More Accurate ECN Feedback in TCP

draft-ietf-tcpm-accurate-ecn-22

Bob Briscoe, Independent
Mirja Kühlewind, Ericsson
Richard Scheffenegger, NetApp

IETF-115 Nov 2022
Recent draft history
draft-ietf-tcpm-accurate-ecn

- **20 → 21: 9 Nov '22**
 - no changes (except formatting betw. v2 to v3 RFCXML)

- **21 → 22: 9 Nov '22** [summary of changes on list]:
 - if multiple SYNs, server MUST feed back latest IP-ECN
 - discovered missing from spec during Hackathon testing
 - recorded early IANA registrations of TCP Option Kinds
AccECN Roadmap

• Recap of AccECN landscape prior to WGLC (next 8 slides):
 • goal & approach
 • relation to other activities
 • placement in the stack
 • aspects to be reviewed
 • implementation status
Goal

• Feed back extent of congestion not just existence

• To enable congestion control for very low queuing delay
 • 0.5 ms (vs. 5-15 ms) over public Internet
Problem (Recap)
Congestion Existence, not Extent

- Problem with RFC3168 ECN feedback:
 - only one TCP feedback per RTT
 - rcvr repeats ECE flag for reliability, until sender's CWR flag acks it
 - suited TCP at the time – one congestion response per RTT

- Explicit Congestion Notification (ECN) recap
 - routers/switches mark more packets as load grows
 - RFC3168 added ECN to IP and TCP

<table>
<thead>
<tr>
<th>IP-ECN</th>
<th>Codepoint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>not-ECT</td>
<td>No ECN</td>
</tr>
<tr>
<td>10</td>
<td>ECT(0)</td>
<td>ECN-Capable Transport</td>
</tr>
<tr>
<td>01</td>
<td>ECT(1)</td>
<td>ECN-Capable Transport</td>
</tr>
<tr>
<td>11</td>
<td>CE</td>
<td>Congestion Experienced</td>
</tr>
</tbody>
</table>
Solution (recap)
Congestion extent, not just existence

- **AccECN**: Change to TCP wire protocol
 - Repeated count of CE packets (ACE) - essential
 - and CE bytes (AccECN Option) – supplementary

```
+-------+-------+-------+-------+-------+-------+-------+-------+
| Port no’s, Seq no’s...         | Window |
+-------+-------+-------+-------+-------+-------+-------+-------+
| Data  | Offset| Res- | U | A | F | S | Y | N |
| Offset|       | erved| R | C | S | T |    |    |
|       |       |       | G | K | H |    |    |    |
| Checksum |       |       |   |   |   |    |    |    |
|       |       |       |   |   |   |    |    |    |
+-------+-------+-------+-------+-------+-------+-------+-------+
| TCP Options...                   |
+-------+-------+-------+-------+-------+-------+-------+-------+
| AccECN Option, length: min 2B, typ 5/8B, max 11B |
+-------+-------+-------+-------+-------+-------+-------+-------+
| TCP Options...                   |
```
Relation to other activities

- **DCTCP [RFC8257]**
 - DCTCP’s ECN feedback differs from RFC3168 and AccECN
 - but without negotiation (assumes DC-wide sys-admin)
 - Can use AccECN negotiation, and either AccECN or DCTCP-style ECN feedback
 - depending on initial value of the 3 TCP-ECN flags after 3WHS
 - already in Linux implementation of AccECN

- **New Congestion Control Algorithms (CCAs)**
 - AccECN steers clear of saying anything about congestion response
 - ECN feedback is wire protocol – architecturally 'below' a CCA
 - Can use AccECN ECN feedback for any CCA incl. Classic (Reno, CUBIC, BBR, …)

- **L4S experiment [draft-ietf-tsvwg-l4s-arch, ecn-l4s-id, etc.]**
 - Low Latency, Low Loss and Scalable throughput
 - L4S CCAs can be used with TCP or other transport protocols (QUIC, etc)
 - L4S CCA with TCP requires AccECN to be negotiated

- **ECN++ experiment [draft-ietf-tcpm-generalized-ecn]**
 - Removes the rule against using ECN capability in IP-ECN of TCP control pkts & re-xmts
 - AccECN spec RECOMENDS ECN++
 - Full capabilities of ECN++ only available with AccECN
Where AccECN Fits

- Can only enable AccECN if both TCP endpoints support it
 - falls back to RFC3168 TCP-ECN otherwise
 - no dependency on network changes

- Replaces & extends feedback part of TCP-ECN [RFC3168]

- Out of scope for AccECN:
 - Not what sender puts in the IP-ECN field
 - Not sender's congestion response to the feedback

Note: diagram shows what works over what; not how an implementation would be structured
Aspects of AccECN to review

- Negotiation phase
 - Backward & forward compatibility
 - Mangling detection
 - Fall-back contingencies

- Resilience against ACK loss / coalescing

- Implications of TCP wire protocol changes
 - Implications of middleboxes / offload
 - Implications for middleboxes / offload

- Interaction with TCP variants
 - time-stamp, window scaling, SACK, TCP-AO, TFO, MPTCP, ...

- Security
 - flooding attacks, feedback integrity, downgrade attacks? ...
AccECN implementation status 1/2

• Linux (thx to Neal Cardwell)
 • Intended as reference implementation of the whole spec
 • Based off v5.15 kernel: https://github.com/google/bbr/commits/l4s-testing-2022-10-14-v1 (merge into L4S repo imminent)
 • Also latest packetdrill tests: https://github.com/google/bbr/commits/l4s-packetdrill-2022-08-21-v1

• Free BSD (thx to Richard Scheffenegger)
 • will be in FBSD 14 (without optional TCP option)
 • remaining parts in progress:
 - heuristic for long runs of missing ACKs
 - some details of the TCP option
 - passes all packet drill tests, except consistency betw. ACE & TCP Option
AccECN implementation status 2/2

• Apple platforms (MacOS, iOS, etc, thx to Vidhi Goel)
 • reflector side implemented – off by default
 • enable with net.inet.tcp.accurate_ecn sysctl

• Testing of all the above (Linux, FBSD, MacOS) in 2nd IETF L4S interop (co-located with this IETF)

• tcpdump patches for AccECN submitted (thx Richard Scheffenegger)
• Wireshark 4.0 decodes AccECN, incl. TCP option (thx Michael Tuexen)
Status & Next Steps
draft-ietf-tcpm-accurate-ecn-22

- WGLC

- draft-ietf-tcpm-generalized-ecn (EXP)
 - also ready for WGLC but dependent on AccECN
AccECN

Q&A