Google
The challenges of O-RTT in IETF QUIC

ianswett@, fayang@

Terminology

gQUIC - The experimental protocol developed by Google.
Uses ‘QUIC Crypto’ by Adam Langley.

QUIC or IETF QUIC - The protocol standardized by the IETF

HTTP/3-HTTP over IETF QUIC

Google

Why 0-RTT? Immediately send an HTTP Request

TCP + TLS QUIC
2-3 RTTs 0-1 RTTs

N N

A 0-RTT Handshake

QUIC Encryption Levels

Initial - Basically Obfuscation as the keys are in the RFC

Handshake - Keys derived from Client and Server Initials

0-RTT - Keys exported on the client for sending application data in the first flight
1-RTT - Forward Secure keys used after the handshake completes

0.5-RTT - Term for 1-RTT data sent by the server before handshake completion

Google

QUIC Packet Number Spaces

Only Initial packets can ACK Initial packets
Only Handshake packets can ACK Handshake packets
Only 1-RTT packets can ACK 0-RTT or 1-RTT packets

Google

What Successful O-RTT looks like

Client Server

Initial (CRYPTO)
O-RTT (STREAM)

Initial (CRYPTO)
Handshake (CRYPTO)
1-RTT (STREAM)

Initial (ACK)
Handshake (ACK, CRYPTO)
1-RTT (ACK, STREAM)

1-RTT (ACK, HANDSHAKE_DONE)

Google

Available Encryption and Decryption Keys

Client

Initial, 0-RTT

Initial, Handshake,
6-RFF, 1-RTT

lnitial, Handshake,
1-RTT

Handshake, 1-RTT

Google

Initial (CRYPTO)
O-RTT (STREAM)

Initial (CRYPTO)
Handshake (CRYPTO)
1-RTT (STREAM)

Initial (ACK)
Handshake (ACK, CRYPTO)
1-RTT (ACK, STREAM)

Y

1-RTT (ACK, HANDSHAKE_DONE)

Server

Initial, Handshake, 0-RTT
Read, 1-RTT Write

Initial, Handshake, 0-RTF
Read, 1-RTT

1-RTT

O-RTT Restrictions

e Have connected to the server ‘recently’

o And persisted across 3 layers:
m HTTP/3 SETTINGSs, QUIC Token and TLS NewSessionTicket

e Canonly send safe HTTP methods
o GET, HEAD, OPTIONS, TRACE

e HTTP/3 SETTINGs can’t change

Google

https://www.rfc-editor.org/rfc/rfc7231#section-4.2.1

Some bonus challenges

e QUIC's 3x amplification limit before address validation
m To send alarge response, client IP must not change

e Chrome doesn't persist NewSessionTickets to disk
o gQUIC Server Configs could be persisted

e Up to 3 Packet Number spaces at once
o Limited knowledge of which keys the peer has

e Chrome blocks using 0-RTT keys on certificate revalidation
o Resumption can be almost as fast if the RTT is small.

e O-RTT packets can be reordered
o Servers need to decide whether to buffer them

Google

O-RTT Success Rates

Desktop

Rejected
8.3%

Not Attempted
15.3%

Accepted

76.4%

Rejected
3.2%

Not Attempted
39.0%

Android

Accepted

Initial Experiment (11/2020)

0-RTT had neutral mean latency for Search and slower tail (90%+) latency.

A Note on Data
Experiments are randomized in Chrome

Even if QUIC or O-RTT don't work, the data from those users are included

Google

First: Amplification Limit

Amplification Limit

O-RTT experiment 10x more likely to be throttled by the 3x anti-amplification limit

Once limited, the server waits for the client to unblock it.

Client Server

Initial (CRYPTO)
O-RTT (STREAM)

Initial (CRYPTO)

Handshake (CRYPTO)
~4x 1-RTT (STREAM)
BLOCKED!
Initial (ACK)
Handshake (ACK, CRYPTO)
1-RTT (ACK)

Address Validated=

Google

Fix;: Address Validation Token

IETF QUIC allows including a ‘Token’ in the Client Initial
Server decrypts the Token
Validates that the client’s address is unchanged

Result: Didn't move the metrics much... A bit closer to neutral

Google

Second: PTOing at Correct
Encryption Level(s)

Increased Handshake Timeouts

~2x increase in pre-handshake client NETWORK_IDLE_TIMEOUT
=> Client hasn't processed anything from the server in 4 seconds (Chrome)

Google

Our Issue

The O-RTT response is large, server becomes blocked by the amplification limit

So PTO is not armed
Our optimization bundled other Initial data with an Initial ACK

Rearmed the PTO for the future, then sent more 0.5 RTT data

Never send Handshake data, deadlock

Google

Key PTO Fixes

If the PTO would have fired, execute it before other sending

When the PTO fires, send in multiple packet number spaces

Always PTO Initial and Handshake data before O-RTT or 1-RTT

Result: Fixed the pre-handshake NETWORK_IDLE_TIMEOUT increase!

.... Still not faster

Google

Third: Inflated RTT Samples

Why could RTT be inflated

Keys might not be available to process and ACK the packet

Queue undecryptable packet

Later, keys become available, packet processed, ACK sent

Client

HitiaHCRYPTO)
O-RTT (STREAM)

Initial Lost!

Server

Initial (CRYPTO)

Initial (CRYPTO)
Handshake (CRYPTO)
1-RTT (ACK, STREAM)

1-RTT ACK of O-RTT |-
is delayed by PTO

Google

Why do Inflated RTTs slow the handshake?

Inflated RTT samples increase the Probe Timeout

PTO delay = SmoothedRTT + 4 * RTTVariation + max ack delay

Connections start with no RTT samples, default PTO of 1 second

If a packet is lost, no progress until the probe timeout fires

ie: 1s RTT sample = 3s PTO timeout!

Google

https://datatracker.ietf.org/doc/html/rfc9002#section-6.2

Fixes

Send delayed ACK based on packet receipt time, not packet processing time
Optimization

Send packets of higher packet number spaces when a packet can cause peer to
generate new keys

le: Server retransmits INITIAL packet, send HANDSHAKE and 0.5 RTT packets.

Result: Further reduction in handshake timeouts

Google

Fourth: Async Client Bug

Client sends INITIAL pings until timeout

Traces showed clients never sending HANDSHAKE packets

Client

Client sending PINGs

Google

to unblock a server
that’s not blocked

Initial (CRYPTO)
O-RTT (STREAM)

But the ServerHello had been acknowledged

Server

Initial (CRYPTO)
Handshake (CRYPTO)
1-RTT (STREAM)

Initial (ACK)

Initial (PING)
Initial (PING)

Client never derives Handshake keys

Luckily, we got an external report with a Chrome net-log attached

The client never derives handshake keys.

Chrome starts certificate verification in parallel

When verification finishes after receiving ServerHello, never get Handshake keys

Google

https://www.chromium.org/for-testers/providing-network-details/

Finally: Little issues and
Optimizations

Little Issues

Marked a packet (and its data) as retransmitted when it wasn't

Error in size calculation => Coalesced packet that was too big, failed sending
Processing buffered packets in order, stopped if one fails to decrypt

Delaying PTO when sending O-RTT packets

Google

Little Optimizations
Delay the server’s first ACK until it can be bundled with the ServerHello
Coalescing pending ACKs of other packet number spaces

Coalescing HANDSHAKE and NewSessionTicket with ServerHello

Google

Recap and Results

L essons Learned

Tooling is critical

Packet traces enabled root-causing many bugs
Sharing code with gQUIC was sometimes helpful

But sometimes introduced subtle bugs due to differences
Getting PTO right during the handshake is difficult

Google

Finally...

Chrome Desktop (-0.3%, -0.6%@99%)
Chrome Android (-0.3%, -0.6%@99%):

O-RTT default enabled Sept 2021 in Chrome M95!

Further fixes have landed since

Google

But wait, | thought O-RTT would save an RTT?

Chrome pre-connects, eliminating handshake latency
Not every search requires a new connection

There are more bugs and optimizations to be found

Google

Thanks!

Chromium QUIC Code
cs.chromium.orqg

Google Google

https://source.chromium.org/chromium/chromium/src/+/main:net/third_party/quiche/src/quiche/quic/

