
QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Applying, Observing, and
Debugging QUIC

Lucas Pardue

1

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is not TCP

2

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is not TLS

3

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is not HTTP

4

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is not the web over UDP

5

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is QUIC

6

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is a secure transport protocol

7

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

QUIC is what you make it

8

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Ain’t got the time?
It all starts with a handshake.

Then, application data can be sent using reliable streams or unreliable datagrams.

QUIC packets are protected. If you don’t have the keys, you can’t see contents.

Reliable data is retransmitted in new packets. Packets are not retransmitted

9

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Applicability and Management
Want to send your application data over QUIC? Read RFC 9308 - “Applicability of
the QUIC Transport Protocol”

Operate a network and want to observe/manage QUIC? Read RFC 9312 -
“Manageability of the QUIC Transport Protocol”

10

https://www.rfc-editor.org/rfc/rfc9308.html
https://www.rfc-editor.org/rfc/rfc9312.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Everything starts with a handshake
● RFC 9000, Section 7 - Cryptographic and Transport Handshake
● RFC 9001 - Using TLS to Secure QUIC
● RFC 9312, Section 2.4 - The QUIC Handshake
● The specs detail it all

○ Jana and MT walked us through during Monday’s session
● Key items: Initial and Handshake packets

○ Initial is a type, not an adjective
○ Easy to misinterpret “Initial packet” as “initial (first) packet” - that way

leads to sadness

11

https://www.rfc-editor.org/rfc/rfc9000.html#section-7
https://www.rfc-editor.org/rfc/rfc9312.html#section-2.4

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

The illustrated guide
Sometimes it helps to look
at things differently than the
specs.

https://quic.xargs.org/
(source code:
https://github.com/syncsynchalt
/illustrated-quic)

12

Client
Initial

Server
Initial

https://quic.xargs.org/
https://github.com/syncsynchalt/illustrated-quic
https://github.com/syncsynchalt/illustrated-quic

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022 13

Client Initial (expanded view)

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Transport Parameters
Remember: QUIC Transport Parameters
are a TLS extension

14

https://www.iana
.org/assignment
s/quic/quic.xhtml

https://www.iana.org/assignments/quic/quic.xhtml
https://www.iana.org/assignments/quic/quic.xhtml
https://www.iana.org/assignments/quic/quic.xhtml

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Illustration on live connections
Our old friends pcap and Wireshark.

To successfully dissect QUIC packets, Wireshark 3.4.x and onwards. Examples use
Cloudflare quiche - https://github.com/cloudflare/quiche.

Client: quiche-client --no-verify --wire-version 1 https://127.0.0.1:4433/index.html

Server: quiche-server --no-retry

15

https://github.com/cloudflare/quiche
https://127.0.0.1:4433/index.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Ready-made examples
Follow along examples at https://github.com/LPardue/ietf-115-tdd

“localhost-good”

16

https://github.com/LPardue/ietf-115-tdd

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Client
Initial

17

Client Initial

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Client Initial - ALPN

18

RFC 7301 - Application-Layer Protocol
Negotiation

Client offers a list of all the application
protocols it would like to speak over this
connection.

https://www.iana.org/assign
ments/tls-extensiontype-val
ues/tls-extensiontype-value
s.xhtml#alpn-protocol-ids

https://www.rfc-editor.org/rfc/rfc7301.html
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Server
Initial
and
Handshake

19

Server Initial

Server Handshake

Secrets not available!

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Keys needed to see the full picture
From even a very early stage in a connection, QUIC packets are encrypted with a
session key.

SSLKEYLOGFILE is an approach used by many, but not all, implementations.
Endpoints can be instructed to explicitly log their keys to the nominated file.
draft-thomson-tls-keylogfile I-D seeking to formalise the format.

Session keys are symmetrical, either endpoint can log to enable packet decryption
in both directions.

Client: SSLKEYLOGFILE=mykeys.log quiche-client --no-verify --wire-version 1
https://127.0.0.1:4433/index.html

20

https://www.ietf.org/archive/id/draft-thomson-tls-keylogfile-00.html
https://127.0.0.1:4433/index.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Server Initial
and Handshake
(w/ keys)

21

https://wiki.wireshark.org/TLS

Server selects one ALPN, this
is the application protocol that
will be used over QUIC.

Applications need to agree on
how QUIC streams are used.

Now we can dissect QUIC

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Live illustration revisited

22

Dissection without keys

Dissection with keys

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

CIDs
Whether the packets are encrypted or not, connection IDs are visible. And they
can be used for traffic steering / load balancing, as described by Ian and Martin.

Client -> Server DCID: 78015def011d1adf3af94c44067955dd4d52fc70
Server-> Client DCID: 9463b9d6695a7b2d189da2871fc255977bc7c6f8

23

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

qlog - structured logging by endpoints
Implementations often have debugging that can enhance or augment packet
captures.

A common logging format can encourage an ecosystem of analysis tools.
E.g. what is an endpoint producing and why is it doing that?

draft-ietf-quic-qlog-main-schema: a base schema defined in Concise Data
Definition Language (CDDL; RFC 8610). Highly extensible. Many possible
serialization formats.

Draft-ietf-quic-qlog-quic-events, draft-ietf-quic-qlog-h3-events: concrete definitions
to cover events related to packets and frames, security, congestion control etc.

24

https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/
https://www.rfc-editor.org/rfc/rfc8610
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-quic-events/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-h3-events/

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

qvis

25

Making sense out of
oodles of data

https://qvis.quictools.info/

https://qvis.quictools.info/

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

A real-world failure in wireshark -
“localhost-0-streams-uni”

Client: SSLKEYLOGFILE=tdd.keys QLOGDIR=qlogs quiche-client --no-verify --wire-version 1
–-max-streams-uni 0 https://127.0.0.1:4433/index.html

26

CONNECTION_CLOSE

“Error opening control stream”

https://127.0.0.1:4433/index.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

The same real-world failure in qvis

27

CONNECTION_CLOSE

“Error opening control stream”

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Another real-world failure
“lucaspardue.com-0-streams-uni”

Client: SSLKEYLOGFILE=tdd.keys QLOGDIR=qlogs quiche-client
--wire-version 1 –-max-streams-uni 0 https://lucaspardue.com/index.html

28
Where’s the connection
CONNECTION_CLOSE?

https://127.0.0.1:4433/index.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Another real-world failure (2)

29

The thing that sticks out is the trace is longer
and there is no CONNECTION_CLOSE received
by the server.

Where’s the connection
CONNECTION_CLOSE?

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Debugging the difference
1) Attempting to open a connection with initial_max_streams_uni = 0 to

localhost elicits a CONNECTION_CLOSE from the server.
2) Attempting to open a connection with initial_max_streams_uni = 0 to

lucaspardue.com causes no packets to be returned.
3) Different implementation? Not really, both servers powered by the same QUIC

library.

So what could be the root cause?

30

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Different types of CONNECTION_CLOSE
RFC 9000, Section 10.2.3

CONNECTION_CLOSE frame of type 0x1c is for transport layer.

CONNECTION_CLOSE frame of type 0x1d is for application layer.

“Sending a CONNECTION_CLOSE of type 0x1d in an Initial or Handshake packet could expose
application state or be used to alter application state. A CONNECTION_CLOSE of type 0x1d
MUST be replaced by a CONNECTION_CLOSE of type 0x1c when sending the frame in Initial or
Handshake packets. Otherwise, information about the application state might be revealed.
Endpoints MUST clear the value of the Reason Phrase field and SHOULD use the
APPLICATION_ERROR code when converting to a CONNECTION_CLOSE of type 0x1c.”

31

https://www.rfc-editor.org/rfc/rfc9000.html#section-10.2.3

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Trouble with timing, causing timeouts
● Server, uses an HTTP/3 library.
● It sees initial_max_streams_uni = 0, it calls the QUIC library close() function,

passing an error code and reason.
● Neither application nor HTTP/3 library check the transport state before closing it.
● Timing differences speaking to lucaspardue.com over the Internet.
● Handshake not complete when an application (0x1d) CONNECTION_CLOSE

was triggered.
● Unsafe to send application errors => the server would not send a packet.
● After close(), server no longer processes client packets.
● Client retires, but eventually idle time out kicks in and it gives up.

32

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Debugging leads to a fix
https://github.com/cloudflare/quiche/pull/1355

Automatically check the transport
layer connection state and choose
the most appropriate and safe type
of error to emit.

Client always receives a timely close.

33

https://github.com/cloudflare/quiche/pull/1355

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Summary
QUIC is not TCP, TLS, HTTP nor “the web over UDP”

QUIC is QUIC. It provides transport services for applications, such as multiplexed reliable byte
streams. It doesn’t have much opinion about how these get used; see RFC 9308 for guidance
and considerations for application protocols on top of QUIC. Define an ALPN identifier!

Minimal information in the wire image is observable; see RFC 9312. QUIC packets used in the
handshake use a deterministic key. Once a secure connection is established, unique session
keys are used.

Implementations and deployments can behave differently. Techniques that can decrypt
(SSLKEYLOGFILE) or log plain text (qlog) can help analysis or debug.

34

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Backup slides

35

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

qlog definition example

36

TransportPacketSent = {
 header: PacketHeader

 ? frames: [* $QuicFrame]
 ? is_coalesced: bool .default false
 ? retry_token: Token
 ? stateless_reset_token:
StatelessResetToken
 ? supported_versions: [+ QuicVersion]

 ? raw: RawInfo
 ? datagram_id: uint32

 ? is_mtu_probe_packet: bool .default false

 ? trigger:
 "retransmit_reordered" /
 "retransmit_timeout" /
 "pto_probe" /
 "retransmit_crypto" /
 "cc_bandwidth_probe"
}

; The QuicFrame is any key-value map (e.g., JSON object)
$QuicFrame /= {
 * text => any
}

$QuicFrame /= QuicBaseFrames

QuicBaseFrames /=
 PaddingFrame / PingFrame / AckFrame / ResetStreamFrame /
 StopSendingFrame / CryptoFrame / NewTokenFrame / StreamFrame /
 MaxDataFrame / MaxStreamDataFrame / MaxStreamsFrame /
 DataBlockedFrame / StreamDataBlockedFrame / StreamsBlockedFrame /
 NewConnectionIDFrame / RetireConnectionIDFrame /
 PathChallengeFrame / PathResponseFrame / ConnectionCloseFrame /
 HandshakeDoneFrame / UnknownFrame

PaddingFrame = {
 frame_type: "padding"

 ; total frame length, including frame header
 ? length: uint32
 payload_length: uint32
}

…

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

qlog example
Client: QLOGDIR=qlogs quiche-client --no-verify --wire-version 1
https://127.0.0.1:4433/index.html

Server: QLOGDIR=qlogs quiche-server --no-retry

37

{"qlog_version":"0.3","qlog_format":"JSON-SEQ","title":"quiche-client qlog","description":"quiche-client qlog
id=9463b9d6695a7b2d189da2871fc255977bc7c6f8","trace":{"vantage_point":{"type":"client"},"title":"quiche-client
qlog","description":"quiche-client qlog id=9463b9d6695a7b2d189da2871fc255977bc7c6f8","configuration":{"time_offset":0.0}}}
{"time":0.0,"name":"transport:parameters_set","data":{"owner":"local","tls_cipher":"None","disable_active_migration":true,"max_idle_t
imeout":30000,"max_udp_payload_size":1350,"ack_delay_exponent":3,"max_ack_delay":25,"active_connection_id_limit":2,"initial_max_data"
:10000000,"initial_max_stream_data_bidi_local":1000000,"initial_max_stream_data_bidi_remote":1000000,"initial_max_stream_data_uni":10
00000,"initial_max_streams_bidi":100,"initial_max_streams_uni":100}}
{"time":0.207949,"name":"transport:packet_sent","data":{"header":{"packet_type":"initial","packet_number":0,"version":"1","scil":20,"
dcil":16,"scid":"9463b9d6695a7b2d189da2871fc255977bc7c6f8","dcid":"6c94d2c299cbff6253a202bcb20ceb42"},"raw":{"length":350,"payload_le
ngth":287},"send_at_time":0.207949,"frames":[{"frame_type":"crypto","offset":0,"length":283}]}}
{"time":0.207949,"name":"recovery:metrics_updated","data":{"smoothed_rtt":333.0,"rtt_variance":166.5,"congestion_window":13500,"bytes
_in_flight":350,"ssthresh":18446744073709551615}}
{"time":3.5715451,"name":"transport:packet_received","data":{"header":{"packet_type":"initial","packet_number":0,"version":"1","scil"
:20,"dcil":20,"scid":"78015def011d1adf3af94c44067955dd4d52fc70","dcid":"9463b9d6695a7b2d189da2871fc255977bc7c6f8"},"raw":{"length":12
00,"payload_length":117},"frames":[{"frame_type":"ack","ack_delay":0.305,"acked_ranges":[[0,0]]},{"frame_type":"crypto","offset":0,"l
ength":90}]}}

https://127.0.0.1:4433/index.html

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Congestion control behavior

38

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Applicability of QUIC - streams
Streams are a core capability of RFC 9000.

Streams in QUIC provide a lightweight, ordered byte-stream abstraction to an
application.

Streams can be created by either endpoint, can concurrently send data
interleaved with other streams, and can be canceled. QUIC does not provide any
means of ensuring ordering between bytes on different streams.

QUIC allows for an arbitrary number of streams to operate concurrently and for an
arbitrary amount of data to be sent on any stream, subject to flow control
constraints and stream limits.

39

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Applicability of QUIC - stream IDs
● Streams can be unidirectional or bidirectional.
● Unidirectional streams carry data in one direction:

from the initiator of the stream to its peer.
● Bidirectional streams allow for data to be sent in both

directions. Streams are identified within a connection
by a numeric value, referred to as the stream ID.

● A stream ID is a 62-bit integer (0 to 262-1) that is
unique for all streams on a connection.

● The least significant bit (0x01) of the stream ID
identifies the initiator of the stream. The second least
significant bit (0x02) of the stream ID distinguishes
between bidirectional and unidirectional.

40

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

What does all that mean?
Applications have a toolkit of streams to use.

QUIC has no opinion how you use those streams, as long as the transport
requirements on IDs and flow control are obeyed.

Application mappings like HTTP/3 (RFC 9114) or DNS over QUIC (RFC 9250)
describe how application messages utilise QUIC streams.

41

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Streams example: HTTP/3
Client-initiated bidirectional streams are always used for request and response
exchanges.

Client- and server-initiated unidirectional streams have a type, conveyed in the
first byte(s) of the stream.

Each endpoint creates mandatory unidirectional control streams: Control, QPACK
encoder, QPACK decoder.

HTTP/3 defines its own framing layer on top of QUIC. HTTP/3 frames are sent on
QUIC streams.

42

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Streams example: HTTP/3

43

Control stream on ID 2. QPACK streams on ID 6 and 10.

Request stream on ID 0. GET request for /index.html. Stream is FIN’d to indicate
request message is complete

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Streams example: HTTP/3

44

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Stream gotchas for applications 1
Concurrency and flow control have limits.

An endpoint tells its peer the initial limits using Transport Parameters in the QUIC
handshake.

QUIC control frames like MAX_STREAMS, MAX_DATA, MAX_STREAM_DATA
can be used to update limits during the connection lifetime.

QUIC doesn’t have an opinion. This is an application matter. There is no universal
default. Implementations of applications probably have an opinion on defaults and
behaviours.

45

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Stream gotchas for applications 2
Transport Parameters apply to a QUIC connection, they affect applications.

Clients can offer many types of application protocols in their ALPN.

Servers can only pick one.

Applications might have specifications that disagree on suitable Transport
Parameters.

For example, HTTP/3 control streams are mandatory. If an endpoint never gives
credit to its peer to allow these streams to be opened, the peer might get upset.

46

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Stream multiplexing
Unlike TCP, QUIC offers multiplexing of byte streams within the connection. This
offers fruitful capability and fertile ground for new behaviours that might be hard to
observe or debug.

Streams compete for connection bandwidth. Not all streams are equal. E.g.,
streams for a control channel might be more important that bulk data.

QUIC does not provide global ordering of stream data in a connection. Stream IDs
indicate stream creation order but data from different streams can arrive at any
time. Applications that depend on ordering across streams need to implement
application-layer synchronization.

47

QUIC Deep Dive, IETF 115, Tuesday 8 November 2022

Example: HTTP/3 prioritization shown in qvis
5 concurrent transfers of 5 MB, all urgency=1

48

quiche (before priorities)
round-robin

quiche (now)
FIFO

