPLS based L2/L3 services for a service instance (e.g. L3 VRF). It terminates service encapsulation and perform L2/ L3 destination lookup in service instance. Lookup result in re-encapsulation with service information of destination domain.
Mto6 <-> 6toM Service IW: Translation option

This is like Inter-as option B procedures described in [RFC4364] just that service label cross-connect on ASBR router is replaced with service label to SRv6 service SID or vice versa translation on IW node.

<table>
<thead>
<tr>
<th>Translation</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN label</td>
<td>H.Encap: B:7:DT4::</td>
</tr>
<tr>
<td>B:4:DPM_PE1VRF:</td>
<td>Push VPN label and LSP to PE1</td>
</tr>
</tbody>
</table>
Summary

• The initial version was posted in October 2018;
• The draft describes the data plane and the associated control plane procedures.
• For data plane, new End.DTM and End.DPM behaviors are defined.
• Interconnecting Binding SIDs usage to traverse heterogenous data plane.
• For control plane, both SR-PCE based and BGP based solutions are detailed.
Updates from IETF 113

• Moved BGP protocol extensions in separate draft (draft-agrawal-bess-bgp-srv6-mpls-interworking-00) in BESS WG.

• This is done to independently state BGP protocol extensions, future applicability of them for other use cases and review by BESS.

• Expanded on Service Interworking using translation between SRv6 service SID and VPN label
Next Steps

The authors request review and adoption of the draft.