
HPCC++: Enhanced High
Precision Congestion Control

Rui Miao, Surendra Anubolu, Rong Pan, JK Lee, Barak Gafni, Y Shpigelman
Jeff Tantsura, Guy Caspray

draft-miao-tsv-hpcc-01

https://datatracker.ietf.org/doc/draft-miao-tsv-hpcc/01/

HPCC++: Gaining wide industry adoption

• Broadcom and Cisco joined HPCC++ IETF effort
• HPCC++ is supported by: Broadcom, Cisco, Intel, Nvidia silicon
• Good progress on alignment wrt encodings and meta-data across different technologies
• More deployment data showing benefits of HPCC++

• Production deployment in Alibaba
• HPCC++ significantly enhances congestion control and drop prevention for:

• storage and AI workloads requiring low latency/ high bandwidth
• HPCC++ is progressing with support for multi-q
• Algorithmic enhancements that show benefits of Receiver based HPCC++

• Metadata format captured in draft-miao-tsv-hpcc-info-01
• HPCC++ algorithm updated in draft-miao-tsv-hpcc-01.txt

https://www.ietf.org/archive/id/draft-miao-tsv-hpcc-info-01.txt
https://www.ietf.org/archive/id/draft-miao-tsv-hpcc-01.txt

Recap: High Precision Congestion Control
(HPCC)
• Basic behavior
• Each switch inserts INT information to packet headers

• The receiver echoes INT information back to the sender via ACK packets

• The sender adjusts its rate based on the INT information in ACKs

Adjust rate
per ACK

pkt pkt pkt

INT INT

Sender Receiver

Link-1 Link-2

ACK

HPCC++ Deployment

Alibaba
• Alibaba Cloud has deployed HPCC++ for EBS, AI training, and database applications.

• The RDMA network running inside the storage cluster has reduced latency to about 30% on average and 80% in the tail.

• In EBS, HPCC++ is running in about 100 compute clusters 1000 storage clusters with in total of 100K servers.

• The EBS bandwidth capacity is improved by about 30%

• The average end-to-end latency is reduced by 10%.

• By enabling HPCC++ in our EBS cluster, Alibaba Cloud had managed to mostly eliminate congestion-triggered packet loss during the double

11 festival in 2021.

Interest from multiple operators for test deployment

Info draft for HPCC metadata
format

IFA meta data format for HPCC++

• I-D.ietf-kumar-ippm-ifa

https://tools.ietf.org/html/draft-kumar-ippm-ifa-01

INT

• P4-INT

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_0.pdf

IOAM metadata format

• I-D.draft-gafni-ippm-ioam-additional-data-fields

https://datatracker.ietf.org/doc/html/draft-gafni-ippm-ioam-additional-data-fields-00

MultiQ for HPCC++

How does HPCC++ co-exist with other traffic classes?

Video/VoIP

RoCE(HPCC)

Best Effort (TCP)

• HPCC assumes the knowledge of the link speed that is stamped into the
telemetry packet headers, yet
• In modern switches, all traffic classes share a specific link, and no class can take the whole

link bandwidth

• Each class can be guaranteed a minimum rate, but it can be served at any rate between the
minimum rate and the link rate, depending on the traffic mix from other classes

• How can we extend HPCC++ so that it can handle multi-queue sharing without the
knowledge of other classes’ traffic intensity?

?

HPCC++ MultiQ Algorithm

• Parameter Definitions:
• B: link speed

• T: RTT

• eta: the configured target link utilization

• wBj: the configured rate for Class j

• txRate: the measured draining rate of a link

• txRatej: the measured draining rate of Class j at a specific link

• qlen: the queue length at a specific link (assume one class in the original HPCC)

• qlenj: the queue length for Class j at a specific link

• AI: HPCC’s additive parameter

HPCC++ MultiQ Algorithm

• We assume switch calculate txRate and calculate U for HPCC as
• U = qlen/(B*T)+txRate/B

• For multiQ extension:
• If txRatej <= wBj: U = qlenj/(wBj*T)+ txRatej /wBj; //Paper’s formula adapted for

Class j that is sending at a guaranteed rate
• Else if qlenj != 0 (or > small amount, e.g. 1.5KB): U = qlenj/(txRatej*T) + 1; //The

draining rate is higher than the guaranteed rate and the queue is not empty, i.e. the
allocated rate is fully utilized and there is a backlog, Paper’s formula is adapted

• Else: U = txRatej /((txRatej + B)/2) //when the allocated rate is bigger than the
guaranteed rate and there is no backlog, need to figure out what is the limit
between the current rate and the maximum rate B, jump halfway between
current_rate and link rate’s target rate i.e. to binary-search the limit

HPCC++ MultiQ Simulation Setup*

*We would like to thank Md Ashiwur Rahman and Roberto Penaranda from Intel for providing the simulation results

• 15-to-1 incast: 5 HPCC++ flows at TC=0, 5 TCP flows at TC=1 (TCP1) and 5 TCP flows at TC=2 (TCP2);

• AI = 0.005 (5.0Gbps); Queue length unit 1 pkt (1536 MTU); Line rate = 100Gbps

Class1-TCP-20%

Class0-HPCC-50%

Class2-TCP-30%)

100Gbps

HPCC Flow

20% TCP Flow

30% TCP Flow

off off

off off

HPCC applied for MultiQ w/o any changes

• HPCC calculated
• U = qlen/(B*T)+txRate/B
• If txRate is only a fraction of B, then qlen needs to be increased to make U

approx. 1 in order to make HPCC work
• The lower txRate is, the higher the queue length is

Flow Rate Memory used (per TC)

HPCC applied for MultiQ w/o any changes (2)

Utilization TC_Queue Tx Rate (normalized)

Utilization is maintained above 1
due to additive increase

Class 0,1,2 @
configured

rate

Class 0 reach
link rate

Class 0, 1
more than
configured

rates

Class 0, 2
more than
configured

rates

Class 0 reach
link rate

Injection Memory used (per TC) Utilization (U) TC_Queue Tx Rate (normalized)

D
ef

au
lt

 H
P

C
C

 (
Se

n
d

er
 U

)
H

P
C

C
++

 (
Sw

it
ch

 U
)

HPCC vs MultiQ HPCC++ (Before and After)

By adjusting U properly, the queue length under HPCC++ class is
maintained constant while each class’s rate can achieve its fair rate

Receiver based HPCC

Receiver-based HPCC

• Sender’s rate is calculated in the receiver side
• Receiver is aware of all incoming traffic

• ack.L is one-to-one mapping of int.L

• Every RTT or when a sudden congestion level change, a notification packet
(np) is sent for each flow
• Updating the injection rate

• Acknowledging the received packets, thus eliminating the need for ACKs

HPCC Design (1) → Rx-HPCC Design (1)
Int.L

• 2 to 1 in-cast

• 8 to 1 in-cast

• Flow come and go

• Goal
• Performance comparation:

• Injection bandwidth.

• Output queue depth.

• Fairness among flows.

Experiments
Scenarios

• Network: 2-stage fat tree

• NICs: 25 Gbps (0.025 flits per ns)

• SW: 100 Gbps

• RTT: 8.5 us

• HPCC knobs
• Max stage = 5

• Base RTT = 9 us

• Target utilization (T_uti) = 0.95

• Additive increase (W_AI)
• 1.25e-4 flits per ns (128 Mbps) (N = 10)

• 1.25e-5 flits per ns (12.8 Mbps) (N = 100)

• Dynamic

• Change rate threshold = 25%

• Notification period:
• 4.5us

Experiments
Configuration based on original HPCC paper

• Original HPCC

Experiments: In-cast 2, Target_utilization (η) 95%

W_AI 1.25 e-4

Number of ACKs:
114924

Rx-based HPCC (T = 4.5us)

Number of NPs:
21913

• Much less feedbacks
• Similar transient behavior
• Improved fairness
• Slightly bigger buffer usage

Dynamic W_AI

• Original HPCC

Experiments: In-cast 8, Target_utilization (η) 95%

W_AI 1.25 e-5

Number of ACKs:
128724

Rx-based HPCC (T = 4.5us)

Number of NPs:
45249

Similarly:
• Much less feedbacks
• Similar transient behavior
• Improved fairness
• Slightly bigger buffer usage

Dynamic W_AI

Experiments: Flow Come and Go, Target_utilization (η) 95%

• Original HPCC
W_AI 1.25 e-5

Number of ACKs:
193116

Dynamic W_AI

Rx-based HPCC (T = 4.5us)

Number of NPs:
110940

Similarly:
• Much less feedbacks
• Similar transient behavior
• Bigger buffer usage
• No need to configure W_AI

Thank you

