

A well-known URL for publishing ECHConfigLists
https://datatracker.ietf.org/doc/draft-ietf-tls-wkech/

Stephen Farrell, Rich Salz, Ben Schwartz
IETF 115, London, November 2022

03/11/22 21:29:35

git reset --soft HEAD~1

https://datatracker.ietf.org/doc/draft-ietf-tls-wkech/

Changes since IETF 114
● draft-00 described an actual running prototype operated by

Stephen on https://defo.ie for its colocated domains.
● draft-01 has been redesigned to serve a broader range of ECH

deployment architectures.
– Still only contains the information necessary for ECH, but

extensible to other SVCB parameters.
– Not yet implemented
– Seeking WG input on this new design

https://defo.ie/

Background
● Encrypted ClientHello (ECH) normally relies on HTTPS

records to publish the public key (ECHConfigList) in the DNS.
● It’s easy (and tempting!) to paste the public key into your

zonefile and declare success.
● This breaks key rotation, especially if your customers are

pasting your key into zones you don’t even control.
● Goal: Make proper dynamic zone generation easier than

doing it the wrong way.

Technical Summary
● Specifies a protocol between an origin and a zone factory to keep the

DNS zone up to date whenever a server rotates its ECH keys.
● The zone factory already knows the origin’s name, IP addresses, and

any SVCB parameters other than the ECH keys.
● The origin hosts a JSON blob containing either:

– a list of “endpoints” (1:1 with ServiceMode HTTPS records).
– an instruction to alias this origin to some other origin.

● Hosted at /.well-known/origin-svcb by default.
– This proves that the contents are authoritative for this origin, which

simplifies configuration of the zone factory

 5

TLS
Client

(browser)

4. TLS session

Origin

Picture for draft-01

3. Look up A/AAAA
and HTTPS

DNS

Zone factory
(for origin)

1. Fetch
.well-known/origin-svcb

2. (re-)Publish zone

Front origin
0. (optional) Sync
.well-known/origin-svcb

Comparison: -00 vs. -01
 version -00
[{
 "desired-ttl": 1800,
 "ports": [443, 8443],
 "echconfiglist": "ABC..."
}]

 version -01
{
 "endpoints": [{
 "port": 443,
 "ech": "ABC..."
 }, {
 "port": 8443,
 "ech": "XYZ..."
 }]
}

Resulting HTTPS RRs
There are two ways to use this JSON:

1. If the zone factory is generating RRs from scratch:

origin.example. IN 1800 HTTPS 1 . ech=ABC... port=443
 HTTPS 2 . ech=XYZ... port=8443

2. If the zone factory is starting with template RRs:

 HTTPS 1 . alpn=h2,h3 port=443
 HTTPS 2 . alpn=h2 port=8443

then it adds each ECHConfigList to the template with a matching port number:

origin.example. IN 1800 HTTPS 1 . alpn=h2,h3 port=443 ech=ABC...
 HTTPS 2 . alpn=h2 port=8443 ech=XYZ...

Aliasing example
Origin JSON
{
 "alias": "cdn.example"
}

The "alias" and "endpoints" options are
independent of ECH "shared mode" and "split
mode". "alias" is recommended if the origin has
the same SvcParams as the public name.

Zone Factory Output
Could be any of:

● HTTPS 0 cdn.example.
● CNAME cdn.example.
● HTTPS 1 cdn.example. [parameters

copied securely by DNSSEC from
cdn.example.]

● ...
(Templates are not supported for aliasing)

Multi-CDN Example
CDN JSON:
{
 "endpoints": [{
 "ech": "BBB..."
 }]
}

Origin JSON:
{
 "endpoints": [{
 "priority": 1,
 "ech": "AAA..."
 }, {
 "priority": 1,
 "target": "cdn.example.",
 "ech": "BBB..."
 }]
}

Zone Factory Output
HTTPS 1 . alpn=h2,h3 ech=AAA..
HTTPS 1 cdn.example. alpn=h2 ech=BBB...

● The origin dynamically incorporates
https://cdn.example/.w-k/origin-svcb into its own
JSON output, so the ECH keys stay up to date.

● The zone factory is configured statically with
templates containing the other parameters.

● The “priority” and “target” identify which
ECHConfigList goes with which template.

Other notable details
● DNS TTL is chosen by the zone factory, but

MUST be less than the HTTP freshness lifetime.
– Hard to figure out using simple HTTP client APIs...

● Ordinary web clients “SHOULD NOT” try to use
this in lieu of real HTTPS records.
– Not very effective, plus it creates a supercookie.

To Be Determined
● Exact template matching rules

– or should we just stuff the whole HTTPS record into JSON?
● Static bootstrap IP requirement for zone factories

– Otherwise the zone factory could lose access to the origin permanently
due to a bad config push.

● Support for non-HTTPS protocols
– Seems straightforward but harder to set up.

● HTTP redirect rules or guidance

What do you think?

 13

TLS
Client

(browser)

TLS session

Shared mode
Backend Site

Frontend
(ECH) Site

Picture for draft-00 (in case needed for comparison)

Look up A/AAAA
and HTTPS

DNS

Zonefactory
(DNS operator
for backend)

Poll .well-known/ech

(re-)Publish zone

Split mode
Backend Site

