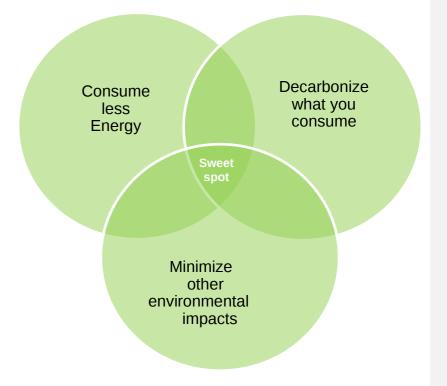
Carbon-aware Networking

An Environmental Impact use case for Time Variant Routing (TVR)

Eve M. Schooler

The Backdrop

- Urgency to address UN IPCC recommendation re 1.5C degree threshold
- ICT contribution to GHG emissions sizeable and growing
 - Network impact rivals Data Center footprint
 - Must adopt renewables to get to NetZero?
- Will need 4x the amount of electricity currently generated to support the electrification of transportation, etc
 - Long arc of infrastructure roll-out ...


What is carbon-awareness?

Include energy carbon-intensity as a non-traditional QoS "cost" metric

- •It is not enough to be energy efficient i.e., to consume less energy
- •Must also decarbonize the energy consumed
- •Account for other environmental impacts

Inspired by DC adoption of Carbon-aware Computing

- •Time- and space-shift workloads
- •Maximimize usage of renewable and clean energy
- •Consume excess renewable energy that would otherwise go wasted, to help stabilize the grid

What is carbon-aware networking? Multiple facets

Carbon-aware routing

• Select routes with the greatest carbon efficiency

Carbon-aware transport

• Apply time- and space- shifting to network data transmission – DTN-like

Carbon-aware traffic engineering

• Guarantee carbon efficiency thresholds along paths through the network, possibly reserving resources along the way – *DetNet-inspired*

Carbon-aware telemetry

• Instrument the network to be self-aware and to apply carbon-awareness to telemetry data stewardship

Carbon-aware networking

Overview

• An example of use case 2: Operating efficiency

- when carbon-intensity is comprehended as part of the cost function of a link

• Shades of use case 1: Resource preservation

- when the device/infrastructure opts for battery operation, e.g., when the battery is rated as having a mix of electricity whose carbonintensity is less (which is better) than the carbon-intensity of the electricity coming out of the wall socket

•Shades of Use case 3: Mobile devices

- when mobile distributed energy resources can be dispatched to places where needed

• Cause for the loss (re-appearance) of an adjacent link:

- External environmental factors like the lack (abundance) of sun or wind or other clean energy sources
- Threshold exceeded (met) for carbon-intensity
- Possible TVR Benefits
 - Expected loss of links are not seen as error conditions, but as optimizations
 - Expected resumption of a link does not always need to be rediscovered

Use Case 2: Operating efficiency - revisited

Assumptions and Expected TVR Benefits for Carbon-aware networking

Assumptions

- Cost Measureability.
 - Infrastructure costs can be related to node functions.
- Cost Predictability.
 - Cost changes can be communicated in advance. More than just "the current cost at the moment".
- Cost Persistence.
 - Cost changes are infrequent enough that behavior can be adjusted in response to their changing.
- Cost Magnitude.
 - The magnitude of cost savings justify the efforts required to optimize cost.
 - Models of black-out aversion in CA in summer'22, if all EV batteries leveraged

Possible TVR Benefits

- Link Filtering.
 - Individual links can be filters based on cost to minimize the use of high-cost links unless needed by type of traffic (e.g. high priority).
 - In the extreme, links are only up in the presence of clean energy

• Burst Planning.

- Where there is a cost savings associated with fewer longer transmissions (versus many smaller transmissions), nodes might accumulate a sufficient data volume exists to justify a transmission.

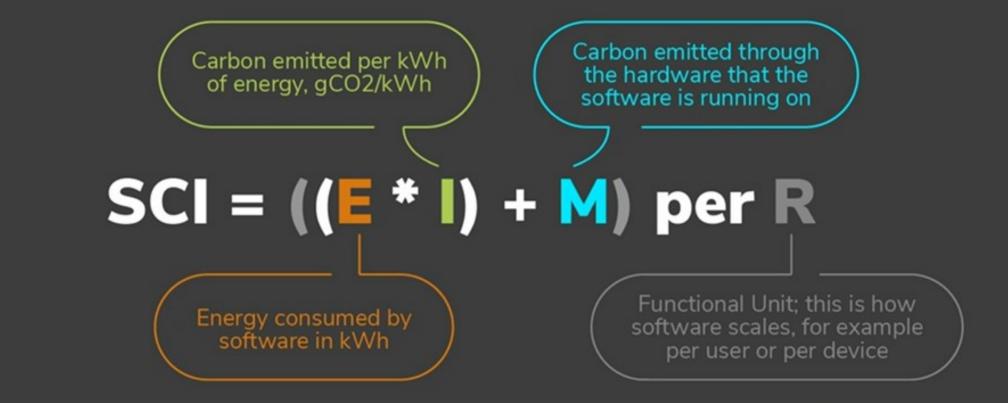
• Environmental Measurement.

- If link quality is insufficient due to environmental conditions (such as clouds on an optical link or long distance RF transmission in a storm) the cost required to communicate over the link may be too much, even if access to infrastructure is otherwise in a less expensive time of day.
 - Regulatory pressure, like carbon taxes?

Considerations

- Granularity, frequency, coverage of carbon-intensity measurement
- Interplay of stored electricity in battery and (live) electricity generation
- Justification function

Additional resources


- "Toward carbon-aware networking", Noa Zilberman, Eve M. Schooler, Uri Cummings, Rajit Manohar, Dawn Nafus, Robert Soule, Rick Taylor, *HotCarbon'22* (July 2022)
- "Carbon-responsive computing: Changing the nexus between energy and computing", Dawn Nafus, Eve M. Schooler, Karly Ann Burch, *Energies 14* (Oct 2021)

Thank You

BACKUP

Green SW Foundation: Software Carbon Intensity

The SCI score is a rate of carbon emissions, not a total. The equation is a simple and elegant solution to the extremely complex problem behind it:

The "per R" is what makes the SCI into a tool that works for every software domain, every use case, and every person.

Carbon-responsive packet routing

production of

+

ネ

പ്പി

 \bigcirc

Enabled by:

- Exposure of carbon-intensity data from eGrid
- Uptake of carbon-intensity in QoS-enabled routing protocols (and apps)

Win	d powe	er pote	entic	al (m/s))
0	3	6	9	12	15
Cart	oon int	ensity	(gCC	D₂eq/k	Wh)
0	200	400		600	800