More Accurate ECN Feedback in TCP draft-ietf-tcpm-accurate-ecn-22

<u>Bob Briscoe</u>, Independent Mirja Kühlewind, Ericsson Richard Scheffenegger, NetApp

IETF-115 Nov 2022

Recent draft history draft-ietf-tcpm-accurate-ecn

- 20 → 21: 9 Nov '22
 - no changes (except formatting betw. v2 to v3 RFCXML)
- $21 \rightarrow 22$: 9 Nov '22 [summary of changes on list]:
 - if multiple SYNs, server MUST feed back latest IP-ECN
 discovered missing from spec during Hackathon testing
 - recorded early IANA registrations of TCP Option Kinds

AccECN Roadmap

- Recap of AccECN landscape prior to WGLC (next 8 slides):
 - goal & approach
 - relation to other activities
 - placement in the stack
 - aspects to be reviewed
 - implementation status

Goal

- Feed back extent of congestion not just existence
- To enable congestion control for very low queuing delay
 - 0.5 ms (vs. 5-15 ms) over public Internet

Problem (Recap) Congestion Existence, not Extent

- Problem with RFC3168 ECN feedback:
 - only one TCP feedback per RTT
 - rcvr repeats ECE flag for reliability, until sender's CWR flag acks it
 - suited TCP at the time one congestion response per RTT

0 0 1 2 3	4 5 6 7	8	9	1 0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
Port no's, Seq no's																									
Data Offset	Res- erved		E C E				R S T		F I N	Window															
Checksum										Urgent Pointer															
TCP Optio	TCP Options																								

- Explicit Congestion Notification (ECN) recap
 - routers/switches mark more packets as load grows
 - RFC3168 added ECN to IP and TCP

IP- ECN	Codepoint	Meaning
00	not-ECT	No ECN
10	ECT(0)	ECN-Capable Transport
01	ECT(1)	ECN-Capable Hallsport
11	CE	Congestion Experienced

Solution (recap) Congestion extent, not just existence

- AccECN: Change to TCP wire protocol
 - Repeated count of CE packets (ACE) essential
 - and CE bytes (AccECN Option) supplementary

0 0 1 2 3	456	789	1 0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
Port no's, Seq no's																								
Data Res- Offset erved ACE U A P R S F R C S S Y I G K H T N N										Window														
	Checksum Urgent Pointer																							
TCP Opti	TCP Options																							
AccECN Option, length: min 2B, typ 5/8B, max 11B													в											
TCP Opti	TCP Options																							

Relation to other activities

• DCTCP [RFC8257]

- DCTCP's ECN feedback differs from RFC3168 and AccECN
- but without negotiation (assumes DC-wide sys-admin)
- Can use AccECN negotiation, and either AccECN or DCTCP-style ECN feedback
 - depending on initial value of the 3 TCP-ECN flags after 3WHS
 - already in Linux implementation of AccECN
- New Congestion Control Algorithms (CCAs)
 - AccECN steers clear of saying anything about congestion response
 - ECN feedback is wire protocol architecturally 'below' a CCA
 - Can use AccECN ECN feedback for any CCA incl. Classic (Reno, CUBIC, BBR, ...)
- L4S experiment [draft-ietf-tsvwg-l4s-arch, ecn-l4s-id, etc.]
 - Low Latency, Low Loss and Scalable throughput
 - L4S CCAs can be used with TCP or other transport protocols (QUIC, etc)
 - L4S CCA with TCP requires AccECN to be negotiated
- ECN++ experiment [draft-ietf-tcpm-generalized-ecn]
 - Removes the rule against using ECN capability in IP-ECN of TCP control pkts & re-xmts
 - AccECN spec RECOMENDS ECN++
 - Full capabilities of ECN++ only available with AccECN

Where AccECN Fits

- Can only enable AccECN if both TCP endpoints support it
 - falls back to RFC3168 TCP-ECN otherwise
 - no dependency on network changes
- Replaces & extends feedback part of TCP-ECN [RFC3168]
- Out of scope for AccECN:
 - Not what sender puts in the IP-ECN field
 - Not sender's congestion response to the feedback

Note: diagram shows what works over what; not how an implementation would be structured

8

Aspects of AccECN to review

- Negotiation phase
 - Backward & forward compatibility
 - Mangling detection
 - Fall-back contingencies
- Resilience against ACK loss / coalescing
- Implications of TCP wire protocol changes
 - Implications of middleboxes / offload
 - Implications for middleboxes / offload
- Interaction with TCP variants
 - time-stamp, window scaling, SACK, TCP-AO, TFO, MPTCP, ...
- Security
 - flooding attacks, feedback integrity, downgrade attacks? ...

AccECN implementation status 1/2

- Linux (thx to Neal Cardwell)
 - Intended as reference implementation of the whole spec
 - Based off v5.15 kernel: https://github.com/google/bbr/commits/l4s-testing-2022-10-14-v1 (merge into L4S repo imminent)
 - Also latest packetdrill tests: https://github.com/google/bbr/commits/l4s-packetdrill-2022-08-21-v1
- Free BSD (thx to Richard Scheffenegger)
 - will be in FBSD 14 (without optional TCP option)
 - remaining parts in progress:
 - heuristic for long runs of missing ACKs
 - some details of the TCP option
 - passes all packet drill tests, except consistency betw. ACE & TCP Option

AccECN implementation status 2/2

- Apple platforms (MacOS, iOS, etc, thx to Vidhi Goel)
 - reflector side implemented off by default
 - enable with net.inet.tcp.accurate_ecn sysctl
- Testing of all the above (Linux, FBSD, MacOS) in 2nd IETF L4S interop (co-located with this IETF)
- tcpdump patches for AccECN submitted (thx Richard Scheffenegger)
- Wireshark 4.0 decodes AccECN, incl. TCP option (thx Michael Tuexen)

Status & Next Steps draft-ietf-tcpm-accurate-ecn-22

• WGLC

- draft-ietf-tcpm-generalized-ecn (EXP)
 - also ready for WGLC but dependent on AccECN

AccECN

