
Internet Engineering Task Force Chen, Ed.
Internet-Draft L. Su
Intended status: Informational China Mobile
Expires: 2 September 2023 H. Wang
 Huawei International Pte. Ltd.
 1 March 2023

 Use Identity as Raw Public Key in EAP-TLS
 draft-chen-emu-eap-tls-ibs-05

Abstract

 This document specifies the use of identity as a raw public key in
 EAP-TLS, the procedure of EAP-TIBS is consistent with EAP-TLS’s
 interactive process, identity-based signature is extended to support
 EAP-TLS’s signature algorithms to avoid X.509 certificates, this
 authentication method can avoid the overhead of receiving and
 processing certificate chains.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Chen, et al. Expires 2 September 2023 [Page 1]

Internet-Draft EAP TLS IBS March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. EAP TIBS Use Cases . 4
 3.1. IoT use case . 4
 3.2. Non CA use case . 4
 4. Structure of the Raw Public Key Extension 5
 5. EAP-TIBS for TLS1.2 . 6
 5.1. EAP-TIBS Handshake 6
 5.2. EAP-TIBS example . 9
 6. EAP-TIBS for TLS1.3 . 10
 6.1. EAP-TIBS Handshake 11
 6.2. EAP-TIBS example . 13
 7. IANA Considerations . 15
 8. Security Considerations 15
 9. Informative References 15
 Authors’ Addresses . 16

1. Introduction

 The Extensible Authentication Protocol(EAP) defined in [RFC3748] can
 provide support for multiple authentication methods. Transport Layer
 Security(TLS) provides for mutual authentication, integrity-protected
 ciphersuite negotiation, and exchange between two endpoints. The
 EAP-TLS defined in [RFC5216] which combines EAP and TLS that apply
 EAP method to load TLS procedures.

Chen, et al. Expires 2 September 2023 [Page 2]

Internet-Draft EAP TLS IBS March 2023

 Traditionally, TLS client and server public keys are obtained in PKIX
 containers in-band as part of the TLS handshake procedure and are
 validated using trust anchors based on a PKIX certification authority
 (CA). But there is another method, Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) are defined in [RFC7250], the document defines two TLS
 extensions client_certificate_type and server_certificate_type, which
 can be used as part of an extended TLS handshake when raw public keys
 are used. [RFC9190] reads certificates can be of any type supported
 by TLS including raw public keys. In [RFC7250] it assuming that an
 out-of-band mechanism is used to bind the public key to the entity
 presenting the key.

 Digital signatures provide the functions of Sender reliability and
 Message integrity. A chain of trust for such signatures is usually
 provided by certificates, but in low-bandwidth and resource-
 constrained environments, the use of certificates might be
 undesirable. In comparison with the original certificate, the raw
 public key is fairly small. This document describes a signature
 algorithm using identity as a raw public key in EAP-TLS, instead of
 transmitting a full certificate in the EAP-TLS message, only public
 keys are exchanged between client and server, also known as EAP-TIBS.

 With the existing raw public key scheme, a public key and identity
 mapping table is required at server. This table usually established
 with offline method and may require additional efforts for
 establishment and maintenance, especially when the number of devices
 are huge. On the other hand, with IBS signature algorithm, it not
 only can take the advantage of raw public key, but also eliminates
 the efforts for the mapping table establishment and maintenance at
 the server side. Instead, a small table for CRL is enough for
 exclude revoked identity from accessing the network. A number of IBE
 and IBS algorithms have been standardized, such as ECCSI defined in
 [RFC6507].

 IBC was first proposed by Adi Shamir in 1984. For an IBC system, a
 Key Management System (KMS) is required to generate keys for devices.
 The KMS choose its KMS Secret Authentication Key(KSAK) as the root of
 trust. A public parameter, KMS Public Authentication Key (KPAK) is
 derived from this secrete key and is used by others in verifying the
 signature. The signatures are generated by an entity with private
 keys obtained from the KMS. KMS is a trusted third party, users or
 devices can obtain private key using their identities from KMS. In
 IBS the private key is also known as Secret Signing Key(SSK). A
 sender can sign a message using SSK. The receiver can verify the
 signature with sender’s identity and the KPAK.

 This method has great advantages in internal management.

Chen, et al. Expires 2 September 2023 [Page 3]

Internet-Draft EAP TLS IBS March 2023

2. Terminology

 The following terms are used:

 * IBC: Identity-Based Cryptograph, it is an asymmetric public key
 cryptosystem.

 * IBS: Identity-based Signature, such as ECCSI.

 * PKI: Public Key Infrastructure, an infrastructure built with a
 public-key mechanism.

 * Authenticator: The entity initiating EAP authentication.

 * Peer: The entity that responds to the authenticator.

 * Backend authenticator server: A backend authentication server is
 an entity that provides an authentication service to an
 authenticator. When used, this server typically executes EAP
 methods for the authenticator.

 * EAP server: The entity that terminates the EAP authentication
 method with the peer. In the case where no backend authentication
 server is used, the EAP server is part of the authenticator. In
 the case where the authenticator operates in pass-through mode,
 the EAP server is located on the backend authentication server.

3. EAP TIBS Use Cases

3.1. IoT use case

 Used for authentication of Internet of Things devices: due to the
 limited processing power of IoT devices, resources for secure
 identity authentication are limited, especially passive, long life
 cycle devices, however, the traditional certificate authentication
 based on PKI X509, because of the complexity of certificate
 processing and certificate chain authentication, not very suitable
 for the Internet of Things scenario. Internet of Things devices
 really need a more lightweight authentication method, and EAP-TIBS as
 one of the candidates.

3.2. Non CA use case

 Used for systems that do not support CA certificates: an internal
 system with network security boundaries that can self-operate the Key
 Management System(KMS) secret key distribution center, EAP-TIBS can
 be used between internal subsystems.

Chen, et al. Expires 2 September 2023 [Page 4]

Internet-Draft EAP TLS IBS March 2023

4. Structure of the Raw Public Key Extension

 To support the negotiation of using raw public key between client and
 server, a new certificate structure is defined in [RFC7250]. It is
 used by the client and server in the hello messages to indicate the
 types of certificates supported by each side. When RawPublicKey type
 is selected for authentication, SubjectPublicKeyInfo which is a data
 structure is used to carry the raw public key and its cryptographic
 algorithm.

 The SubjectPublicKeyInfo structure is defined in Section 4.1 of
 [RFC5280] and not only contains the raw keys, such as the public
 exponent and the modulus of an RSA public key, but also an algorithm
 identifier. The algorithm identifier can also include parameters.
 The structure of SubjectPublicKeyInfo is shown in Figure 1:

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 Figure 1: SubjectPublicKeyInfo ASN.1 Structure

 The algorithms identifiers are Object Identifier(OIDs),
 AlgorithmIdentifier is also data structure with two fields, OID
 represent the cryptographic algorithm used with raw public key, such
 as ECCSI, parameters are the necessary parameters associated with the
 algorithm.

 In the case of IBS algorithm, the User’s identity is the raw public
 key which can be represented by "subjectPublicKey", when ECCSI is
 used as the Identity-based signature algorithm, then "algorithm" is
 for ECCSI, and "parameters" is the parameters needed in ECCSI.

 So far, IBS has the following four algorithms, the following table is
 the corresponding table of Key type and OID.

Chen, et al. Expires 2 September 2023 [Page 5]

Internet-Draft EAP TLS IBS March 2023

 +--------------------------+----------------+-----------------------+
 | Key Type | Document | OID |
 +--------------------------+----------------+-----------------------+
ISO/IEC 14888-3 IBS-1	ISO/IEC	1.0.14888.3.0.7
	14888-3: IBS-1	
	mechanism	
+--------------------------+----------------+-----------------------+		
ISO/IEC 14888-3 IBS-2	ISO/IEC	1.0.14888.3.0.8
	14888-3: IBS-2	
	mechanism	
+--------------------------+----------------+-----------------------+		
ISO/IEC 14888-3	ISO/IEC	1.2.156.10197.1.302.1
ChineseIBS(SM9)	14888-3:	
	ChineseIBS	
	mechanism	
+--------------------------+----------------+-----------------------+		
Elliptic Curve-Based	Section 5.2	1.3.6.1.5.5.7.6.29
Signatureless For	in RFC 6507	
Identitiy-based		
Encryption (ECCSI)		
 +--------------------------+----------------+-----------------------+

 Table 1: Algorithm Object Identifiers

 In the draft draft-wang-tls-raw-public-key-with-ibc, there extend
 signature scheme with IBS algorithm which indicated in the client’s
 "signature_algorithms" extension. The SignatureScheme data structure
 also keep pace with the section 4.

5. EAP-TIBS for TLS1.2

5.1. EAP-TIBS Handshake

 This section describes EAP-TIBS in the case of TLS1.2, as described
 in [RFC7250], the document intrudoces the use of raw public keys in
 TLS/DTLS, the basic raw public key TLS exchange will appear as
 follows, Figure 2 shows the client_certificate_type and
 server_certificate_type extensions added to the client and server
 hello messages. An extension type MUST NOT appear in the ServerHello
 unless the same extension type appeared in the corresponding
 ClientHello, defined in [RFC5246].

 The server_certificate_type extension in the client hello indicates
 the types of certificates the client is able to process when provided
 by the server in a subsequent certificate payload.

Chen, et al. Expires 2 September 2023 [Page 6]

Internet-Draft EAP TLS IBS March 2023

 The client_certificate_type and server_certificate_type extensions
 sent in the client hello each carry a list of supported certificate
 types, sorted by client preference. When the client supports only
 one certificate type, it is a list containing a single element. Many
 types of certificates can be used, such as RawPublicKey, X.509 and
 OpenPGP.

 This section describes EAP-TLS extend using raw public keys, the
 procedures is as follows, In the discussion, we will use the term
 "EAP server" to denote the ultimate endpoint conversing with the
 peer.

Chen, et al. Expires 2 September 2023 [Page 7]

Internet-Draft EAP TLS IBS March 2023

 Authenticating Peer EAP server
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS client_hello
 +signature_algorithm
 server_certificate_type,
 client_certificate_type)->

 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS server_hello,
 {client_certificate_type}
 {server_certificate_type}
 {TLS certificate}
 {TLS server_key_exchange}
 {TLS certificate_request}
 {TLS server_hello_done}
)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS certificate,
 TLS client_key_exchange,
 TLS certificate_verify,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS change_cipher_spec,
 TLS finished)
 EAP-Response/
 EAP-Type=EAP-TLS ->
 <- EAP-Success

 Figure 2: EAP-TIBS authentication procedure for TLS1.2

Chen, et al. Expires 2 September 2023 [Page 8]

Internet-Draft EAP TLS IBS March 2023

5.2. EAP-TIBS example

 In this example, both the TLS client and server use ECCSI for
 authentication, and they are restricted in that they can only process
 ECCSI signature algorithm. As a result, the TLS client sets both the
 server_certificate_type and the client_certificate_type extensions to
 be raw public key; in addition, the client sets the signature
 algorithm in the client hello message to be eccsi_sha256.

Chen, et al. Expires 2 September 2023 [Page 9]

Internet-Draft EAP TLS IBS March 2023

Authenticating Peer EAP server
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS client_hello
 signature_algorithm = (eccsi_sha256)
 server_certificate_type = (RawPublicKey,...)
 client_certificate_type = (RawPublicKey,...))->

 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS server_hello,
 {client_certificate_type = RawPublicKey}
 {server_certificate_type = RawPublicKey}
 {certificate = (1.3.6.1.5.5.7.6.29, hash
 value of ECCSIPublicParameters),
 serverID)}
 {certificate_request = (eccsi_sha256)}
 {server_hello_done}
)
 EAP-Response/
 EAP-Type=EAP-TLS
 ({certificate = ((1.3.6.1.5.5.7.6.29,
 hash value of ECCSIPublicParameters),
 ClientID)},
 {certificate_verify = (ECCSI-Sig-Value)},
 {finished}) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS finished)
 EAP-Response/
 EAP-Type=EAP-TLS ->
 <- EAP-Success

 Figure 3: EAP-TIBS example

6. EAP-TIBS for TLS1.3

Chen, et al. Expires 2 September 2023 [Page 10]

Internet-Draft EAP TLS IBS March 2023

6.1. EAP-TIBS Handshake

 TLS1.3 defined in [RFC8446], as TLS 1.3 is not directly compatible
 with previous versions, all versions of TLS incorporate a versioning
 mechanism which allows clients and servers to interoperably negotiate
 a common version if one is supported by both peers. when make the
 discussion on EAP-TLS using raw public keys we also make a different
 with TLS1.2, this section is for EAP-TLS1.3 handshake using raw
 public keys and give example for EAP-TIBS.

 This section describes EAP-TLS1.3 extend using raw public keys, the
 procedures is as follows, both client and server have the extension
 "key_share", the "key_share" extension contains the endpoint’s
 cryptographic parameters. the "signature_algorithm" extension
 contains the signature algorithm and hash algorithms the client and
 server can support for the new signature algorithms specific to the
 IBS algorithms. When IBS is chosen as signature algorithm, the
 server need to indicated the required IBS signature algorithms int
 the signature_algorithm extension within the CertificateRequest.

Chen, et al. Expires 2 September 2023 [Page 11]

Internet-Draft EAP TLS IBS March 2023

 Authenticating Peer EAP server
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS client_hello
 +key_share
 +signature_algorithm
 server_certificate_type,
 client_certificate_type)->

 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS server_hello,
 +key_share
 {EncryptedExtensions}
 {client_certificate_type}
 {server_certificate_type}
 {certificate}
 {CertificateVerify}
 {certificateRequest}
 {Finished}
)
 EAP-Response/
 EAP-Type=EAP-TLS
 ({certificate}
 {CertificateVerify}
 {Finished}
) ->
 EAP-Request/
 EAP-Type=EAP-TLS
 <--TLS Application Data 0x00

 EAP-Response/
 EAP-Type=EAP-TLS-->
 <- EAP-Success

 Figure 4: EAP-TIBS authentication procedure for TLS1.3

Chen, et al. Expires 2 September 2023 [Page 12]

Internet-Draft EAP TLS IBS March 2023

6.2. EAP-TIBS example

 When the EAP server receives the client hello, it processes the
 message. Since it has an ECCSI raw public key from the KMS, it
 indicates that it agrees to use ECCSI and provides an ECCSI key by
 placing the SubjectPublicKeyInfo structure into the Certificate
 payload back to the client, including the OID, the identity of
 server, ServerID, which is the public key of server also, and hash
 value of KMS public parameters. The client_certificate_type
 indicates that the TLS server accepts raw public key. The TLS server
 demands client authentication, and therefore includes a
 certificate_request, which requires the client to use eccsi_sha256
 for signature. A signature value based on the eccsi_sha256 algorithm
 is carried in the CertificateVerify. The client, which has an ECCSI
 key, returns its ECCSI public key in the Certificate payload to the
 server, which includes an OID for the ECCSI signature. The example
 of EAP-TLS1.3-IBS is as follows:

Chen, et al. Expires 2 September 2023 [Page 13]

Internet-Draft EAP TLS IBS March 2023

 Authenticating Peer EAP server
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS client_hello
 signature_algorithm = (eccsi_sha256)
 server_certificate_type = (RawPublicKey)
 client_certificate_type = (RawPublicKey))->

 <- EAP-Request/
 EAP-Type=EAP-TLS
 (TLS server_hello,
 +key_share
 {client_certificate_type = RawPublicKey}
 {server_certificate_type = RawPublicKey}
 {certificate = (1.3.6.1.5.5.7.6.29, hash
 value of ECCSIPublicParameters,
 serverID)}
 {certificate_request = (eccsi_sha256)}
 {certificate_verify = {ECCSI-Sig-Value}}
 {Finished}

)
 EAP-Response/
 EAP-Type=EAP-TLS
 ({certificate = ((1.3.6.1.5.5.7.6.29,
 hash value of ECCSIPublicParameters),
 ClientID)},
 {certificate_verify = (ECCSI-Sig-Value)},
 {Finished})
 --->
 EAP-Request/
 EAP-Type=EAP-TLS
 <----TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS---->
 <---- EAP-Success

 Figure 5: EAP-TLS1.3-IBS example

Chen, et al. Expires 2 September 2023 [Page 14]

Internet-Draft EAP TLS IBS March 2023

7. IANA Considerations

 This document registers the following item in the "Method Types"
 registry under the "extensible Authentication Protocol(EAP) Registry"
 heading.

 +---------+-------------------+
 | Value | Description |
 +---------+-------------------+
 | TBD | EAP-TIBS |
 +---------+-------------------+

8. Security Considerations

 Although the identity authentication has been extended, the
 generation of session key still continues the EAP-TLS method.

9. Informative References

 [RFC6507] Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",
 RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <https://www.rfc-editor.org/rfc/rfc6507>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/rfc/rfc3748>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <https://www.rfc-editor.org/rfc/rfc5216>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/rfc/rfc7250>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5280>.

Chen, et al. Expires 2 September 2023 [Page 15]

Internet-Draft EAP TLS IBS March 2023

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5246>.

 [RFC9190] Preuß Mattsson, J. and M. Sethi, "EAP-TLS 1.3: Using the
 Extensible Authentication Protocol with TLS 1.3",
 RFC 9190, DOI 10.17487/RFC9190, February 2022,
 <https://www.rfc-editor.org/rfc/rfc9190>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

Authors’ Addresses

 Meiling Chen (editor)
 China Mobile
 BeiJing
 China
 Email: chenmeiling@chinamobile.com

 Li Su
 China Mobile
 BeiJing
 China
 Email: suli@chinamobile.com

 Haiguang Wang
 Huawei International Pte. Ltd.
 Singapore
 Email: wang.haiguang1@huawei.com

Chen, et al. Expires 2 September 2023 [Page 16]

Network Working Group O. Friel

Internet-Draft Cisco

Intended status: Standards Track D. Harkins

Expires: 20 August 2024 Hewlett-Packard Enterprise

 17 February 2024

 Bootstrapped TLS Authentication with Proof of Knowledge (TLS-POK)

 draft-ietf-emu-bootstrapped-tls-05

Abstract

 This document defines a mechanism that enables a bootstrapping device

 to establish trust and mutually authenticate against a network.

 Bootstrapping devices have a public private key pair, and this

 mechanism enables a network server to prove to the device that it

 knows the public key, and the device to prove to the server that it

 knows the private key. The mechanism leverages existing DPP and TLS

 standards and can be used in an EAP exchange.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 20 August 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Friel & Harkins Expires 20 August 2024 [Page 1]

Internet-Draft TLS-POK February 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 1.2. Bootstrapping Overview 4

 1.3. EAP Network Access 4

 2. Bootstrap Key . 4

 2.1. Alignment with Wi-Fi Alliance Device Provisioning

 Profile . 5

 3. Bootstrapping in TLS 1.3 6

 3.1. External PSK Derivation 6

 3.2. TLS 1.3 Handshake Details 7

 4. Using TLS Bootstrapping in EAP 9

 5. IANA Considerations . 10

 6. Security Considerations 10

 7. References . 11

 7.1. Normative References 11

 7.2. Informative References 12

 Authors’ Addresses . 12

1. Introduction

 On-boarding of devices with no, or limited, user interface can be

 difficult. Typically, a credential is needed to access the network,

 and network connectivity is needed to obtain a credential. This

 poses a catch-22.

 If a device has a public / private keypair, and trust in the

 integrity of a device’s public key can be obtained in an out-of-band

 fashion, a device can be authenticated and provisioned with a usable

 credential for network access. While this authentication can be

 strong, the device’s authentication of the network is somewhat

 weaker. [duckling] presents a functional security model to address

 this asymmetry.

 Device on-boarding protocols such as the Device Provisioning Profile

 [DPP], also referred to as Wi-Fi Easy Connect, address this use case

 but they have drawbacks. [DPP] for instance does not support wired

 network access, and does not specify how the device’s DPP keypair can

Friel & Harkins Expires 20 August 2024 [Page 2]

Internet-Draft TLS-POK February 2024

 be used in a TLS handshake. This document describes an on-boarding

 protocol that can be used for wired network access, which we refer to

 as TLS Proof of Knowledge or TLS-POK.

 This document does not address the problem of Wi-Fi network

 discovery, where a bootstrapping device detects multiple different

 Wi-Fi networks and needs a more robust and scalable mechanism than

 simple round-robin to determine the correct network to attach to.

 DPP addresses this issue. Thus, the intention is that DPP is the

 recommended mechanism for bootstrapping against Wi-Fi networks, and

 TLS-POK is the recommended mechanism for bootstrapping against wired

 networks.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terminology is used throughout this document.

 * 802.1X: IEEE Port-Based Network Access Control

 * BSK: Bootstrap Key which is an elliptic curve public private key

 pair from a cryptosystem suitable for doing ECDSA

 * DPP: Device Provisioning Protocol [DPP]

 * EAP: Extensible Authentication Protocol [RFC3748]

 * EC: Elliptic Curve

 * ECDSA: Elliptic Curve Digital Signature Algorithm

 * EPSK: External Pre-Shared Key

 * EST: Enrollment over Secure Transport [RFC7030]

 * PSK: Pre-Shared Key

 * TEAP: Tunnel Extensible Authentication Protocol [RFC7170]

Friel & Harkins Expires 20 August 2024 [Page 3]

Internet-Draft TLS-POK February 2024

1.2. Bootstrapping Overview

 A bootstrapping device holds a public / private elliptic curve (EC)

 key pair which we refer to as a Bootstrap Key (BSK). The private key

 of the BSK is known only by the device. The public key of the BSK is

 known by the device, is known by the owner or holder of the device,

 and is provisioned on the network by the network operator. In order

 to establish trust and mutually authenticate, the network proves to

 the device that it knows the public part of the BSK, and the device

 proves to the network that it knows the private part of the BSK.

 Once this trust has been established during bootstrapping, the

 network can provision the device with a credential that it uses for

 subsequent network access. More details on the BSK are given in

 Section 2.

1.3. EAP Network Access

 Enterprise deployments typically require an [IEEE802.1X]/EAP-based

 authentication to obtain network access. Protocols like Enrollment

 over Secure Transport (EST) [RFC7030] can be used to enroll devices

 into a Certification Authority to allow them to authenticate using

 802.1X/EAP. This creates a Catch-22 where a certificate is needed

 for network access and network access is needed to obtain

 certificate.

 Devices whose BSK public key can been obtained in an out-of-band

 fashion and provisioned on the network can perform an EAP-TLS-based

 exchange, for instance Tunnel Extensible Authentication Protocol

 (TEAP) [RFC7170], and authenticate the TLS exchange using the

 bootstrapping mechanisms defined in Section 3. This network

 connectivity can then be used to perform an enrollment protocol (such

 as provided by [RFC7170]) to obtain a credential for subsequent

 network connectivity and certificate lifecycle maintenance.

2. Bootstrap Key

 The mechanism for on-boarding of devices defined in this document

 relies on an elliptic curve (EC) bootstrap key (BSK). This BSK MUST

 be from a cryptosystem suitable for doing ECDSA. A bootstrapping

 client device has an associated EC BSK. The BSK may be static and

 baked into device firmware at manufacturing time, or may be dynamic

 and generated at on-boarding time by the device. The BSK public key

 MUST be encoded as the ASN.1 SEQUENCE SubjectPublicKeyInfo from

 [RFC5280]. If the BSK public key can be shared in a trustworthy

 manner with a TLS server, a form of "entity authentication" (the step

 from which all subsequent authentication proceeds) can be obtained.

Friel & Harkins Expires 20 August 2024 [Page 4]

Internet-Draft TLS-POK February 2024

 The exact mechanism by which the server gains knowledge of the BSK

 public key is out of scope of this specification, but possible

 mechanisms include scanning a QR code to obtain a base64 encoding of

 the ASN.1-formatted public key or uploading of a Bill of Materials

 (BOM) which includes the public key. If the QR code is physically

 attached to the client device, or the BOM is associated with the

 device, the assumption is that the public key obtained in this

 bootstrapping method belongs to the client. In this model, physical

 possession of the device implies legitimate ownership.

 The server may have knowledge of multiple BSK public keys

 corresponding to multiple devices, and existing TLS mechanisms are

 leveraged that enable the server to identity a specific bootstrap

 public key corresponding to a specific device.

 Using the process defined herein, the client proves to the server

 that it has possession of the private key of its BSK. Provided that

 the mechanism in which the server obtained the BSK public key is

 trustworthy, a commensurate amount of authenticity of the resulting

 connection can be obtained. The server also proves that it knows the

 client’s BSK public key which, if the client does not gratuitously

 expose its public key, can be used to obtain a modicum of

 correctness, that the client is connecting to the correct network

 (see [duckling]).

2.1. Alignment with Wi-Fi Alliance Device Provisioning Profile

 The definition of the BSK public key aligns with that given in [DPP].

 This, for example, enables the QR code format as defined in [DPP] to

 be reused for TLS-POK. Therefore, a device that supports both wired

 LAN and Wi-Fi LAN connections can have a single QR code printed on

 its label, or dynamically display a single QR code on a display, and

 the bootstrap key can be used for DPP if the device bootstraps

 against a Wi-Fi network, or TLS-POK if the device bootstraps against

 a wired network. Similarly, a common bootstrap public key format

 could be imported into a BOM into a server that handles devices

 connecting over both wired and Wi-Fi networks.

 Any bootstrapping method defined for, or used by, [DPP] is compatible

 with TLS-POK.

Friel & Harkins Expires 20 August 2024 [Page 5]

Internet-Draft TLS-POK February 2024

3. Bootstrapping in TLS 1.3

 Bootstrapping in TLS 1.3 leverages [RFC8773] Certificate-Based

 Authentication with an External Pre-Shared Key. The External PSK

 (EPSK) is derived from the BSK public key as described in

 Section 3.1, and the EPSK is imported using [RFC9258] Importing

 External Pre-Shared Keys (PSKs) for TLS 1.3. As the BSK public key

 is an ASN.1 SEQUENCE SubjectPublicKeyInfo, the client presents a raw

 public key certificate as specified in [RFC7250] Using Raw Public

 Keys in TLS and DTLS.

 The TLS PSK handshake gives the client proof that the server knows

 the BSK public key. Certificate based authentication of the client

 to the server using the BSK gives the server proof that the client

 knows the BSK private key. This satisfies the proof of ownership

 requirements outlined in Section 1.

3.1. External PSK Derivation

 An [RFC9258] EPSK is made up of the tuple of (Base Key, External

 Identity, Hash). The Base Key is the DER-encoded ASN.1

 subjectPublicKeyInfo representation of the BSK public key. The

 External Identity is derived from the BSK public key using [RFC5869]

 with the hash algorithm from the ciphersuite as follows:

 epskid = HKDF-Expand(HKDF-Extract(<>, Base Key),

 "tls13-bspsk-identity", L)

 where:

 - epskid is the EPSK External Identity

 - <> is a NULL salt

 - Base Key is the DER-encoded ASN.1 subjectPublicKeyInfo

 representation of the BSK public key

 - L is the length of the digest of the underlying hash

 algorithm

 The [RFC9258] ImportedIdentity structure is defined as:

 struct {

 opaque external_identity<1...2^16-1>;

 opaque context<0..2^16-1>;

 uint16 target_protocol;

 uint16 target_kdf;

 } ImportedIdentity;

 and is created using the following values:

Friel & Harkins Expires 20 August 2024 [Page 6]

Internet-Draft TLS-POK February 2024

 external_identity = epskid

 context = "tls13-bsk"

 target_protocol = TLS1.3(0x0304)

 target_kdf = HKDF_SHA256(0x0001)

 The ImportedIdentity context value MUST be "tls13-bsk". This informs

 the server that the mechanisms specified in this document for

 deriving the EPSK and executing the TLS handshake MUST be used. The

 EPSK and ImportedIdentity are used in the TLS handshake as specified

 in [RFC9258].

 A performance versus storage tradeoff a server can choose is to

 precompute the identity of every bootstrapped key with every hash

 algorithm that it uses in TLS and use that to quickly lookup the

 bootstrap key and generate the PSK. Servers that choose not to

 employ this optimization will have to do a runtime check with every

 bootstrap key it holds against the identity the client provides.

3.2. TLS 1.3 Handshake Details

 The client includes the "tls_cert_with_extern_psk" extension in the

 ClientHello, per [RFC8773]. The client identifies the BSK public key

 by inserting the serialized content of ImportedIdentity into the

 PskIdentity.identity in the PSK extension, per [RFC9258]. The client

 MUST also include the [RFC7250] "client_certificate_type" extension

 in the ClientHello and MUST specify type of RawPublicKey.

 Upon receipt of the ClientHello, the server looks up the client’s

 EPSK key in its database using the mechanisms documented in

 [RFC9258]. If no match is found, the server MUST terminate the TLS

 handshake with an alert. If the server found the matching BSK public

 key, it includes the "tls_cert_with_extern_psk" extension in the

 ServerHello message, and the corresponding EPSK identity in the

 "pre_shared_key" extension. When these extensions have been

 successfully negotiated, the TLS 1.3 key schedule MUST include both

 the EPSK in the Early Secret derivation and an (EC)DHE shared secret

 value in the Handshake Secret derivation.

 After successful negotiation of these extensions, the full TLS 1.3

 handshake is performed with the additional caveat that the server

 MUST send a CertificateRequest message and client MUST authenticate

 with a raw public key (its BSK) per [RFC7250]. The BSK is always an

 elliptic curve key pair, therefore the type of the client’s

 Certificate MUST be ECDSA and MUST contain the client’s BSK public

 key as a DER-encoded ASN.1 subjectPublicKeyInfo SEQUENCE.

Friel & Harkins Expires 20 August 2024 [Page 7]

Internet-Draft TLS-POK February 2024

 Note that the client MUST NOT share its BSK public key with the

 server until after the client has completed processing of the

 ServerHello and verified the TLS key schedule. The PSK proof has

 completed at this stage, and the server has proven to the client that

 is knows the BSK public key, and it is therefore safe for the client

 to send the BSK public key to the server in the Certificate message.

 If the PSK verification step fails when processing the ServerHello,

 the client terminates the TLS handshake and the BSK public key MUST

 NOT be shared with the server.

 When the server processes the client’s Certificate it MUST ensure

 that it is identical to the BSK public key that it used to generate

 the EPSK and ImportedIdentity for this handshake.

 When clients use the [duckling] form of authentication, they MAY

 forgo the checking of the server’s certificate in the

 CertificateVerify and rely on the integrity of the bootstrapping

 method employed to distribute its key in order to validate trust in

 the authenticated TLS connection.

 The handshake is shown in Figure 1.

 Client Server

 -------- --------

 ClientHello

 + cert_with_extern_psk

 + client_cert_type=RawPublicKey

 + key_share

 + pre_shared_key -------->

 ServerHello

 + cert_with_extern_psk

 + client_cert_type=RawPublicKey

 + key_share

 + pre_shared_key

 {EncryptedExtensions}

 {CertificateRequest}

 {Certificate}

 {CertificateVerify}

 <-------- {Finished}

 {Certificate}

 {CertificateVerify}

 {Finished} -------->

 [Application Data] <-------> [Application Data]

 Figure 1: TLS 1.3 TLS-POK Handshake

Friel & Harkins Expires 20 August 2024 [Page 8]

Internet-Draft TLS-POK February 2024

4. Using TLS Bootstrapping in EAP

 Upon "link up", an Authenticator on an 802.1X-protected port will

 issue an EAP Identity request to the newly connected peer. For

 unprovisioned devices that desire to take advantage of TLS-POK, there

 is no initial realm in which to construct an NAI (see [RFC7542]).

 This document uses the NAI mechanisms defined in

 [I-D.dekok-emu-eap-arpa] and defines the username field "tls-pok-dpp"

 that is prepended to the EAP realm "eap.arpa" yielding an initial

 identity of "tls-pok-dpp@eap.arpa". This identifier SHOULD be

 included in the EAP Identity response in order to indicate to the

 Authenticator that an EAP method that supports TLS-POK SHOULD be

 started.

 Authenticating Peer Authenticator

 ------------------- -------------

 <- EAP-Request/

 Identity

 EAP-Response/

 Identity

 (tls-pok-dpp@eap.arpa) ->

 <- EAP-Request/

 EAP-Type=TEAP

 (TLS Start)

 EAP-Response/

 EAP-Type=TEAP

 (TLS client_hello with

 tls_cert_with_extern_psk

 and pre_shared_key) ->

 .

 .

 .

 Both client and server have derived the EPSK and associated [RFC9258]

 ImportedIdentity from the BSK public key as described in Section 3.1.

 When the client starts the TLS exchange in the EAP transaction, it

 includes the ImportedIdentity structure in the pre_shared_key

 extension in the ClientHello. When the server received the

 ClientHello, it extracts the ImportedIdentity and looks up the EPSK

 and BSK public key. As previously mentioned in Section 2, the exact

 mechanism by which the server has gained knowledge of or been

 provisioned with the BSK public key is outside the scope of this

 document.

Friel & Harkins Expires 20 August 2024 [Page 9]

Internet-Draft TLS-POK February 2024

 The server continues with the TLS handshake and uses the EPSK to

 prove that it knows the BSK public key. When the client replies with

 its Certificate, CertificateVerify and Finished messages, the server

 MUST ensure that the public key in the Certificate message matches

 the BSK public key.

 Once the TLS handshake completes, the client and server have

 established mutual trust. The server can then proceed to provision a

 credential onto the client using, for example, the mechanisms

 outlined in [RFC7170].

 The client can then use this provisioned credential for subsequent

 network authentication. The BSK is only used during bootstrap, and

 it not used for any subsequent network access.

5. IANA Considerations

 None.

6. Security Considerations

 Bootstrap and trust establishment by the TLS server is based on proof

 of knowledge of the client’s bootstrap public key, a non-public

 datum. The TLS server obtains proof that the client knows its

 bootstrap public key and, in addition, also possesses its

 corresponding private key.

 Trust on the part of the client is based on successful completion of

 the TLS 1.3 handshake using the EPSK derived from the BSK. This

 proves to the client that the server knows its BSK public key. In

 addition, the client assumes that knowledge of its BSK public key is

 not widely disseminated and therefore any server that proves

 knowledge of its BSK public key is the appropriate server from which

 to receive provisioning, for instance via [RFC7170]. [duckling]

 describes a security model for this type of "imprinting".

 An attack on the bootstrapping method which substitutes the public

 key of a corrupted device for the public key of an honest device can

 result in the TLS sever on-boarding and trusting the corrupted

 device.

Friel & Harkins Expires 20 August 2024 [Page 10]

Internet-Draft TLS-POK February 2024

 If an adversary has knowledge of the bootstrap public key, the

 adversary may be able to make the client bootstrap against the

 adversary’s network. For example, if an adversary intercepts and

 scans QR labels on clients, and the adversary can force the client to

 connect to its server, then the adversary can complete the TLS-POK

 handshake with the client and the client will connect to the

 adversary’s server. Since physical possession implies ownership,

 there is nothing to prevent a stolen device from being on-boarded.

7. References

7.1. Normative References

 [I-D.dekok-emu-eap-arpa]

 DeKok, A., "The eap.arpa domain and EAP provisioning",

 Work in Progress, Internet-Draft, draft-dekok-emu-eap-

 arpa-00, 30 August 2023,

 <https://datatracker.ietf.org/doc/html/draft-dekok-emu-

 eap-arpa-00>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

 Housley, R., and W. Polk, "Internet X.509 Public Key

 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

 <https://www.rfc-editor.org/rfc/rfc5280>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

 Weiler, S., and T. Kivinen, "Using Raw Public Keys in

 Transport Layer Security (TLS) and Datagram Transport

 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

 June 2014, <https://www.rfc-editor.org/rfc/rfc7250>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8773] Housley, R., "TLS 1.3 Extension for Certificate-Based

 Authentication with an External Pre-Shared Key", RFC 8773,

 DOI 10.17487/RFC8773, March 2020,

 <https://www.rfc-editor.org/rfc/rfc8773>.

Friel & Harkins Expires 20 August 2024 [Page 11]

Internet-Draft TLS-POK February 2024

 [RFC9258] Benjamin, D. and C. A. Wood, "Importing External Pre-

 Shared Keys (PSKs) for TLS 1.3", RFC 9258,

 DOI 10.17487/RFC9258, July 2022,

 <https://www.rfc-editor.org/rfc/rfc9258>.

7.2. Informative References

 [DPP] Wi-Fi Alliance, "Device Provisioning Profile", 2020.

 [duckling] Stajano, F. and E. Rescorla, "The Ressurecting Duckling:

 Security Issues for Ad-Hoc Wireless Networks", 1999.

 [IEEE802.1X]

 IEEE, "Port-Based Network Access Control", 2010.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.

 Levkowetz, Ed., "Extensible Authentication Protocol

 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,

 <https://www.rfc-editor.org/rfc/rfc3748>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand

 Key Derivation Function (HKDF)", RFC 5869,

 DOI 10.17487/RFC5869, May 2010,

 <https://www.rfc-editor.org/rfc/rfc5869>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

 "Enrollment over Secure Transport", RFC 7030,

 DOI 10.17487/RFC7030, October 2013,

 <https://www.rfc-editor.org/rfc/rfc7030>.

 [RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,

 "Tunnel Extensible Authentication Protocol (TEAP) Version

 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,

 <https://www.rfc-editor.org/rfc/rfc7170>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,

 DOI 10.17487/RFC7542, May 2015,

 <https://www.rfc-editor.org/rfc/rfc7542>.

Authors’ Addresses

 Owen Friel

 Cisco

 Email: ofriel@cisco.com

 Dan Harkins

 Hewlett-Packard Enterprise

Friel & Harkins Expires 20 August 2024 [Page 12]

Internet-Draft TLS-POK February 2024

 Email: daniel.harkins@hpe.com

Friel & Harkins Expires 20 August 2024 [Page 13]

EMU working group A. DeKok (Ed)
Internet-Draft 26 March 2024
Obsoletes: 7170 (if approved)
Updates: 9427 (if approved)
Intended status: Standards Track
Expires: 27 September 2024

 Tunnel Extensible Authentication Protocol (TEAP) Version 1
 draft-ietf-emu-rfc7170bis-16

Abstract

 This document defines the Tunnel Extensible Authentication Protocol
 (TEAP) version 1. TEAP is a tunnel-based EAP method that enables
 secure communication between a peer and a server by using the
 Transport Layer Security (TLS) protocol to establish a mutually
 authenticated tunnel. Within the tunnel, TLV objects are used to
 convey authentication-related data between the EAP peer and the EAP
 server. This document obsoletes RFC 7170.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-emu-rfc7170bis/.

 Discussion of this document takes place on the EMU Working Group
 mailing list (mailto:emu@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/emu/. Subscribe at
 https://www.ietf.org/mailman/listinfo/emu/.

 Source for this draft and an issue tracker can be found at
 https://github.com/emu-wg/rfc7170bis.git.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

DeKok (Ed) Expires 27 September 2024 [Page 1]

Internet-Draft TEAP March 2024

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Specification Requirements 6
 1.2. Terminology . 6
 2. Protocol Overview . 7
 2.1. Architectural Model 7
 2.2. Protocol-Layering Model 8
 2.3. Outer TLVs versus Inner TLVs 9
 3. TEAP Protocol . 10
 3.1. Version Negotiation 10
 3.2. TEAP Authentication Phase 1: Tunnel Establishment 11
 3.3. Server Certificate Requirements 13
 3.4. Server Certificate Validation 13
 3.4.1. Client Certificates sent during Phase 1 14
 3.5. Resumption . 14
 3.5.1. TLS Session Resumption Using Server State 15
 3.5.2. TLS Session Resumption Using Client State 15
 3.6. TEAP Authentication Phase 2: Tunneled Authentication . . 15
 3.6.1. Inner EAP Authentication 17
 3.6.2. Inner Password Authentication 18
 3.6.3. EAP-MSCHAPv2 . 19
 3.6.4. Limitations on inner methods 20
 3.6.5. Protected Termination and Acknowledged Result
 Indication . 21
 3.7. Determining Peer-Id and Server-Id 22
 3.8. TEAP Session Identifier 23

DeKok (Ed) Expires 27 September 2024 [Page 2]

Internet-Draft TEAP March 2024

 3.9. Error Handling . 23
 3.9.1. Outer-Layer Errors 24
 3.9.2. TLS Layer Errors 24
 3.9.3. Phase 2 Errors 25
 3.10. Fragmentation . 26
 3.11. Services Requested by the Peer 26
 3.11.1. Certificate Provisioning within the Tunnel 27
 3.11.2. Certificate Content and Uses 28
 3.11.3. Server Unauthenticated Provisioning Mode 30
 3.11.4. Channel Binding 31
 4. Message Formats . 31
 4.1. TEAP Message Format 31
 4.2. TEAP TLV Format and Support 34
 4.2.1. General TLV Format 35
 4.2.2. Authority-ID TLV 36
 4.2.3. Identity-Type TLV 37
 4.2.4. Result TLV . 38
 4.2.5. NAK TLV . 39
 4.2.6. Error TLV . 41
 4.2.7. Channel-Binding TLV 43
 4.2.8. Vendor-Specific TLV 44
 4.2.9. Request-Action TLV 46
 4.2.10. EAP-Payload TLV 48
 4.2.11. Intermediate-Result TLV 49
 4.2.12. PAC TLV . 50
 4.2.13. Crypto-Binding TLV 50
 4.2.14. Basic-Password-Auth-Req TLV 53
 4.2.15. Basic-Password-Auth-Resp TLV 54
 4.2.16. PKCS#7 TLV . 55
 4.2.17. PKCS#10 TLV . 56
 4.2.18. Trusted-Server-Root TLV 57
 4.2.19. CSR-Attributes TLV 59
 4.2.20. Identity-Hint TLV 60
 4.3. TLV Rules . 61
 4.3.1. Outer TLVs . 62
 4.3.2. Inner TLVs . 63
 5. Cryptographic Calculations 63
 5.1. TEAP Authentication Phase 1: Key Derivations 63
 5.2. Intermediate Compound Key Derivations 64
 5.3. Computing the Compound MAC 67
 5.4. EAP Master Session Key Generation 68
 6. IANA Considerations . 69
 6.1. TEAP TLV Types . 69
 6.2. TEAP Error TLV (value 5) Error Codes 70
 6.3. TLS Exporter Labels 70
 6.4. Extended Master Session Key (EMSK) Parameters 71
 6.5. Extensible Authentication Protocol (EAP) Registry 71
 7. Security Considerations 71

DeKok (Ed) Expires 27 September 2024 [Page 3]

Internet-Draft TEAP March 2024

 7.1. Mutual Authentication and Integrity Protection 71
 7.2. Method Negotiation 72
 7.3. Separation of Phase 1 and Phase 2 Servers 72
 7.4. Mitigation of Known Vulnerabilities and Protocol
 Deficiencies . 73
 7.4.1. User Identity Protection and Verification 74
 7.5. Dictionary Attack Resistance 75
 7.5.1. Protection against On-Path Attacks 75
 7.6. Protecting against Forged Cleartext EAP Packets 76
 7.7. Use of Clear-text Passwords 76
 7.8. Security Claims . 76
 8. Acknowledgments . 78
 9. Changes from RFC 7170 . 78
 Appendix A Evaluation against Tunnel-Based EAP Method
 Requirements . 79
 A.1. Requirement 4.1.1: RFC Compliance 79
 A.2. Requirement 4.2.1: TLS Requirements 79
 A.3. Requirement 4.2.1.1.1: Cipher Suite Negotiation 79
 A.4. Requirement 4.2.1.1.2: Tunnel Data Protection
 Algorithms . 80
 A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key
 Establishment . 80
 A.6. Requirement 4.2.1.2: Tunnel Replay Protection 80
 A.7. Requirement 4.2.1.3: TLS Extensions 80
 A.8. Requirement 4.2.1.4: Peer Identity Privacy 80
 A.9. Requirement 4.2.1.5: Session Resumption 80
 A.10. Requirement 4.2.2: Fragmentation 80
 A.11. Requirement 4.2.3: Protection of Data External to
 Tunnel . 80
 A.12. Requirement 4.3.1: Extensible Attribute Types 81
 A.13. Requirement 4.3.2: Request/Challenge Response
 Operation . 81
 A.14. Requirement 4.3.3: Indicating Criticality of
 Attributes . 81
 A.15. Requirement 4.3.4: Vendor-Specific Support 81
 A.16. Requirement 4.3.5: Result Indication 81
 A.17. Requirement 4.3.6: Internationalization of Display
 Strings . 81
 A.18. Requirement 4.4: EAP Channel-Binding Requirements . . . 81
 A.19. Requirement 4.5.1.1: Confidentiality and Integrity . . . 81
 A.20. Requirement 4.5.1.2: Authentication of Server 82
 A.21. Requirement 4.5.1.3: Server Certificate Revocation
 Checking . 82
 A.22. Requirement 4.5.2: Internationalization 82
 A.23. Requirement 4.5.3: Metadata 82
 A.24. Requirement 4.5.4: Password Change 82
 A.25. Requirement 4.6.1: Method Negotiation 82
 A.26. Requirement 4.6.2: Chained Methods 82

DeKok (Ed) Expires 27 September 2024 [Page 4]

Internet-Draft TEAP March 2024

 A.27. Requirement 4.6.3: Cryptographic Binding with the TLS
 Tunnel . 82
 A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication . . 83
 A.29. Requirement 4.6.5: Method Metadata 83
 Appendix B. Major Differences from EAP-FAST 83
 Appendix C. Examples . 83
 C.1. Successful Authentication 84
 C.2. Failed Authentication 85
 C.3. Full TLS Handshake Using Certificate-Based Cipher
 Suite . 87
 C.4. Client Authentication during Phase 1 with Identity
 Privacy . 88
 C.5. Fragmentation and Reassembly 90
 C.6. Sequence of EAP Methods 92
 C.7. Failed Crypto-Binding 94
 C.8. Sequence of EAP Method with Vendor-Specific TLV
 Exchange . 95
 C.9. Peer Requests Inner Method after Server Sends Result
 TLV . 97
 C.10. Channel Binding . 99
 C.11. PKCS Exchange . 100
 C.12. Failure Scenario . 102
 C.13. Client certificate in Phase 1 103
 References . 104
 Normative References . 104
 Informative References . 106
 Contributors . 111
 Author’s Address . 111

1. Introduction

 A tunnel-based Extensible Authentication Protocol (EAP) method is an
 EAP method that establishes a secure tunnel and executes other EAP
 methods under the protection of that secure tunnel. A tunnel-based
 EAP method can be used in any lower-layer protocol that supports EAP
 authentication. There are several existing tunnel-based EAP methods
 that use Transport Layer Security (TLS) [RFC8446] to establish the
 secure tunnel. EAP methods supporting this include Protected EAP
 (PEAP) [PEAP], EAP Tunneled Transport Layer Security (EAP-TTLS)
 [RFC5281], and EAP Flexible Authentication via Secure Tunneling (EAP-
 FAST) [RFC4851]. However, they all are either vendor-specific or
 informational, and the industry calls for a Standards Track tunnel-
 based EAP method. [RFC6678] outlines the list of requirements for a
 standard tunnel-based EAP method.

DeKok (Ed) Expires 27 September 2024 [Page 5]

Internet-Draft TEAP March 2024

 This document describes the Tunnel Extensible Authentication Protocol
 (TEAP) version 1, which is based on EAP-FAST [RFC4851]. The changes
 from EAP-FAST to TEAP are largely minor, in order to meet the
 requirements outlined in [RFC6678] for a standard tunnel-based EAP
 method.

 This specification describes TEAPv1, and defines cryptographic
 derivations for use with TLS 1.2. When TLS 1.3 is used, the
 definitions of cryptographic derivations in [RFC9427] MUST be used
 instead of the ones given here.

 Note that while it is technically possible to use TEAPv1 with TLS 1.0
 and TLS 1.1, those protocols have been deprecated in [RFC8996]. As
 such, the definitions given here are only applicable for TLS 1.2, and
 for TLS 1.3.

1.1. Specification Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 Much of the terminology in this document comes from [RFC3748].
 Additional terms are defined below:

 Type-Length-Value (TLV)

 The TEAP protocol utilizes objects in TLV format. The TLV format
 is defined in Section 4.2.

 Inner Method

 An authentication method which is sent as application data inside
 of a TLS exchange which is carried over TEAP. The inner method
 can be an EAP authentication method, a username / password
 authentication, or a vendor-specific authentication method. Where
 the TLS connection is authenticated, the inner method could also
 be a PKCS exchange.

DeKok (Ed) Expires 27 September 2024 [Page 6]

Internet-Draft TEAP March 2024

2. Protocol Overview

 TEAP authentication occurs in two phases after the initial EAP
 Identity request/response exchange. In the first phase, TEAP employs
 the TLS [RFC8446] handshake to provide an authenticated key exchange
 and to establish a protected tunnel. Once the tunnel is established,
 the second phase begins with the peer and server engaging in further
 conversations to establish the required authentication and
 authorization policies. TEAP makes use of TLV objects to carry out
 the inner authentication, results, and other information, such as
 channel-binding information.

 As discussed in [RFC9190] Section 2.1.7 and [RFC9427] Section 3.1,
 the outer EAP Identity SHOULD be an anonymous NAI Network Access
 Identifier (NAI) [RFC7542]. While [RFC3748] Section 5.1 places no
 limits on the contents of the Identity field, [RFC7542] Section 2.6
 states that Identities which do not follow the NAI format cannot be
 transported in an Authentication, Authorization, and Accounting (AAA)
 proxy network. As such, Identities in non-NAI form are likely to not
 work outside of limited and local networks.

 Any inner identities (EAP or otherwise) SHOULD also follow the
 recommendations of [RFC9427] Section 3.1.

 [RFC7170] defined a Protected Access Credential (PAC) to mirror EAP-
 FAST [RFC4851]. However, implementation experience and analysis
 determined that the PAC was not necessary. Instead, TEAP performs
 session resumption using the NewSessionTicket message as defined in
 [RFC9190] Section 2.1.2 and Section 2.1.3. As such, the PAC has been
 deprecated.

 The TEAP conversation is used to establish or resume an existing
 session to typically establish network connectivity between a peer
 and the network. Upon successful execution of TEAP, the EAP peer and
 EAP server both derive strong session key material (Master Session
 Key [RFC3748]) that can then be communicated to the network access
 server (NAS) for use in establishing a link-layer security
 association.

2.1. Architectural Model

 The network architectural model for TEAP usage is shown below:

DeKok (Ed) Expires 27 September 2024 [Page 7]

Internet-Draft TEAP March 2024

 +----------+ +----------+ +----------+ +----------+
 | | | | | | | Inner |
 | Peer |<---->| Authen- |<---->| TEAP |<---->| Method |
 | | | ticator | | server | | server |
 | | | | | | | |
 +----------+ +----------+ +----------+ +----------+

 Figure 1: TEAP Architectural Model

 The Peer and Authenticator are defined in Section 1.2 of [RFC3748].
 The TEAP server is the "backend authentication server" defined in
 Section 1.2 of [RFC3748]. The "Inner Method server" is usually part
 of the TEAP server, and handles the application data (inner methods,
 EAP, passwords, etc.) inside of the TLS tunnel.

 The entities depicted above are logical entities and may or may not
 correspond to separate network components. For example, the TEAP
 server and Inner Method server might be a single entity; the
 authenticator and TEAP server might be a single entity; or the
 functions of the authenticator, TEAP server, and Inner Method server
 might be combined into a single physical device. For example,
 typical IEEE 802.11 deployments place the authenticator in an access
 point (AP) while a RADIUS server may provide the TEAP and inner
 method server components. The above diagram illustrates the division
 of labor among entities in a general manner and shows how a
 distributed system might be constructed; however, actual systems
 might be realized more simply. The security considerations in
 Section 7.3 provide an additional discussion of the implications of
 separating the TEAP server from the Inner Method server.

2.2. Protocol-Layering Model

 TEAP packets are encapsulated within EAP; EAP in turn requires a
 transport protocol. TEAP packets encapsulate TLS, which is then used
 to encapsulate user authentication information. Thus, TEAP messaging
 can be described using a layered model, where each layer encapsulates
 the layer above it. The following diagram clarifies the relationship
 between protocols:

DeKok (Ed) Expires 27 September 2024 [Page 8]

Internet-Draft TEAP March 2024

 +--+
 | Inner EAP Method | Other TLV information |
 |--|
 | TLV Encapsulation (TLVs) |
 |--+---------------------+
 | TLS | Optional Outer TLVs |
 |--|
 | TEAP |
 |--|
 | EAP |
 |--|
 | Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |
 +--+

 Figure 2: Protocol-Layering Model

 The TLV layer is a payload with TLV objects as defined in
 Section 4.2. The TLV objects are used to carry arbitrary parameters
 between an EAP peer and an EAP server. All data exchanges in the
 TEAP protected tunnel are encapsulated in a TLV layer.

 Methods for encapsulating EAP within carrier protocols are already
 defined. For example, IEEE 802.1X [IEEE.802-1X.2013] may be used to
 transport EAP between the peer and the authenticator; RADIUS
 [RFC3579] or Diameter [RFC4072] may be used to transport EAP between
 the authenticator and the EAP server.

2.3. Outer TLVs versus Inner TLVs

 TEAP packets may include TLVs both inside and outside the TLS tunnel
 defined as follows:

 Outer TLVs

 This term is used to refer to optional TLVs outside the TLS
 tunnel, which are only allowed in the first two messages in the
 TEAP protocol. That is the first EAP-server-to-peer message and
 first peer-to-EAP-server message. If the message is fragmented,
 the whole set of fragments is counted as one message.

 Inner TLVs

 This term is used to refer to TLVs sent within the TLS tunnel. In
 TEAP Phase 1, Outer TLVs are used to help establish the TLS
 tunnel, but no Inner TLVs are used. In Phase 2 of TEAP, TLS
 records may encapsulate zero or more Inner TLVs, but no Outer TLVs
 are used.

DeKok (Ed) Expires 27 September 2024 [Page 9]

Internet-Draft TEAP March 2024

3. TEAP Protocol

 The operation of the protocol, including Phase 1 and Phase 2, is the
 topic of this section. The format of TEAP messages is given in
 Section 4, and the cryptographic calculations are given in Section 5.

3.1. Version Negotiation

 TEAP packets contain a 3-bit Version field, following the TLS Flags
 field, which enables future TEAP implementations to be backward
 compatible with previous versions of the protocol. This
 specification documents the TEAP version 1 protocol; implementations
 of this specification MUST use a Version field set to 1.

 Version negotiation proceeds as follows:

 1. In the first EAP-Request sent with EAP type=TEAP, the EAP server
 MUST set the Version field to the highest version it supports.

 2. If the EAP peer supports this version of the protocol, it
 responds with an EAP-Response of EAP type=TEAP, including the
 version number proposed by the TEAP server.

 3. If the TEAP peer does not support the proposed version but
 supports a lower version, it responds with an EAP-Response of EAP
 type=TEAP and sets the Version field to its highest supported
 version.

 4. If the TEAP peer only supports versions higher than the version
 proposed by the TEAP server, then use of TEAP will not be
 possible. In this case, the TEAP peer sends back an EAP-Nak
 either to negotiate a different EAP type or to indicate no other
 EAP types are available.

 5. If the TEAP server does not support the version number proposed
 by the TEAP peer, it MUST either terminate the conversation with
 an EAP Failure or negotiate a new EAP type.

 6. If the TEAP server does support the version proposed by the TEAP
 peer, then the conversation continues using the version proposed
 by the TEAP peer.

 The version negotiation procedure guarantees that the TEAP peer and
 server will agree to the latest version supported by both parties.
 If version negotiation fails, then use of TEAP will not be possible,
 and another mutually acceptable EAP method will need to be negotiated
 if authentication is to proceed.

DeKok (Ed) Expires 27 September 2024 [Page 10]

Internet-Draft TEAP March 2024

 The TEAP version is not protected by TLS and hence can be modified in
 transit. In order to detect a bid-down attack on the TEAP version,
 the peers MUST exchange the TEAP version number received during
 version negotiation using the Crypto-Binding TLV described in
 Section 4.2.13. The receiver of the Crypto-Binding TLV MUST verify
 that the version received in the Crypto-Binding TLV matches the
 version sent by the receiver in the TEAP version negotiation.

 Intermediate results are signaled via the Intermediate-Result TLV.
 However, the Crypto-Binding TLV MUST be validated before any
 Intermediate-Result TLV or Result TLV is examined. If the Crypto-
 Binding TLV fails to be validated for any reason, then it is a fatal
 error and is handled as described in Section 3.9.3.

 The true success or failure of TEAP is conveyed by the Result TLV,
 with value Success or Failure. However, as EAP terminates with
 either a cleartext EAP Success or Failure, a peer will also receive a
 cleartext EAP Success or Failure. The received cleartext EAP Success
 or Failure MUST match that received in the Result TLV; the peer
 SHOULD silently discard those cleartext EAP Success or Failure
 messages which do not coincide with the status sent in the protected
 Result TLV.

3.2. TEAP Authentication Phase 1: Tunnel Establishment

 TEAP relies on the TLS handshake [RFC8446] to establish an
 authenticated and protected tunnel. The TLS version offered by the
 peer and server MUST be TLS version 1.2 [RFC5246] or later. This
 version of the TEAP implementation MUST support the following TLS
 cipher suites:

 * TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 * TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 Other cipher suites MAY be supported. Implementations MUST implement
 the recommended cipher suites in [RFC9325] Section 4.2 for TLS 1.2,
 and in [RFC9325] Section 4.3 for TLS 1.3.

 It is REQUIRED that anonymous cipher suites such as
 TLS_DH_anon_WITH_AES_128_CBC_SHA [RFC5246] only be used in the case
 when the inner method provides mutual authentication, key generation,
 and resistance to on-path and dictionary attacks. TLS cipher suites
 that do not provide confidentiality MUST NOT be used. During the
 TEAP Phase 1, the TEAP endpoints MAY negotiate TLS compression.
 During TLS tunnel establishment, TLS extensions MAY be used. For
 instance, the Certificate Status Request extension [RFC6066] and the
 Multiple Certificate Status Request extension [RFC6961] can be used

DeKok (Ed) Expires 27 September 2024 [Page 11]

Internet-Draft TEAP March 2024

 to leverage a certificate-status protocol such as Online Certificate
 Status Protocol (OCSP) [RFC6960] to check the validity of server
 certificates. TLS renegotiation indications defined in RFC 5746
 [RFC5746] MUST be supported.

 Use of TLS-PSK is NOT RECOMMENDED. TEAP has not been designed to
 work with TLS-PSK, and no use-cases, security analyses, or
 implementations have been done. TLS-PSK may work (or not) with TEAP,
 depending on the status of a particular implementation, and it is
 therefore not useful to deploy it.

 The EAP server initiates the TEAP conversation with an EAP request
 containing a TEAP/Start packet. This packet includes a set Start (S)
 bit, the TEAP version as specified in Section 3.1, and an authority
 identity TLV. The TLS payload in the initial packet is empty. The
 authority identity TLV (Authority-ID TLV) is used to provide the peer
 a hint of the server’s identity that may be useful in helping the
 peer select the appropriate credential to use. Assuming that the
 peer supports TEAP, the conversation continues with the peer sending
 an EAP-Response packet with EAP type of TEAP with the Start (S) bit
 clear and the version as specified in Section 3.1. This message
 encapsulates one or more TLS handshake messages. If the TEAP version
 negotiation is successful, then the TEAP conversation continues until
 the EAP server and EAP peer are ready to enter Phase 2. When the
 full TLS handshake is performed, then the first payload of TEAP Phase
 2 MAY be sent along with a server-finished handshake message to
 reduce the number of round trips.

 TEAP implementations MUST support mutual peer authentication during
 tunnel establishment using the TLS cipher suites specified in this
 section. The TEAP peer does not need to authenticate as part of the
 TLS exchange but can alternatively be authenticated through
 additional exchanges carried out in Phase 2.

 The TEAP tunnel protects peer identity information exchanged during
 Phase 2 from disclosure outside the tunnel. Implementations that
 wish to provide identity privacy for the peer identity need to
 carefully consider what information is disclosed outside the tunnel
 prior to Phase 2. TEAP implementations SHOULD support the immediate
 renegotiation of a TLS session to initiate a new handshake message
 exchange under the protection of the current cipher suite. This
 allows support for protection of the peer’s identity when using TLS
 client authentication. An example of the exchanges using TLS
 renegotiation to protect privacy is shown in Appendix C.

DeKok (Ed) Expires 27 September 2024 [Page 12]

Internet-Draft TEAP March 2024

3.3. Server Certificate Requirements

 Server Certificates MUST include a subjectAltName extension, with the
 dnsName attribute containing an FQDN string. Server certificates MAY
 also include with a SubjectDN containing a single element, "CN="
 containing the FQDN of the server. However, this use of SubjectDN is
 deprecated for TEAP, and is forbidden in [RFC9525] Section 2.

 The KeyUsage extension MAY be included, but are not required.

 The ExtendedKeyUsage extensions defined in [RFC5280] MAY also be
 included, but their use is discouraged. Systems SHOULD use a private
 Certification Authority (CA) for EAP in preference to public CAs.

3.4. Server Certificate Validation

 As part of the TLS negotiation, the server usually presents a
 certificate to the peer. In most cases the certificate needs to be
 validated, but there are a number of situations where the EAP peer
 need not do certificate validation:

 * when the peer has the Server’s End Entity (EE) certificate pinned
 or loaded directly into it’s Trusted Anchor store [RFC4949];

 * when the peer is requesting server unauthenticated provisioning;

 * when the peer is certain that it will be using an authenticated
 inner method.

 In some cases such as onboarding (or "bootstrapping"), the
 certificate validation may be delayed. However, once the onboarding
 has taken place, the validation steps described below MUST still be
 performed.

 In all other cases, the EAP peer MUST validate the server
 certificate. This validation is done in the same manner as is done
 for EAP-TLS, which is discussed in [RFC9190] Section 5.3 and in
 [RFC5216] Section 5.3. Further guidance on server identity
 validation can be found in [RFC9525] Section 6..

 Where the EAP peer has an NAI, EAP peers MUST use the realm to
 perform the DNS-ID validation as per [RFC9525] Section 6, The realm
 is used both to construct the list of reference identifiers as
 defined in [RFC9525] Section 6.2.1, and as the "source domain" field
 of that same section.

DeKok (Ed) Expires 27 September 2024 [Page 13]

Internet-Draft TEAP March 2024

 When performing server certificate validation, implementations MUST
 also support the rules in [RFC5280] for validating certificates
 against a known trust anchor. In addition, implementations MUST
 support matching the realm portion of the peer’s NAI against a
 SubjectAltName of type dnsName within the server certificate.
 However, in certain deployments, this comparison might not be
 appropriate or enabled.

 In most situations, the EAP peer will have no network access during
 the authentication process. It will therefore no way of correlating
 the server identity given in the certificate presented by the EAP
 server with a hostname, as is done with other protocols such as
 HTTPS. Therefore, if the EAP peer has no preconfigured trust anchor,
 it will have few, if any ways of validating the servers certificate.

3.4.1. Client Certificates sent during Phase 1

 Note that since TLS client certificates are sent in the clear with
 TLS 1.2, if identity protection is required, then it is possible for
 the TLS authentication to be renegotiated after the first server
 authentication. To accomplish this, the server will typically not
 request a certificate in the server_hello; then, after the
 server_finished message is sent and before TEAP Phase 2, the server
 MAY send a TLS hello_request. This allows the peer to perform client
 authentication by sending a client_hello if it wants to or send a
 no_renegotiation alert to the server indicating that it wants to
 continue with TEAP Phase 2 instead. Assuming that the peer permits
 renegotiation by sending a client_hello, then the server will respond
 with server_hello, certificate, and certificate_request messages.
 The peer replies with certificate, client_key_exchange, and
 certificate_verify messages. Since this renegotiation occurs within
 the encrypted TLS channel, it does not reveal client certificate
 details. It is possible to perform certificate authentication using
 EAP (for example, EAP-TLS) within the TLS session in TEAP Phase 2
 instead of using TLS handshake renegotiation.

 When TLS 1.3 or later is used, it is RECOMMENDED that client
 certificates are sent in Phase 1, instead of via Phase 2 and EAP-TLS.
 Doing so will reduce the number of round trips. Further discussion
 of this issue is given below in Section 3.6.4

3.5. Resumption

 For resumption, [RFC9190] Section 5.7 discusses EAP-TLS resumption
 for all versions of TLS, and is incorporated herein by reference.
 [RFC9427] Section 4 is also incorporated by reference, as it provides
 generic discussion of resumption for TLS-based EAP methods when TLS
 1.3 is used.

DeKok (Ed) Expires 27 September 2024 [Page 14]

Internet-Draft TEAP March 2024

 This document only describes TEAP issues when resumption is used for
 TLS versions of 1.2 and earlier. It also describes resumption issues
 which are specific to TEAP for TLS 1.3.

 If the server agrees to resume the session, Phase 2 is bypassed
 entirely. If the server does not agree to resume the session, then
 the server rejects the resumption as per [RFC9190] Section 5.7. It
 then continues with a full handshake. After the full TLS handshake
 has completed, both EAP server and peer MUST proceed with Phase 2.

 All TEAP implementations MUST support resumption. Using resumption
 can significantly improve the scalability and stability of
 authentication systems. For example, some environments such as
 universities may have users re-authenticating multiple times a day,
 if not hourly. Failure to implement resumption would increase the
 load on the user database by orders of magnitude, leading to
 unnecessary cost.

 The following sections describe how a TEAP session can be resumed
 based on server-side or client-side state.

3.5.1. TLS Session Resumption Using Server State

 TEAP session resumption is achieved in the same manner TLS achieves
 session resumption. To support session resumption, the server and
 peer cache the Session ID, master secret, and cipher suite. The peer
 attempts to resume a session by including a valid Session ID from a
 previous TLS handshake in its ClientHello message. If the server
 finds a match for the Session ID and is willing to establish a new
 connection using the specified session state, the server will respond
 with the same Session ID and proceed with the TEAP Phase 1 tunnel
 establishment based on a TLS abbreviated handshake.

3.5.2. TLS Session Resumption Using Client State

 TEAP supports the resumption of sessions based on state being stored
 on the client side using the TLS SessionTicket extension techniques
 described in [RFC5077] and [RFC9190].

3.6. TEAP Authentication Phase 2: Tunneled Authentication

 The second portion of the TEAP authentication occurs immediately
 after successful completion of Phase 1. Phase 2 occurs even if both
 peer and authenticator are authenticated in the Phase 1 TLS
 negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
 fails, as that will compromise the security as the tunnel has not
 been established successfully. Phase 2 consists of a series of
 requests and responses encapsulated in TLV objects defined in

DeKok (Ed) Expires 27 September 2024 [Page 15]

Internet-Draft TEAP March 2024

 Section 4.2. Phase 2 MUST always end with a Crypto-Binding TLV
 exchange described in Section 4.2.13 and a protected termination
 exchange described in Section 3.6.5.

 If the peer is not authenticated in Phase 1, the TEAP peer SHOULD
 send one or more Identity-Hint TLVs (Section 4.2.20 as soon as the
 TLS connection has been established. This information lets the TEAP
 server choose an authentication type which is appropriate for that
 identity. When the TEAP peer does not provide an Identity-Hint TLV,
 the TEAP server does not know which inner method is supported by the
 peer. It must necessarily choose an inner method, and propose it to
 the peer, which may reject that inner method. The result will be
 that the peer fails to authenticate, and fails to obtain network
 access.

 The TLV exchange includes the execution of zero or more inner methods
 within the protected tunnel as described in Section 3.6.1 and
 Section 3.6.2. A server MAY proceed directly to the protected
 termination exchange, without performing any inner authentication if
 it does not wish to request further authentication from the peer. A
 server MAY request one or more authentications within the protected
 tunnel. After completion of each inner method, the server decides
 whether or not to begin another inner method, or to send a Result
 TLV.

 Implementations MUST support at least two sequential inner methods,
 which allows both Machine and User authentication to be performed.
 Implementations SHOULD also limit the number of sequential inner
 authentications, as there is no reason to perform a large number of
 inner authentications in one TEAP conversation.

 Implementations wishing to use their own proprietary authentication
 method, may substitute the EAP-Payload or Basic-Password-Auth-Req TLV
 for the Vendor-Specific TLV which carries another authentication
 method. Any vendor-specific authentication method MUST support
 calculation of the Crypto-Binding TLV, and MUST use Intermediate-
 Result TLV and Result TLV as is done with other authentication
 methods.

 Implementations SHOULD support both EAP and basic password for inner
 methods. Implementations which support multiple types of inner
 method MUST support all of those methods in any order or combination.
 That is, it is explicitly permitted to "mix and match" inner methods.

 However, the peer and server MUST NOT assume that either will skip
 inner methods or other TLV exchanges, as the other peer might have a
 different security policy. The peer may have roamed to a network
 that requires conformance with a different authentication policy, or

DeKok (Ed) Expires 27 September 2024 [Page 16]

Internet-Draft TEAP March 2024

 the peer may request the server take additional action (e.g., channel
 binding) through the use of the Request-Action TLV as defined in
 Section 4.2.9.

 The completion of each inner method is signaled by an Intermediate-
 Result TLV. Where the Intermediate-Result TLV indicates failure, an
 Error TLV SHOULD also be included, using the most descriptive error
 code possible. The Intermediate-Result TLV may be accompanied by
 another TLV indicating that the server wishes to perform a subsequent
 authentication. When the authentication sequence completes, the
 server MUST send a Result TLV indicating success or failure instead
 of a TLV which carries an inner method.

3.6.1. Inner EAP Authentication

 EAP [RFC3748] prohibits use of multiple authentication methods within
 a single EAP conversation in order to limit vulnerabilities to on-
 path attacks. TEAP addresses on-path attacks through support for
 cryptographic protection of the inner EAP exchange and cryptographic
 binding of the inner EAP method(s) to the protected tunnel. Inner
 methods are executed serially in a sequence. This version of TEAP
 does not support initiating multiple inner methods simultaneously in
 parallel. The inner methods need not be distinct. For example, EAP-
 TLS ([RFC5216] and [RFC9190]) could be run twice as an inner method,
 first using machine credentials followed by a second instance using
 user credentials.

 When EAP is used as an inner method, the EAP messages are carried
 within EAP-Payload TLVs defined in Section 4.2.10. Note that in this
 use-case, TEAP is simply a carrier for EAP, much as RADIUS is a
 carrier for EAP. The full EAP state machine is run as normal, and is
 carried over the EAP-Payload TLV. Each distinct EAP authentication
 MUST be managed as a separate EAP state machine.

 A TEAP server therefore MUST begin an EAP authentication with an EAP-
 Request/Identity (carried in an EAP-Payload TLV). However, a TEAP
 server MUST NOT finish the EAP conversation with an EAP Success or
 EAP Failure packet, the Intermediate-Result TLV is used instead.

DeKok (Ed) Expires 27 September 2024 [Page 17]

Internet-Draft TEAP March 2024

 Upon completion of each EAP authentication in the tunnel, the server
 MUST send an Intermediate-Result TLV indicating the result of that
 authentication. When the result indicates, success it MUST be
 accompanied by a Crypto-Binding TLV. The peer MUST respond to the
 Intermediate-Result TLV indicating its own result and similarly on
 success MUST accompany the TLV with it’s own Crypto-Binding TLV. The
 Crypto-Binding TLV is further discussed in Section 4.2.13 and
 Section 5.3. The Intermediate-Result TLVs can be included with other
 TLVs which indicate a subsequent authentication, or with the Result
 TLV used in the protected termination exchange.

 If both peer and server indicate success, then the authentication is
 considered successful. If either indicates failure, then the
 authentication is considered failed. The result of failure of an EAP
 authentication does not always imply a failure of the overall
 authentication. If one inner method fails, the server may attempt to
 authenticate the peer with a different method (EAP or password).

 If a particular inner method succeeds, the server MUST NOT attempt a
 subsequent inner method for the same Identity-Type. For example, if
 a user is authenticated via an inner method of EAP-TLS, there is no
 benefit to also requesting additional authentication via a different
 inner method.

3.6.2. Inner Password Authentication

 The authentication server initiates password authentication by
 sending a Basic-Password-Auth-Req TLV defined in Section 4.2.14. If
 the peer wishes to participate in password authentication, then it
 responds with a Basic-Password-Auth-Resp TLV as defined in
 Section 4.2.15 that contains the username and password. If it does
 not wish to perform password authentication, then it responds with a
 NAK TLV indicating the rejection of the Basic-Password-Auth-Req TLV.

 The basic password authentication defined here is similar in
 functionality to that used by EAP-TTLS ([RFC5281]) with inner
 password authentication. It shares a similar security and risk
 analysis.

 Multiple round trips of password authentication requests and
 responses MAY be used to support some "housekeeping" functions such
 as a password or pin change before a user is considered to be
 authenticated. Multiple rounds MAY also be used to communicate a
 users password, and separately a one-time password such as Time-Based
 One-Time Passwords (TOTP) [RFC6238].

DeKok (Ed) Expires 27 September 2024 [Page 18]

Internet-Draft TEAP March 2024

 Implementations MUST limit the number of rounds trips for password
 authentication. It is reasonable to use one or two round trips.
 Further round trips are likely to be problematic, and SHOULD be
 avoided.

 The first Basic-Password-Auth-Req TLV received in a session MUST
 include a prompt, which the peer displays to the user. Subsequent
 authentication rounds SHOULD include a prompt, but it is not always
 necessary.

 When the peer first receives a Basic-Password-Auth-Req TLV, it should
 allow the user to enter both a Username and a Password, which are
 then placed in the Basic-Password-Auth-Resp TLV. If the peer
 receives subsequent Basic-Password-Auth-Req TLVs in the same
 authentication session, it MUST NOT prompt for a Username, and
 instead allow the user to enter only a password. The peer MUST copy
 the Username used in the first Basic-Password-Auth-Resp TLV into all
 subsequent Basic-Password-Auth-Resp TLVs.

 Servers MUST track the Username across multiple password rounds, and
 reject authentication if the identity changes from one Basic-
 Password-Auth-Resp TLV to the next. There is no reason for a user
 (or machine) to change identities in the middle of authentication.

 Upon reception of a Basic-Password-Auth-Resp TLV in the tunnel, the
 server MUST send an Intermediate-Result TLV indicating the result.
 The peer MUST respond to the Intermediate-Result TLV indicating its
 result. If the result indicates success, the Intermediate-Result TLV
 MUST be accompanied by a Crypto-Binding TLV. The Crypto-Binding TLV
 is further discussed in Section 4.2.13 and Section 5.3.

 The Intermediate-Result TLVs can be included with other TLVs which
 indicate a subsequent authentication, or with the Result TLV used in
 the protected termination exchange.

 The use of EAP-FAST-GTC as defined in [RFC5421] is NOT RECOMMENDED
 with TEAPv1 because EAP-FAST-GTC is not compliant with EAP-GTC
 defined in [RFC3748]. Implementations should instead make use of the
 password authentication TLVs defined in this specification.

3.6.3. EAP-MSCHAPv2

 If using EAP-MSCHAPv2 [KAMATH] as an inner EAP method, the EAP-FAST-
 MSCHAPv2 variant defined in Section 3.2.3 of [RFC5422] MUST be used,
 instead of the derivation defined in [MSCHAP].

DeKok (Ed) Expires 27 September 2024 [Page 19]

Internet-Draft TEAP March 2024

 The difference between EAP-MSCHAPv2 and EAP-FAST-MSCHAPv2 is that the
 first and the second 16 octets of EAP-MSCHAPv2 MSK are swapped when
 it is used as the Inner Method Session Keys (IMSK) for TEAP.

3.6.4. Limitations on inner methods

 Tunneled EAP methods such as (PEAP) [PEAP], EAP-TTLS [RFC5281], and
 EAP- FAST [RFC4851] MUST NOT be used for inner EAP authentication.
 There is no reason to have multiple layers of TLS to protect a
 password exchange.

 The EAP methods defined in [RFC3748] Section 5 such as MD5-Challenge,
 One-Time Password (OTP), and Generic Token Card (GTC) do not derive
 an EMSK, and are vulnerable to on-path attacks. The construction of
 the OTP and GTC methods makes this attack less relevant, as the
 information being sent is a one-time token. However, MD5-Challenge
 has no such safety, and TEAP implementations MUST NOT permit the use
 of MD5-Challenge or other inner methods which fail to perform crypto-
 binding of the inner method to the TLS session.

 Similarly, EAP-OTP and EAP-GTC MUST NOT be used for inner EAP
 authentication. They offer no benefit over the basic password
 authentication defined in Section 3.6.2.

 Implementations SHOULD limit the permitted inner EAP methods to a
 small set such as EAP-TLS, EAP-MSCHAPv2, and perhaps EAP-pwd. There
 are few reasons for allowing all possible EAP methods to be used in
 Phase 2.

 Implementations MUST NOT permit resumption for the inner EAP methods
 such as EAP-TLS. If the user or machine needs to be authenticated,
 it should use a method which provides full authentication. If the
 user or machine needs to do resumption, it can perform a full
 authentication once, and then rely on the outer TLS session for
 resumption. This restriction applies also to all TLS-based EAP
 methods which can tunnel other EAP methods. As a result, this
 document updates [RFC9427].

 EAP-TLS is permitted in Phase 2 for two use-cases. The first is when
 TLS 1.2 is used, as the client certificate is not protected as with
 TLS 1.3. It is therefore RECOMMENDED that when TLS 1.3 is used, the
 client certificate is sent in Phase 1, instead of doing EAP-TLS in
 Phase 2.

DeKok (Ed) Expires 27 September 2024 [Page 20]

Internet-Draft TEAP March 2024

 The second use-case for EAP-TLS in Phase 2 is where both the user and
 machine use client certificates for authentication. Since TLS only
 permits one client certificate to be presented, only one certificate
 can be used in Phase 1. The second certificate is then presented via
 EAP-TLS in Phase 2.

 For basic password authentication, it is RECOMMENDED that this method
 be only used for the exchange of one-time passwords. The existence
 of password-based EAP methods such as EAP-pwd ([RFC5931] and
 [RFC8146]) makes most clear-text password exchanges unnecessary. The
 updates to EAP-pwd in [RFC8146] permit it to be used with databases
 which store passwords in "salted" form, which greatly increases
 security.

 Where the inner method does not provide an MSK or EMSK, the Crypto-
 Binding TLV offers little protection, as it cannot tie the inner EMSK
 to the TLS session via the TLS-PRF. As a result, the TEAP session
 will be vulnerable to on-path active attacks. Implementations and
 deployments SHOULD adopt various mitigation strategies described in
 [RFC7029] Section 3.2.

3.6.5. Protected Termination and Acknowledged Result Indication

 A successful TEAP Phase 2 conversation MUST always end in a
 successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
 may initiate the Crypto-Binding TLV and Result TLV exchange without
 initiating any inner methods in TEAP Phase 2. After the final Result
 TLV exchange, the TLS tunnel is terminated, and a cleartext EAP
 Success or EAP Failure is sent by the server. Peers implementing
 TEAP MUST NOT accept a cleartext EAP Success or failure packet prior
 to the peer and server reaching synchronized protected result
 indication.

DeKok (Ed) Expires 27 September 2024 [Page 21]

Internet-Draft TEAP March 2024

 The Crypto-Binding TLV exchange is used to prove that both the peer
 and server participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,
 version negotiated, and Outer TLVs exchanged before the TLS tunnel
 establishment. Except as noted below, the Crypto-Binding TLV MUST be
 exchanged and verified before the final Result TLV exchange,
 regardless of whether or not there is an inner method. The Crypto-
 Binding TLV and Intermediate-Result TLV MUST be included to perform
 cryptographic binding after each successful authentication in a
 sequence of one or more inner methods. The server may send the final
 Result TLV along with an Intermediate-Result TLV and a Crypto-Binding
 TLV to indicate its intention to end the conversation. If the peer
 requires nothing more from the server, it will respond with a Result
 TLV indicating success accompanied by a Crypto-Binding TLV and
 Intermediate-Result TLV if necessary. The server then tears down the
 tunnel and sends a cleartext EAP Success or EAP Failure.

 If the peer receives a Result TLV indicating success from the server,
 but its authentication policies are not satisfied (for example, it
 requires a particular authentication mechanism be run), it may
 request further action from the server using the Request-Action TLV.
 The Request-Action TLV is sent with a Status field indicating what
 EAP Success/Failure result the peer would expect if the requested
 action is not granted. The value of the Action field indicates what
 the peer would like to do next. The format and values for the
 Request-Action TLV are defined in Section 4.2.9.

 Upon receiving the Request-Action TLV, the server may process the
 request or ignore it, based on its policy. If the server ignores the
 request, it proceeds with termination of the tunnel and sends the
 cleartext EAP Success or Failure message based on the Status field of
 the peer’s Request-Action TLV. If the server honors and processes
 the request, it continues with the requested action. The
 conversation completes with a Result TLV exchange. The Result TLV
 may be included with the TLV that completes the requested action.

 Error handling for Phase 2 is discussed in Section 3.9.3.

3.7. Determining Peer-Id and Server-Id

 The Peer-Id and Server-Id [RFC5247] may be determined based on the
 types of credentials used during either the TEAP tunnel creation or
 authentication. In the case of multiple peer authentications, all
 authenticated peer identities and their corresponding identity types
 (Section 4.2.3) need to be exported. In the case of multiple server
 authentications, all authenticated server identities need to be
 exported.

DeKok (Ed) Expires 27 September 2024 [Page 22]

Internet-Draft TEAP March 2024

 When X.509 certificates are used for peer authentication, the Peer-Id
 is determined by the subject and subjectAltName fields in the peer
 certificate. As noted in [RFC5280]:

 The subject field identifies the entity associated with the public
 key stored in the subject public key field. The subject name MAY
 be carried in the subject field and/or the subjectAltName
 extension. . . . If subject naming information is present only in
 the subjectAltName extension (e.g., a key bound only to an email
 address or URI), then the subject name MUST be an empty sequence
 and the subjectAltName extension MUST be critical.

 Where it is non-empty, the subject field MUST contain an X.500
 distinguished name (DN).

 If an inner EAP authentication method is run, then the Peer-Id is
 obtained from that inner EAP authentication method.

 When the server uses an X.509 certificate to establish the TLS
 tunnel, the Server-Id is determined in a similar fashion as stated
 above for the Peer-Id, e.g., the subject and subjectAltName fields in
 the server certificate define the Server-Id.

3.8. TEAP Session Identifier

 For TLS 1.2 and earlier, the EAP session identifier [RFC5247] is
 constructed using the tls-unique from the Phase 1 outer tunnel at the
 beginning of Phase 2 as defined by Section 3.1 of [RFC5929]. The
 Session-Id is defined as follows:

 Session-Id = teap_type | tls-unique

 where | denotes concatenation, and teap_type is the EAP Type
 assigned to TEAP

 tls-unique = tls-unique from the Phase 1 outer tunnel at the
 beginning of Phase 2 as defined by Section 3.1 of [RFC5929]

 The Session-Id derivation for TLS 1.3 is given in [RFC9427]
 Section 2.1

3.9. Error Handling

 TEAP uses the error-handling rules summarized below:

 1. Errors in the outer EAP packet layer are handled as defined in
 Section 3.9.1.

DeKok (Ed) Expires 27 September 2024 [Page 23]

Internet-Draft TEAP March 2024

 2. Errors in the TLS layer are communicated via TLS alert messages
 in all phases of TEAP.

 3. The Intermediate-Result TLVs carry success or failure indications
 of the individual inner methods in TEAP Phase 2. Errors within
 an EAP conversation in Phase 2 are expected to be handled by the
 individual EAP authentication methods.

 4. Violations of the Inner TLV rules are handled using Result TLVs
 together with Error TLVs.

 5. Tunnel-compromised errors (errors caused by a failed or missing
 Crypto-Binding) are handled using Result TLVs and Error TLVs.

3.9.1. Outer-Layer Errors

 Errors on the TEAP outer-packet layer are handled in the following
 ways:

 1. If Outer TLVs are invalid or contain unknown values, they will be
 ignored.

 2. The entire TEAP packet will be ignored if other fields (version,
 length, flags, etc.) are inconsistent with this specification.

3.9.2. TLS Layer Errors

 If the TEAP server detects an error at any point in the TLS handshake
 or the TLS layer, the server SHOULD send a TEAP request encapsulating
 a TLS record containing the appropriate TLS alert message rather than
 immediately terminating the TEAP exchange so as to allow the peer to
 inform the user of the cause of the failure. The TEAP peer MUST send
 a TEAP response to an alert message. The EAP-Response packet sent by
 the peer SHOULD contain a TEAP response with a zero-length message.
 The server MUST terminate the TEAP exchange with an EAP Failure
 packet, no matter what the client says.

 If the TEAP peer detects an error at any point in the TLS layer, the
 TEAP peer SHOULD send a TEAP response encapsulating a TLS record
 containing the appropriate TLS alert message, and which contains a
 zero-length message. The server then MUST terminate the conversation
 with an EAP failure, as discussed in the previous paragraph.

 While TLS 1.3 ([RFC8446]) allows for the TLS conversation to be
 restarted, it is not clear when that would use useful (or used) for
 TEAP. Fatal TLS errors will cause the TLS conversation to fail.
 Non-fatal TLS errors can likely be ignored entirely. As a result,
 TEAP implementations MUST NOT permit TLS restarts.

DeKok (Ed) Expires 27 September 2024 [Page 24]

Internet-Draft TEAP March 2024

3.9.3. Phase 2 Errors

 There are a large number of situations where errors can occur during
 Phase 2 processing. This section describes both those errors, and
 the recommended processing of them.

 When the server receives a Result TLV with a fatal Error TLV from the
 peer, it MUST terminate the TLS tunnel and reply with an EAP Failure.

 When the peer receives a Result TLV with a fatal Error TLV from the
 server, it MUST respond with a Result TLV indicating failure. The
 server MUST discard any data it receives from the peer, and reply
 with an EAP Failure. The final message from the peer is required by
 the EAP state machine, and serves only to allow the server to reply
 to the peer with the EAP Failure.

 The following items describe specific errors and processing in more
 detail.

 Fatal Error processing a TLV

 Any time the peer or the server finds a fatal error outside of the
 TLS layer during Phase 2 TLV processing, it MUST send a Result TLV
 of failure and an Error TLV using the most descriptive error code
 possible.

 Fatal Error during TLV Exchanges

 For errors involving the processing of the sequence of exchanges,
 such as a violation of TLV rules (e.g., multiple EAP-Payload
 TLVs), the error code is Unexpected TLVs Exchanged.

 Fatal Error due to tunnel compromise

 For errors involving a tunnel compromise such as when the Crypto-
 Binding TLV fails validation, the error code is Tunnel Compromise
 Error.

 Non-Fatal Error due to inner method

 If there is a non-fatal error while running the inner method, the
 receiving side SHOULD NOT silently drop the inner method exchange.
 Instead, it SHOULD reply with an Error TLV containing using the
 most descriptive error code possible.

 If there is no error code which matches the particular issue, then
 the value Inner Method Error (1001) SHOULD be used. This response
 is a positive indication that there was an error processing the

DeKok (Ed) Expires 27 September 2024 [Page 25]

Internet-Draft TEAP March 2024

 current inner method. The side receiving a non-fatal Error TLV
 MAY decide to start a new inner method instead or to send back a
 Result TLV to terminate the TEAP authentication session.

3.10. Fragmentation

 Fragmentation of EAP packets is discussed in [RFC5216] Section 2.1.5.
 There is no special handling of fragments for TEAP.

3.11. Services Requested by the Peer

 Several TEAP operations, including server unauthenticated
 provisioning, certificate provisioning, and channel binding, depend
 on the peer trusting the TEAP server. If the peer trusts the
 provided server certificate, then the server is authenticated.

 Typically, this authentication process involves the peer both
 validating the certificate to a trust anchor and confirming that the
 entity named by the certificate is the intended server. Server
 authentication also occurs when the procedures in Section 3.2 are
 used to resume a session where the peer and server were previously
 mutually authenticated. Alternatively, the server is deemed to be
 authenticated if an inner EAP method provides mutual authentication
 along with a Master Session Key (MSK) and/or Extended Master Session
 Key (EMSK). The inner method MUST also provide for cryptographic
 binding via the Compound Message Authentication Code (MAC), as
 discussed in Section 4.2.13. This issue is further described in
 Section 3.11.3.

 TEAP peers MUST track whether or not server authentication has taken
 place. When the server cannot be authenticated, the peer MUST NOT
 request any services such as certificate provisioning ({#cert-
 provisioning}) from it.

 Peer implementations MUST be configured so that by default, the
 current authentication session fails if the server cannot be
 authenticated. However, it is possible to have a configuration flag
 which permits access to networks where the server cannot be
 authenticated. Such configurations are NOT recommended, and further
 discussion is outside of the scope of this specification.

 An additional complication arises when an inner method authenticates
 multiple parties such as authenticating both the peer machine and the
 peer user to the EAP server. Depending on how authentication is
 achieved, only some of these parties may have confidence in it. For
 example, if a strong shared secret is used to mutually authenticate
 the user and the EAP server, the machine may not have confidence that
 the EAP server is the authenticated party if the machine cannot trust

DeKok (Ed) Expires 27 September 2024 [Page 26]

Internet-Draft TEAP March 2024

 the user not to disclose the shared secret to an attacker. In these
 cases, the parties who participate in the authentication need to be
 considered when evaluating whether the peer should request these
 services, or whether the server should provide them.

 The server MUST also authenticate the peer before providing these
 services. The alternative is to send provisioning data to
 unauthenticated and potentially malicious peers, which can have
 negative impacts on security.

 When a device is provisioned via TEAP, any subsequent authorization
 MUST be done on the authenticated credentials. That is, there may be
 no credentials (or anonymous credentials) passed in Phase 1, but
 there will be credentials passed or provisioned in Phase 2. If later
 authorizations are done on the Phase 1 identity, then a device could
 obtain the wrong authorization. If instead authorization is done on
 the authenticated credentials, then the device will obtain the
 correct kind of network access.

 The correct authorization must also be applied to any resumption, as
 noted in [RFC9190] Section 5.7. However, as it is possible in TEAP
 for the credentials to change, the new credentials MUST be associated
 with the session ticket. If this association cannot be done, then
 the server MUST invalidate any session tickets for the current
 session. This invalidation will force a full re-authentication on
 any subsequent connection, at which point the correct authorization
 will be associated with any session ticket.

 Note that the act of re-provisioning a device is essentially
 indistinguishable from any initial provisioning. The device
 authentications, and obtains new credentials via the standard
 provisioning mechanisms. The only caveat is that the device SHOULD
 NOT discard the old credentials unless either they are known to have
 expired, or the new credentials have been verified to work.

3.11.1. Certificate Provisioning within the Tunnel

 Provisioning of a peer’s certificate is supported in TEAP by
 performing the Simple PKI Request/Response from [RFC5272] using
 PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
 Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
 body of a PKCS#10 TLV (see Section 4.2.17). The TEAP server issues a
 Simple PKI Response using a PKCS#7 [RFC2315] degenerate (i.e.
 unsigned) "Certificates Only" message encoded into the body of a
 PKCS#7 TLV (see Section 4.2.16), only after an inner method has run
 and provided an identity proof on the peer prior to a certificate is
 being issued.

DeKok (Ed) Expires 27 September 2024 [Page 27]

Internet-Draft TEAP March 2024

 In order to provide linking identity and proof-of-possession by
 including information specific to the current authenticated TLS
 session within the signed certification request, the peer generating
 the request SHOULD obtain the tls-unique value from the TLS subsystem
 as defined in "Channel Bindings for TLS" [RFC5929]. The TEAP peer
 operations between obtaining the tls-unique value through generation
 of the Certification Signing Request (CSR) that contains the current
 tls-unique value and the subsequent verification of this value by the
 TEAP server are the "phases of the application protocol during which
 application-layer authentication occurs" that are protected by the
 synchronization interoperability mechanism described in the
 interoperability note in "Channel Bindings for TLS" ([RFC5929],
 Section 3.1). When performing renegotiation, TLS
 "secure_renegotiation" [RFC5746] MUST be used.

 The tls-unique value is base-64-encoded as specified in Section 4 of
 [RFC4648], and the resulting string is placed in the certification
 request challengePassword field ([RFC2985], Section 5.4.1). The
 challengePassword field is limited to 255 octets (Section 7.4.9 of
 [RFC5246] indicates that no existing cipher suite would result in an
 issue with this limitation). If tls-unique information is not
 embedded within the certification request, the challengePassword
 field MUST be empty to indicate that the peer did not include the
 optional channel-binding information (any value submitted is verified
 by the server as tls-unique information).

 The server SHOULD verify the tls-unique information. This ensures
 that the authenticated TEAP peer is in possession of the private key
 used to sign the certification request.

 The Simple PKI Request/Response generation and processing rules of
 [RFC5272] SHALL apply to TEAP, with the exception of error
 conditions. In the event of an error, the TEAP server SHOULD respond
 with an Error TLV using the most descriptive error code possible; it
 MAY ignore the PKCS#10 request that generated the error.

3.11.2. Certificate Content and Uses

 It is not enough to verify that the CSR provided by the peer to the
 authenticator is from an authenticated user. The CSR itself should
 also be examined by the authenticator or Certification Authority (CA)
 before any certificate is issued.

DeKok (Ed) Expires 27 September 2024 [Page 28]

Internet-Draft TEAP March 2024

 The format of a CSR is complex, and contains a substantial amount of
 information. That information could be incorrect, such as a user
 claiming a wrong physical address, email address, etc.
 Alternatively, the supplied information could contain private data
 which should not be sent over a TLS 1.2 connection where that data
 would be exposed.

 It is RECOMMENDED that systems provisioning these certificates
 validate that the CSR both contains the expected data, and also that
 is does not contain unexpected data. For example, a CA could refuse
 to issue the certificate if the CSR contained unknown fields, or a
 known field contained an unexpected value.

 We note that there is no requirement for a CA to sign any and all
 CSRs which are presented to it. The CA can refuse a particular CSR
 for any reasons, including local site policy.

 Once an EAP peer receives the signed certificate, that certificate
 could potentially be used for in TLS contexts other than TEAP. For
 example, the certificate could be used with EAP-TLS, or even with
 HTTPS.

 It is NOT RECOMMENDED to use certificates provisioned via TEAP with
 any other protocol which uses TLS. One method of enforcing this
 restriction is to have different CAs (or different intermediate CAs)
 which issue certificates for different uses. For example, TLS-based
 EAP methods could share one CA, and HTTPS servers could use a
 different CA. The different protocols could therefore be configured
 to validate client certificates only from their preferred CA.

 Another method of limiting the uses of a certificate is to provision
 it with an appropriate value for the Extended Key Usage field
 [RFC7299]. For example, the id-kp-eapOverLAN [RFC4334] value could
 be used to indicate that this certificate is intended for use only
 with EAP.

 It is difficult to give more detailed recommendations than the above.
 Each CA or organization may have its own local policy as to what is
 permitted or forbidden in a certificate. All we can do in this
 document is to highlight the issues, and make the reader aware that
 they have to be addressed.

DeKok (Ed) Expires 27 September 2024 [Page 29]

Internet-Draft TEAP March 2024

3.11.3. Server Unauthenticated Provisioning Mode

 In Server Unauthenticated Provisioning Mode, an unauthenticated
 tunnel is established in Phase 1, and the peer and server negotiate
 an inner method or methods in Phase 2. This inner method MUST
 support mutual authentication, provide key derivation, and be
 resistant to attacks such as on-path and dictionary attacks. In most
 cases, this inner method will be an EAP authentication method.
 Example inner methods which satisfy these criteria include EAP-pwd
 [RFC5931] and EAP-EKE [RFC6124], but not EAP-FAST-MSCHAPv2.

 This provisioning mode enables the bootstrapping of peers when the
 peer lacks the ability to authenticate the server during Phase 1.
 This includes both cases in which the cipher suite negotiated does
 not provide authentication and in which the cipher suite negotiated
 provides the authentication but the peer is unable to validate the
 identity of the server for some reason.

 Upon successful completion of the inner method in Phase 2, the peer
 and server exchange a Crypto-Binding TLV to bind the inner method
 with the outer tunnel and ensure that an on-path attack has not been
 attempted.

 Support for the Server Unauthenticated Provisioning Mode is optional.
 The cipher suite TLS_DH_anon_WITH_AES_128_CBC_SHA is RECOMMENDED when
 using Server Unauthenticated Provisioning Mode, but other anonymous
 cipher suites MAY be supported as long as the TLS pre-master secret
 is generated from contribution from both peers.

 When a strong inner method is not used with Server Unauthenticated
 Provisioning Mode, it is possible for an attacker to perform an on-
 path attack. In effect, Server Unauthenticated Provisioning Mode has
 similar security issues as just running the inner method in the open,
 without the protection of TLS. All of the information in the tunnel
 should be assumed to be visible to, and modifiable by, an attacker.

 Implementations SHOULD exchange minimal data in Server
 Unauthenticated Provisioning Mode. Instead, they should use that
 mode to set up a secure / authenticated tunnel, and then use that
 tunnel to perform any needed data exchange.

 It is RECOMMENDED that client implementations and deployments
 authenticate TEAP servers if at all possible. Authenticating the
 server means that a client can be provisioned securely with no chance
 of an attacker eaves-dropping on the connection.

DeKok (Ed) Expires 27 September 2024 [Page 30]

Internet-Draft TEAP March 2024

 Note that server Unauthenticated Provisioning can only use anonymous
 cipher suites in TLS 1.2 and earlier. These cipher suites have been
 deprecated in TLS 1.3 ([RFC8446] Section C.5). For TLS 1.3, the
 server MUST provide a certificate, and the peer performs server
 unauthenticated provisioning by not validating the certificate chain
 or any of its contents.

3.11.4. Channel Binding

 [RFC6677] defines channel bindings for EAP which solve the "lying
 NAS" and the "lying provider" problems, using a process in which the
 EAP peer gives information about the characteristics of the service
 provided by the authenticator to the Authentication, Authorization,
 and Accounting (AAA) server protected within the EAP authentication
 method. This allows the server to verify the authenticator is
 providing information to the peer that is consistent with the
 information received from this authenticator as well as the
 information stored about this authenticator.

 TEAP supports EAP channel binding using the Channel-Binding TLV
 defined in Section 4.2.7. If the TEAP server wants to request the
 channel-binding information from the peer, it sends an empty Channel-
 Binding TLV to indicate the request. The peer responds to the
 request by sending a Channel-Binding TLV containing a channel-binding
 message as defined in [RFC6677]. The server validates the channel-
 binding message and sends back a Channel-Binding TLV with a result
 code. If the server didn’t initiate the channel-binding request and
 the peer still wants to send the channel-binding information to the
 server, it can do that by using the Request-Action TLV along with the
 Channel-Binding TLV. The peer MUST only send channel-binding
 information after it has successfully authenticated the server and
 established the protected tunnel.

4. Message Formats

 The following sections describe the message formats used in TEAP.
 The fields are transmitted from left to right in network byte order.

4.1. TEAP Message Format

 A summary of the TEAP Request/Response packet format is shown below.

DeKok (Ed) Expires 27 September 2024 [Page 31]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | Ver | Message Length :
 +-+
 : Message Length | Outer TLV Length
 +-+
 : Outer TLV Length | TLS Data...
 +-+
 | Outer TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Code

 The Code field is one octet in length and is defined as follows:

 1 Request

 2 Response

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet. The Identifier field in the Response packet MUST
 match the Identifier field from the corresponding request.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, Flags, Ver,
 Message Length, TLS Data, and Outer TLVs fields. Octets outside
 the range of the Length field should be treated as Data Link Layer
 padding and should be ignored on reception.

 Type

 55 for TEAP

 Flags

DeKok (Ed) Expires 27 September 2024 [Page 32]

Internet-Draft TEAP March 2024

 0 1 2 3 4
 +-+-+-+-+-+
 |L M S O R|
 +-+-+-+-+-+

 L Length included; set to indicate the presence of the four-octet
 Message Length field. It MUST be present for the first
 fragment of a fragmented message. It MUST NOT be present for
 any other message.

 M More fragments; set on all but the last fragment.

 S TEAP start; set in a TEAP Start message sent from the server to
 the peer.

 O Outer TLV length included; set to indicate the presence of the
 four-octet Outer TLV Length field. It MUST be present only in
 the initial request and response messages. If the initial
 message is fragmented, then it MUST be present only on the
 first fragment.

 R Reserved (MUST be zero and ignored upon receipt)

 Ver

 This field contains the version of the protocol. This document
 describes version 1 (001 in binary) of TEAP.

 Message Length

 The Message Length field is four octets and is present only if the
 L bit is set. This field provides the total length of the message
 that may be fragmented over the data fields of multiple packets.

 Outer TLV Length

 The Outer TLV Length field is four octets and is present only if
 the O bit is set. This field provides the total length of the
 Outer TLVs if present.

 TLS Data

 When the TLS Data field is present, it consists of an encapsulated
 TLS packet in TLS record format. A TEAP packet with Flags and
 Version fields, but with zero length TLS Data field, is used to
 indicate TEAP acknowledgment for either a fragmented message, a
 TLS Alert message, or a TLS Finished message.

DeKok (Ed) Expires 27 September 2024 [Page 33]

Internet-Draft TEAP March 2024

 Outer TLVs

 The Outer TLVs consist of the optional data used to help establish
 the TLS tunnel in TLV format. They are only allowed in the first
 two messages in the TEAP protocol. That is the first EAP-server-
 to-peer message and first peer-to-EAP-server message. The start
 of the Outer TLVs can be derived from the EAP Length field and
 Outer TLV Length field.

4.2. TEAP TLV Format and Support

 The TLVs defined here are TLV objects. The TLV objects could be used
 to carry arbitrary parameters between an EAP peer and EAP server
 within the protected TLS tunnel.

 The EAP peer may not necessarily implement all the TLVs supported by
 the EAP server. To allow for interoperability, TLVs are designed to
 allow an EAP server to discover if a TLV is supported by the EAP peer
 using the NAK TLV. The mandatory bit in a TLV indicates whether
 support of the TLV is required. If the peer or server does not
 support a TLV marked mandatory, then it MUST send a NAK TLV in the
 response, and all the other TLVs in the message MUST be ignored. If
 an EAP peer or server finds an unsupported TLV that is marked as
 optional, it can ignore the unsupported TLV. It MUST NOT send a NAK
 TLV for a TLV that is not marked mandatory. If all TLVs in a message
 are marked optional and none are understood by the peer, then a NAK
 TLV or Result TLV could be sent to the other side in order to
 continue the conversation.

 Note that a peer or server may support a TLV with the mandatory bit
 set but may not understand the contents. The appropriate response to
 a supported TLV with content that is not understood is defined by the
 individual TLV specification.

 EAP implementations compliant with this specification MUST support
 TLV exchanges as well as the processing of mandatory/optional
 settings on the TLV. Implementations conforming to this
 specification MUST support the following TLVs:

 * Authority-ID TLV

 * Identity-Type TLV

 * Result TLV

 * NAK TLV

 * Error TLV

DeKok (Ed) Expires 27 September 2024 [Page 34]

Internet-Draft TEAP March 2024

 * Request-Action TLV

 * EAP-Payload TLV

 * Intermediate-Result TLV

 * Crypto-Binding TLV

 * Basic-Password-Auth-Req TLV

 * Basic-Password-Auth-Resp TLV

4.2.1. General TLV Format

 TLVs are defined as described below. The fields are transmitted from
 left to right.

 If a peer or server receives a TLV which is not of the correct
 format, the TLV MUST be discarded. It is generally useful to log an
 error or debugging message which indicates which TLV had an issue,
 and what the problem is. However, TLVs which are malformed are
 invalid, and cannot be used.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value...
 +-+

 M

 0 Optional TLV

 1 Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 A 14-bit field, denoting the TLV type. Allocated types include:

 0 Unassigned

 1 Authority-ID TLV (Section 4.2.2)

DeKok (Ed) Expires 27 September 2024 [Page 35]

Internet-Draft TEAP March 2024

 2 Identity-Type TLV (Section 4.2.3)

 3 Result TLV (Section 4.2.4)

 4 NAK TLV (Section 4.2.5)

 5 Error TLV (Section 4.2.6)

 6 Channel-Binding TLV (Section 4.2.7)

 7 Vendor-Specific TLV (Section 4.2.8)

 8 Request-Action TLV (Section 4.2.9)

 9 EAP-Payload TLV (Section 4.2.10)

 10 Intermediate-Result TLV (Section 4.2.11)

 11 PAC TLV (DEPRECATED)

 12 Crypto-Binding TLV (Section 4.2.13)

 13 Basic-Password-Auth-Req TLV (Section 4.2.14)

 14 Basic-Password-Auth-Resp TLV (Section 4.2.15)

 15 PKCS#7 TLV (Section 4.2.16)

 16 PKCS#10 TLV (Section 4.2.17)

 17 Trusted-Server-Root TLV (Section 4.2.18)

 18 CSR-Attributes TLV (Section 4.2.19)

 19 Identity-Hint TLV (Section 4.2.20)

 Length

 The length of the Value field in octets.

 Value

 The value of the TLV.

4.2.2. Authority-ID TLV

DeKok (Ed) Expires 27 September 2024 [Page 36]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | ID...
 +-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 1 - Authority-ID

 Length

 The Length field is two octets and contains the length of the ID
 field in octets.

 ID

 Hint of the identity of the server to help the peer to match the
 credentials available for the server. It should be unique across
 the deployment.

4.2.3. Identity-Type TLV

 The Identity-Type TLV allows an EAP server to send a hint to help the
 EAP peer select the right type of identity, for example, user or
 machine. TEAPv1 implementations MUST support this TLV. Only one
 Identity-Type TLV SHOULD be present in the TEAP request or response
 packet. The Identity-Type TLV request MUST come with an EAP-Payload
 TLV or Basic-Password-Auth-Req TLV. If the EAP peer does have an
 identity corresponding to the identity type requested, then the peer
 SHOULD respond with an Identity-Type TLV with the requested type. If
 the Identity-Type field does not contain one of the known values or
 if the EAP peer does not have an identity corresponding to the
 identity type requested, then the peer SHOULD respond with an
 Identity-Type TLV with the one of available identity types. If the
 server receives an identity type in the response that does not match
 the requested type, then the peer does not possess the requested
 credential type, and the server SHOULD proceed with authentication

DeKok (Ed) Expires 27 September 2024 [Page 37]

Internet-Draft TEAP March 2024

 for the credential type proposed by the peer, proceed with requesting
 another credential type, or simply apply the network policy based on
 the configured policy, e.g., sending Result TLV with Failure.

 The Identity-Type TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Identity-Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 2 - Identity-Type TLV

 Length

 2

 Identity-Type

 The Identity-Type field is two octets. Values include:

 1 User

 2 Machine

4.2.4. Result TLV

 The Result TLV provides support for acknowledged success and failure
 messages for protected termination within TEAP. If the Status field
 does not contain one of the known values, then the peer or EAP server
 MUST treat this as a fatal error of Unexpected TLVs Exchanged. The
 behavior of the Result TLV is further discussed in Section 3.6.5 and
 Section 3.9.3 A Result TLV indicating failure MUST NOT be accompanied
 by the following TLVs: NAK, EAP-Payload TLV, or Crypto-Binding TLV.
 The Result TLV is defined as follows:

DeKok (Ed) Expires 27 September 2024 [Page 38]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 3 - Result TLV

 Length

 2

 Status

 The Status field is two octets. Values include:

 1 Success

 2 Failure

4.2.5. NAK TLV

 The NAK TLV allows a peer to detect TLVs that are not supported by
 the other peer. A TEAP packet can contain 0 or more NAK TLVs. A NAK
 TLV should not be accompanied by other TLVs. A NAK TLV MUST NOT be
 sent in response to a message containing a Result TLV, instead a
 Result TLV of failure should be sent indicating failure and an Error
 TLV of Unexpected TLVs Exchanged. The NAK TLV is defined as follows:

DeKok (Ed) Expires 27 September 2024 [Page 39]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | NAK-Type | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 4 - NAK TLV

 Length

 >=6

 Vendor-Id

 The Vendor-Id field is four octets and contains the Vendor-Id of
 the TLV that was not supported. The high-order octet is 0, and
 the low-order three octets are the Structure of Management
 Information (SMI) Network Management Private Enterprise Number of
 the Vendor in network byte order. The Vendor-Id field MUST be
 zero for TLVs that are not Vendor-Specific TLVs.

 NAK-Type

 The NAK-Type field is two octets. The field contains the type of
 the TLV that was not supported. A TLV of this type MUST have been
 included in the previous packet.

 TLVs

 This field contains a list of zero or more TLVs, each of which
 MUST NOT have the mandatory bit set. These optional TLVs are for
 future extensibility to communicate why the offending TLV was
 determined to be unsupported.

DeKok (Ed) Expires 27 September 2024 [Page 40]

Internet-Draft TEAP March 2024

4.2.6. Error TLV

 The Error TLV allows an EAP peer or server to indicate errors to the
 other party. A TEAP packet can contain 0 or more Error TLVs. The
 Error-Code field describes the type of error. Error codes 1-999
 represent successful outcomes (informative messages), 1000-1999
 represent warnings, and 2000-2999 represent fatal errors. A fatal
 Error TLV MUST be accompanied by a Result TLV indicating failure, and
 the conversation is terminated as described in Section 3.9.3.

 Many of the error codes below refer to errors in inner method
 processing that may be retrieved if made available by the inner
 method. Implementations MUST take care that error messages do not
 reveal too much information to an attacker. For example, the usage
 of error message 1031 (User account credentials incorrect) is NOT
 RECOMMENDED, because it allows an attacker to determine valid
 usernames by differentiating this response from other responses. It
 should only be used for troubleshooting purposes.

 The Error TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Error-Code |
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 5 - Error TLV

 Length

 4

 Error-Code

DeKok (Ed) Expires 27 September 2024 [Page 41]

Internet-Draft TEAP March 2024

 The Error-Code field is four octets. Currently defined values for
 Error-Code include:

 1 User account expires soon

 2 User account credential expires soon

 3 User account authorizations change soon

 4 Clock skew detected

 5 Contact administrator

 6 User account credentials change required

 1001 Inner Method Error

 1002 Unspecified authentication infrastructure problem

 1003 Unspecified authentication failure

 1004 Unspecified authorization failure

 1005 User account credentials unavailable

 1006 User account expired

 1007 User account locked: try again later

 1008 User account locked: admin intervention required

 1009 Authentication infrastructure unavailable

 1010 Authentication infrastructure not trusted

 1011 Clock skew too great

 1012 Invalid inner realm

 1013 Token out of sync: administrator intervention required

 1014 Token out of sync: PIN change required

 1015 Token revoked

 1016 Tokens exhausted

 1017 Challenge expired

DeKok (Ed) Expires 27 September 2024 [Page 42]

Internet-Draft TEAP March 2024

 1018 Challenge algorithm mismatch

 1019 Client certificate not supplied

 1020 Client certificate rejected

 1021 Realm mismatch between inner and outer identity

 1022 Unsupported Algorithm In Certificate Signing Request

 1023 Unsupported Extension In Certificate Signing Request

 1024 Bad Identity In Certificate Signing Request

 1025 Bad Certificate Signing Request

 1026 Internal CA Error

 1027 General PKI Error

 1028 Inner method’s channel-binding data required but not
 supplied

 1029 Inner method’s channel-binding data did not include
 required information

 1030 Inner method’s channel binding failed

 1031 User account credentials incorrect [USAGE NOT RECOMMENDED]

 1032 Inner method not supported

 2001 Tunnel Compromise Error

 2002 Unexpected TLVs Exchanged

4.2.7. Channel-Binding TLV

 The Channel-Binding TLV provides a mechanism for carrying channel-
 binding data from the peer to the EAP server and a channel-binding
 response from the EAP server to the peer as described in [RFC6677].
 TEAPv1 implementations MAY support this TLV, which cannot be
 responded to with a NAK TLV. If the Channel-Binding data field does
 not contain one of the known values or if the EAP server does not
 support this TLV, then the server MUST ignore the value. The
 Channel-Binding TLV is defined as follows:

DeKok (Ed) Expires 27 September 2024 [Page 43]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Data ...
 +-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 6 - Channel-Binding TLV

 Length

 variable

 Data

 The data field contains a channel-binding message as defined in
 Section 5.3 of [RFC6677].

4.2.8. Vendor-Specific TLV

 The Vendor-Specific TLV is available to allow vendors to support
 their own extended attributes not suitable for general usage. A
 Vendor-Specific TLV attribute can contain one or more TLVs, referred
 to as Vendor TLVs. The TLV type of a particular Vendor TLV is
 defined by the vendor. All the Vendor TLVs inside a single Vendor-
 Specific TLV belong to the same vendor. There can be multiple
 Vendor-Specific TLVs from different vendors in the same message.
 Error handling in the Vendor TLV could use the vendor’s own specific
 error-handling mechanism or use the standard TEAP error codes
 defined.

 Vendor TLVs may be optional or mandatory. Vendor TLVs sent with
 Result TLVs MUST be marked as optional. If the Vendor-Specific TLV
 is marked as mandatory, then it is expected that the receiving side
 needs to recognize the vendor ID, parse all Vendor TLVs within, and
 deal with error handling within the Vendor-Specific TLV as defined by
 the vendor.

DeKok (Ed) Expires 27 September 2024 [Page 44]

Internet-Draft TEAP March 2024

 Where a Vendor-Specific TLV carries an authentication protocol in the
 inner method, it MUST define values for MSK and EMSK. Where these
 values cannot be derived from cryptographic primitives, they MUST be
 set to zero, as happens when Basic-Password-Auth-Req is used.

 The Vendor-Specific TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | Vendor TLVs....
 +-+

 M

 0 or 1

 R

 Reserved, set to zero (0)

 TLV Type

 7 - Vendor-Specific TLV

 Length

 4 + cumulative length of all included Vendor TLVs

 Vendor-Id

 The Vendor-Id field is four octets and contains the Vendor-Id of
 the TLV. The high-order octet is 0, and the low-order 3 octets
 are the SMI Network Management Private Enterprise Number of the
 Vendor in network byte order.

 Vendor TLVs

 This field is of indefinite length. It contains Vendor-Specific
 TLVs, in a format defined by the vendor.

DeKok (Ed) Expires 27 September 2024 [Page 45]

Internet-Draft TEAP March 2024

4.2.9. Request-Action TLV

 The Request-Action TLV MAY be sent at any time. The Request-Action
 TLV allows the peer or server to request that other side negotiates
 additional inner methods or process TLVs which are passed inside of
 the Request-Action TLV.

 The receiving side MUST process this TLV. The processing for the TLV
 is as follows:

 The receiving entity MAY choose to process any of the TLVs that
 are included in the message.

 If the receiving entity chooses NOT to process any TLV in the
 list, then it sends back a Result TLV with the same code in the
 Status field of the Request-Action TLV.

 If multiple Request-Action TLVs are in the request, the session
 can continue if any of the TLVs in any Request-Action TLV are
 processed.

 If multiple Request-Action TLVs are in the request and none of
 them is processed, then the most fatal status should be used in
 the Result TLV returned. If a status code in the Request-Action
 TLV is not understood by the receiving entity, then it should be
 treated as a fatal error.

 After processing the TLVs or inner method in the request, another
 round of Result TLV exchange would occur to synchronize the final
 status on both sides.

 The peer or the server MAY send multiple Request-Action TLVs to the
 other side. Two Request-Action TLVs MUST NOT occur in the same TEAP
 packet if they have the same Status value. The order of processing
 multiple Request-Action TLVs is implementation dependent. If the
 receiving side processes the optional (non-fatal) items first, it is
 possible that the fatal items will disappear at a later time. If the
 receiving side processes the fatal items first, the communication
 time will be shorter.

 The peer or the server MAY return a new set of Request-Action TLVs
 after one or more of the requested items has been processed and the
 other side has signaled it wants to end the EAP conversation.

 The Request-Action TLV is defined as follows:

DeKok (Ed) Expires 27 September 2024 [Page 46]

Internet-Draft TEAP March 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | Action | TLVs....
 +--+-+-+-+-+-+-+-+-+-+-+-+-

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 8 - Request-Action TLV

 Length

 2 + cumulative length of all included TLVs

 Status

 The Status field is one octet. This indicates the result if the
 party who receives this TLV does not process the action. Values
 include:

 1 Success

 2 Failure

 Action

 The Action field is one octet. Values include:

 1 Process-TLV

 2 Negotiate-EAP

 TLVs

 This field is of indefinite length. It contains TLVs that the
 peer wants the server to process.

DeKok (Ed) Expires 27 September 2024 [Page 47]

Internet-Draft TEAP March 2024

4.2.10. EAP-Payload TLV

 To allow piggybacking an EAP request or response with other TLVs, the
 EAP-Payload TLV is defined, which includes an encapsulated EAP packet
 and a list of optional TLVs. The optional TLVs are provided for
 future extensibility to provide hints about the current EAP
 authentication. Only one EAP-Payload TLV is allowed in a message.
 The EAP-Payload TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | EAP packet...
 +-+
 | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 9 - EAP-Payload TLV

 Length

 length of embedded EAP packet + cumulative length of additional
 TLVs

 EAP packet

 This field contains a complete EAP packet, including the EAP
 header (Code, Identifier, Length, Type) fields. The length of
 this field is determined by the Length field of the encapsulated
 EAP packet.

 TLVs

DeKok (Ed) Expires 27 September 2024 [Page 48]

Internet-Draft TEAP March 2024

 This (optional) field contains a list of TLVs associated with the
 EAP packet field. The TLVs MUST NOT have the mandatory bit set.
 The total length of this field is equal to the Length field of the
 EAP-Payload TLV, minus the Length field in the EAP header of the
 EAP packet field.

4.2.11. Intermediate-Result TLV

 The Intermediate-Result TLV signals intermediate Success and Failure
 messages for all inner methods. The Intermediate-Result TLV MUST be
 be used for all inner methods.

 An Intermediate-Result TLV indicating Success MUST be accompanied by
 a Crypto-Binding TLV.

 An Intermediate-Result TLV indicating Failure SHOULD be accompanied
 by an Error TLV which indicates why the authentication failed.

 The optional TLVs associated with this TLV are provided for future
 extensibility to provide hints about the current result. The
 Intermediate-Result TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | TLVs...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 10 - Intermediate-Result TLV

 Length

 2 + cumulative length of the embedded associated TLVs

 Status

DeKok (Ed) Expires 27 September 2024 [Page 49]

Internet-Draft TEAP March 2024

 The Status field is two octets. Values include:

 1 Success

 2 Failure

 TLVs

 This field is of indeterminate length and contains zero or more of
 the TLVs associated with the Intermediate Result TLV. The TLVs in
 this field MUST NOT have the mandatory bit set.

4.2.12. PAC TLV

 [RFC7170] defined a Protected Access Credential (PAC) to mirror EAP-
 FAST [RFC4851]. However, implementation experience and analysis
 determined that the PAC was not necessary. Instead, TEAP performs
 session resumption using the NewSessionTicket message as defined in
 [RFC9190] Section 2.1.2 and Section 2.1.3. As such, the PAC TLV has
 been deprecated.

4.2.13. Crypto-Binding TLV

 The Crypto-Binding TLV is used to prove that both the peer and server
 participated in the tunnel establishment and sequence of
 authentications. It also provides verification of the TEAP type,
 version negotiated, and Outer TLVs exchanged before the TLS tunnel
 establishment.

 The Crypto-Binding TLV MUST be exchanged and validated before any
 Intermediate-Result or Result TLV value is examined, regardless of
 whether there is an inner method or not. It MUST be included with
 the Intermediate-Result TLV to perform cryptographic binding after
 each successful inner method in a sequence of inner methods, before
 proceeding with another inner method. If no MSK or EMSK has been
 generated and a Crypto-Binding TLV is required then the MSK Compound
 MAC field contains the MAC using keys generated according to
 Section 5.3.

 The Crypto-Binding TLV is valid only if the following checks pass:

 * The Crypto-Binding TLV version is supported.

 * The MAC verifies correctly.

 * The received version in the Crypto-Binding TLV matches the version
 sent by the receiver during the EAP version negotiation.

DeKok (Ed) Expires 27 September 2024 [Page 50]

Internet-Draft TEAP March 2024

 * The subtype is set to the correct value.

 If any of the above checks fails, then the TLV is invalid. An
 invalid Crypto-Binding TLV is a fatal error and is handled as
 described in Section 3.9.3

 The Crypto-Binding TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Version | Received Ver.| Flags|Sub-Type|
 +-+
 | |
 ˜ Nonce ˜
 | |
 +-+
 | |
 ˜ EMSK Compound MAC ˜
 | |
 +-+
 | |
 ˜ MSK Compound MAC ˜
 | |
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 12 - Crypto-Binding TLV

 Length

 76

 Reserved

 Reserved, set to zero (0)

DeKok (Ed) Expires 27 September 2024 [Page 51]

Internet-Draft TEAP March 2024

 Version

 The Version field is a single octet, which is set to the version
 of Crypto-Binding TLV the TEAP method is using. For an
 implementation compliant with this version of TEAP, the version
 number MUST be set to one (1).

 Received Ver

 The Received Ver field is a single octet and MUST be set to the
 TEAP version number received during version negotiation. Note
 that this field only provides protection against downgrade
 attacks, where a version of EAP requiring support for this TLV is
 required on both sides.

 Flags

 The Flags field is four bits. Defined values include

 1 EMSK Compound MAC is present

 2 MSK Compound MAC is present

 3 Both EMSK and MSK Compound MAC are present

 Sub-Type

 The Sub-Type field is four bits. Defined values include

 0 Binding Request

 1 Binding Response

 Nonce

 The Nonce field is 32 octets. It contains a 256-bit nonce that is
 temporally unique, used for Compound MAC key derivation at each
 end. The nonce in a request MUST have its least significant bit
 set to zero (0), and the nonce in a response MUST have the same
 value as the request nonce except the least significant bit MUST
 be set to one (1).

 EMSK Compound MAC

 The EMSK Compound MAC field is 20 octets. This can be the Server
 MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
 MAC is described in Section 5.3.

DeKok (Ed) Expires 27 September 2024 [Page 52]

Internet-Draft TEAP March 2024

 Note that this field is always 20 octets in length. Any larger
 MAC is simply truncated. All validations or comparisons MUST be
 done on the truncated value.

 MSK Compound MAC

 The MSK Compound MAC field is 20 octets. This can be the Server
 MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
 MAC is described in Section 5.3.

 Note that this field is always 20 octets in length. Any larger
 MAC is simply truncated. All validations or comparisons MUST be
 done on the truncated value.

4.2.14. Basic-Password-Auth-Req TLV

 The Basic-Password-Auth-Req TLV is used by the authentication server
 to request a username and password from the peer. It contains an
 optional user prompt message for the request. The peer is expected
 to obtain the username and password and send them in a Basic-
 Password-Auth-Resp TLV.

 The Basic-Password-Auth-Req TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Prompt
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 13 - Basic-Password-Auth-Req TLV

 Length

 variable

DeKok (Ed) Expires 27 September 2024 [Page 53]

Internet-Draft TEAP March 2024

 Prompt

 optional user prompt message in UTF-8 [RFC3629] format

4.2.15. Basic-Password-Auth-Resp TLV

 The Basic-Password-Auth-Resp TLV is used by the peer to respond to a
 Basic-Password-Auth-Req TLV with a username and password. The TLV
 contains a username and password. The username and password are in
 UTF-8 [RFC3629] format.

 The Basic-Password-Auth-Resp TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Userlen | Username
 +-+
 ... Username ...
 +-+
 | Passlen | Password
 +-+
 ... Password ...
 +-+

 M

 Mandatory, set to one (1)

 R

 Reserved, set to zero (0)

 TLV Type

 14 - Basic-Password-Auth-Resp TLV

 Length

 variable

 Userlen

 Length of Username field in octets

 The value of Userlen MUST NOT be zero.

DeKok (Ed) Expires 27 September 2024 [Page 54]

Internet-Draft TEAP March 2024

 Username

 Username in UTF-8 [RFC3629] format

 The content of Username SHOULD follow the guidelines set in
 [RFC9427] Section 3.1.

 Passlen

 Length of Password field in octets

 The value of Passlen MUST NOT be zero.

 Password

 Password in UTF-8 [RFC3629] format

 Note that there is no requirement that passwords be humanly
 readable. Octets in a passwords may have values less than 0x20,
 including 0x00.

4.2.16. PKCS#7 TLV

 The PKCS#7 TLV is used by the EAP server to deliver certificate(s) to
 the peer. The format consists of a certificate or certificate chain
 in binary DER encoding [X.690] in a degenerate Certificates Only
 PKCS#7 SignedData Content as defined in [RFC5652].

 When used in response to a Trusted-Server-Root TLV request from the
 peer, the EAP server MUST send the PKCS#7 TLV inside a Trusted-
 Server-Root TLV. When used in response to a PKCS#10 certificate
 enrollment request from the peer, the EAP server MUST send the PKCS#7
 TLV without a Trusted-Server-Root TLV. The PKCS#7 TLV is always
 marked as optional, which cannot be responded to with a NAK TLV.
 TEAP implementations that support the Trusted-Server-Root TLV or the
 PKCS#10 TLV MUST support this TLV. Peers MUST NOT assume that the
 certificates in a PKCS#7 TLV are in any order.

 TEAP servers MAY return self-signed certificates. Peers that handle
 self-signed certificates or trust anchors MUST NOT implicitly trust
 these certificates merely due to their presence in the certificate
 bag. Note: Peers are advised to take great care in deciding whether
 to use a received certificate as a trust anchor. The authenticated
 nature of the tunnel in which a PKCS#7 bag is received can provide a
 level of authenticity to the certificates contained therein. Peers
 are advised to take into account the implied authority of the EAP
 server and to constrain the trust it can achieve through the trust
 anchor received in a PKCS#7 TLV.

DeKok (Ed) Expires 27 September 2024 [Page 55]

Internet-Draft TEAP March 2024

 The PKCS#7 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS#7 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 15 - PKCS#7 TLV

 Length

 The length of the PKCS#7 Data field.

 PKCS#7 Data

 This field contains the DER-encoded X.509 certificate or
 certificate chain in a Certificates-Only PKCS#7 SignedData
 message.

4.2.17. PKCS#10 TLV

 The PKCS#10 TLV is used by the peer to initiate the "simple PKI"
 Request/Response from [RFC5272]. The format of the request is as
 specified in Section 6.4 of [RFC4945]. The PKCS#10 TLV is always
 marked as optional, which cannot be responded to with a NAK TLV.

 The PKCS#10 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS#10 Data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

DeKok (Ed) Expires 27 September 2024 [Page 56]

Internet-Draft TEAP March 2024

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 16 - PKCS#10 TLV

 Length

 The length of the PKCS#10 Data field.

 PKCS#10 Data

 This field contains the DER-encoded PKCS#10 certificate request.

4.2.18. Trusted-Server-Root TLV

 Trusted-Server-Root TLV facilitates the request and delivery of a
 trusted server root certificate. The Trusted-Server-Root TLV can be
 exchanged in regular TEAP authentication mode or provisioning mode.
 The Trusted-Server-Root TLV is always marked as optional and cannot
 be responded to with a Negative Acknowledgment (NAK) TLV. The
 Trusted-Server-Root TLV MUST only be sent as an Inner TLV (inside the
 protection of the tunnel).

 After the peer has determined that it has successfully authenticated
 the EAP server and validated the Crypto-Binding TLV, it MAY send one
 or more Trusted-Server-Root TLVs (marked as optional) to request the
 trusted server root certificates from the EAP server. The EAP server
 MAY send one or more root certificates with a Public Key
 Cryptographic System #7 (PKCS#7) TLV inside the Trusted-Server-Root
 TLV. The EAP server MAY also choose not to honor the request.

 The Trusted-Server-Root TLV allows the peer to send a request to the
 EAP server for a list of trusted roots. The server may respond with
 one or more root certificates in PKCS#7 [RFC2315] format.

 If the EAP server sets the credential format to PKCS#7-Server-
 Certificate-Root, then the Trusted-Server-Root TLV should contain the
 root of the certificate chain of the certificate issued to the EAP
 server packaged in a PKCS#7 TLV. If the server certificate is a
 self-signed certificate, then the root is the self-signed
 certificate.

DeKok (Ed) Expires 27 September 2024 [Page 57]

Internet-Draft TEAP March 2024

 If the Trusted-Server-Root TLV credential format contains a value
 unknown to the peer, then the EAP peer should ignore the TLV.

 The Trusted-Server-Root TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Credential-Format | Cred TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 17 - Trusted-Server-Root TLV

 Length

 >=2 octets

 Credential-Format

 The Credential-Format field is two octets. Values include:

 1 - PKCS#7-Server-Certificate-Root

 Cred TLVs

 This field is of indefinite length. It contains TLVs associated
 with the credential format. The peer may leave this field empty
 when using this TLV to request server trust roots.

DeKok (Ed) Expires 27 September 2024 [Page 58]

Internet-Draft TEAP March 2024

4.2.19. CSR-Attributes TLV

 The CSR-Attributes TLV provides information from the server to the
 peer on how certificate signing requests should be formed. The
 purpose of CSR attributes is described in Section 4.5 of [RFC7030].
 Servers MAY send the CSR-Attributes TLV directly after the TLS
 session has been established. A server MAY also send in the same
 message a Request Action frame for a PKCS#10 TLV. This is an
 indication to the peer that the server would like the peer to renew
 its certificate using the parameters provided in this TLV. Servers
 shall construct the contents of the CSR-Attributes TLV as specified
 in [RFC7030] Section 4.5.2 with the exception that the DER encoding
 MUST NOT be encoded in base64. The base64 encoding is used in
 [RFC7030] because the transport protocol used there requires textual
 encoding. In contrast, TEAP attributes can transport arbitrary
 binary data.

 Servers and peers MUST follow the guidance provided in
 [I-D.ietf-lamps-rfc7030-csrattrs] when creating the CSR-Attributes
 TLV. Peers MAY ignore the contents of the TLV if they are unable to
 do so, but then servers may not process PKCS#10 certificate requests
 for this or any other reason.

 The CSR-Attributes TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | DER Encoded CSR Attributes |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 18 - CSR-Attributes

 Length

 >=2 octets

DeKok (Ed) Expires 27 September 2024 [Page 59]

Internet-Draft TEAP March 2024

4.2.20. Identity-Hint TLV

 The Identity-Hint TLV is an optional TLV which can sent by the peer
 to the server at the beginning of the Phase 2 TEAP conversation. The
 purpose of the TLV is to provide a "hint" as to the identity or
 identities which the peer will be using by subsequent inner methods.

 The purpose of this TLV is to solve the "bootstrapping" problem for
 the server. In order to perform authentication, the server must
 choose an inner method. However, the server has no knowledge of what
 methods are supported by the peer. Without an identity hint, the
 server needs to propose a method, and then have the peer return a
 response indicating that the requested method is not available. This
 negotiation increases the number of round trips required for TEAP to
 conclude, with no additional benefit.

 When the Identity-Hint is used, the peer can signal which identities
 it has available, which enables the server to choose an inner method
 which is appropriate for that identity.

 The peer SHOULD send an Identity-Hint TLV for each Identity-Type
 which is available to it. For example, if the peer can do both
 Machine and User authentication, it can send two Identity-Hint TLVs,
 with values "host/name.example.com" (for a machine with hostname
 "name.example.com"), and "user@example.com" (for a person with
 identity "user@example.com").

 The contents of the Identity-Hint TLV SHOULD be in the format of an
 NAI [RFC7542], but we note that as given in the example above,
 Machine identities might not follow that format. As these identities
 are never used for AAA routing as discussed in [RFC7542] Section 3,
 the format and definition of these identities is entirely site local.
 Robust implementations MUST support arbitrary data in the content of
 this TLV, including binary octets.

 As the Identity-Hint TLV is a "hint", server implementations are free
 to ignore the hints given, and do whatever is required by site-local
 policies.

 The Identity-Hint TLV is used only as a guide when selecting which
 inner methods to use. This TLV has no other meaning, and it MUST NOT
 be used for any other purpose. Specifically. server implementations
 MUST NOT compare the identities given this TLV to later identities
 given as part of the inner methods. There is no issue with the
 hint(s) failing to match any subsequent identity which is used.

DeKok (Ed) Expires 27 September 2024 [Page 60]

Internet-Draft TEAP March 2024

 The Identity-Hint TLV MUST NOT be used for Server Unauthenticated
 Provisioning. This TLV is only used as a hint for normal
 authentication.

 The Identity-Hint TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Identity Hint |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 19 - Identity-Hint

 Length

 >=2 octets

4.3. TLV Rules

 To save round trips, multiple TLVs can be sent in a single TEAP
 packet. However, multiple EAP Payload TLVs, multiple Basic Password
 Authentication TLVs, or an EAP Payload TLV with a Basic Password
 Authentication TLV within one single TEAP packet is not supported in
 this version and MUST NOT be sent. If the peer or EAP server
 receives multiple EAP Payload TLVs, then it MUST terminate the
 connection with the Result TLV. The order in which TLVs are encoded
 in a TEAP packet does not matter, however there is an order in which
 TLVs in a packet must be processed:

 1. Crypto-Binding TLV

 2. Intermediate-Result TLV

 3. Result TLV or Request-Action TLV

DeKok (Ed) Expires 27 September 2024 [Page 61]

Internet-Draft TEAP March 2024

 4. Identity-Type TLV

 5. EAP-Payload TLV[Identity-Request] or Basic-Password-Auth-Req TLV

 6. Other TLVs

 That is, cryptographic binding is checked before any result is used,
 and identities are checked before proposing an inner method, as the
 identity may influence the chosen inner method.

 The following define the meaning of the table entries in the sections
 below:

 0 This TLV MUST NOT be present in the message.

 0+ Zero or more instances of this TLV MAY be present in the
 message.

 0-1 Zero or one instance of this TLV MAY be present in the message.

 1 Exactly one instance of this TLV MUST be present in the
 message.

4.3.1. Outer TLVs

 The following table provides a guide to which TLVs may be included in
 the TEAP packet outside the TLS channel, which kind of packets, and
 in what quantity:

 Request Response Success Failure TLVs
 0-1 0 0 0 Authority-ID
 0-1 0-1 0 0 Identity-Type
 0+ 0+ 0 0 Vendor-Specific

 Outer TLVs MUST be marked as optional. Vendor TLVs inside of a
 Vendor-Specific TLV MUST be marked as optional when included in Outer
 TLVs. Outer TLVs MUST NOT be included in messages after the first
 two TEAP messages sent by peer and EAP-server respectively. That is
 the first EAP-server-to-peer message and first peer-to-EAP-server
 message. If the message is fragmented, the whole set of messages is
 counted as one message. If Outer TLVs are included in messages after
 the first two TEAP messages, they MUST be ignored.

DeKok (Ed) Expires 27 September 2024 [Page 62]

Internet-Draft TEAP March 2024

4.3.2. Inner TLVs

 The following table provides a guide to which Inner TLVs may be
 encapsulated in TLS in TEAP Phase 2, in which kind of packets, and in
 what quantity. The messages are as follows: Request is a TEAP
 Request, Response is a TEAP Response, Success is a message containing
 a successful Result TLV, and Failure is a message containing a failed
 Result TLV.

 Request Response Success Failure TLVs
 0-1 0-1 0 0 Identity-Type
 0-1 0-1 1 1 Result
 0+ 0+ 0 0 NAK
 0+ 0+ 0+ 0+ Error
 0-1 0-1 0 0 Channel-Binding
 0+ 0+ 0+ 0+ Vendor-Specific
 0+ 0+ 0+ 0+ Request-Action
 0-1 0-1 0 0 EAP-Payload
 0-1 0-1 0-1 0-1 Intermediate-Result
 0-1 0-1 0-1 0-1 Crypto-Binding
 0-1 0 0 0 Basic-Password-Auth-Req
 0 0-1 0 0 Basic-Password-Auth-Resp
 0-1 0 0-1 0 PKCS#7
 0 0-1 0 0 PKCS#10
 0-1 0-1 0-1 0 Trusted-Server-Root
 0-1 0 0 0 CSR-Attributes TLV
 0 0+ 0 0 Identity-Hint TLV

 NOTE: Vendor TLVs (included in Vendor-Specific TLVs) sent with a
 Result TLV MUST be marked as optional. Also, the CSR-Attributes TLV
 is never transmitted by the peer, and so is treated as a request in
 this table.

5. Cryptographic Calculations

 For key derivation and crypto-binding, TEAP uses the Pseudorandom
 Function (PRF) and MAC algorithms negotiated in the underlying TLS
 session. Since these algorithms depend on the TLS version and cipher
 suite, TEAP implementations need a mechanism to determine the version
 and cipher suite in use for a particular session. The implementation
 can then use this information to determine which PRF and MAC
 algorithm to use.

5.1. TEAP Authentication Phase 1: Key Derivations

 With TEAPv1, the TLS master secret is generated as specified in TLS.
 If session resumption is used, then the master secret is obtained as
 described in [RFC5077].

DeKok (Ed) Expires 27 September 2024 [Page 63]

Internet-Draft TEAP March 2024

 TEAPv1 makes use of the TLS Keying Material Exporters defined in
 [RFC5705] to derive the session_key_seed as follows:

 session_key_seed = TLS-Exporter(
 "EXPORTER: teap session key seed",, 40)

 No context data is used in the export process.

 The session_key_seed is used by the TEAP authentication Phase 2
 conversation to both cryptographically bind the inner method(s) to
 the tunnel as well as generate the resulting TEAP session keys. The
 other TLS keying materials are derived and used as defined in
 [RFC5246].

5.2. Intermediate Compound Key Derivations

 The session_key_seed derived as part of TEAP Phase 2 is used in TEAP
 Phase 2 to generate an Intermediate Compound Key (IMCK) used to
 verify the integrity of the TLS tunnel after each successful inner
 authentication and in the generation of Master Session Key (MSK) and
 Extended Master Session Key (EMSK) defined in [RFC3748]. Note that
 the IMCK MUST be recalculated after each successful inner method.

 The first step in these calculations is the generation of the base
 compound key, IMCK[j] from the session_key_seed, and any session keys
 derived from the successful execution of j’th inner methods. The
 inner method(s) MUST provide Inner Method Session Keys (IMSKs),
 IMSK[1]..IMSK[n], corresponding to inner method 1 through n. When a
 particular inner method does not provide key material (such as with
 password exchange) then a special "all zero" IMSK is used as
 described below.

 If an inner method supports export of an Extended Master Session Key
 (EMSK), then the IMSK SHOULD be derived from the EMSK as defined in
 [RFC5295]. The optional data parameter is not used in the
 derivation.

 IMSK[j] = First 32 octets of TLS-PRF(
 EMSK[j],
 "TEAPbindkey@ietf.org",
 0x00 | 0x00 | 0x40)

 where "|" denotes concatenation and the TLS-PRF is defined in
 [RFC5246] as:

 PRF(secret, label, seed) = P_<hash>(secret, label | seed)

DeKok (Ed) Expires 27 September 2024 [Page 64]

Internet-Draft TEAP March 2024

 The secret is the EMSK from the j’th inner method, the usage label
 used is "TEAPbindkey@ietf.org" consisting of the ASCII value for
 the label "TEAPbindkey@ietf.org" (without quotes), the seed
 consists of the "\0" null delimiter (0x00) and 2-octet unsigned
 integer length of 64 octets in network byte order (0x00 | 0x40)
 specified in [RFC5295].

 If an inner method does not support export of an Extended Master
 Session Key (EMSK), then the IMSK is derived from the MSK of the
 inner method. The MSK is truncated at 32 octets if it is longer than
 32 octets or padded to a length of 32 octets with zeros if it is less
 than 32 octets. In this case, IMSK[j] is the adjusted MSK.

 An inner method may not provider either EMSK or MSK, such as when
 basic password authentication is used or when no inner method has
 been run and the crypto-binding TLV for the Result TLV needs to be
 generated. In this case, IMSK[j] is set to all zeroes (i.e., IMSK[j]
 = MSK = 32 octets of 0x00s).

 Note that using a MSK of all zeroes opens up TEAP to on-path attacks,
 as discussed below in {#separation-p1-p2}. It is therefore NOT
 RECOMMENDED to use inner methods which fail to generate an EMSK or
 MSK. These methods should only be used in conjunction with another
 inner method which does provide for EMSK or MSK generation. It is
 also RECOMMENDED that TEAP peers order authentication such that
 methods which generate EMSKs are performed before methods which do
 not generate EMSKs.

 For example, Phase 2 could perform both Machine authentication using
 EAP-TLS, followed by User authentication via the Basic Password
 Authentication TLVs. In that case, the use of EAP-TLS would allow an
 attacker to be detected before the User password was sent.

 However, it is possible that the peer and server sides might not have
 the same capability to export EMSK. In order to maintain maximum
 flexibility while prevent downgrading attack, the following mechanism
 is in place.

 On the sender of the Crypto-Binding TLV side:

 If the EMSK is not available, then the sender computes the
 Compound MAC using the MSK of the inner method.

 If the EMSK is available and the sender’s policy accepts MSK-based
 MAC, then the sender computes two Compound MAC values. The first
 is computed with the EMSK. The second one is computed using the
 MSK. Both MACs are then sent to the other side.

DeKok (Ed) Expires 27 September 2024 [Page 65]

Internet-Draft TEAP March 2024

 If the EMSK is available but the sender’s policy does not allow
 downgrading to MSK-generated MAC, then the sender SHOULD only send
 EMSK-based MAC.

 On the receiver of the Crypto-Binding TLV side:

 If the EMSK is not available and an MSK-based Compound MAC was
 sent, then the receiver validates the Compound MAC and sends back
 an MSK-based Compound MAC response.

 If the EMSK is not available and no MSK-based Compound MAC was
 sent, then the receiver handles like an invalid Crypto-Binding TLV
 with a fatal error.

 If the EMSK is available and an EMSK-based Compound MAC was sent,
 then the receiver validates it and creates a response Compound MAC
 using the EMSK.

 If the EMSK is available but no EMSK-based Compound MAC was sent
 and its policy accepts MSK-based MAC, then the receiver validates
 it using the MSK and, if successful, generates and returns an MSK-
 based Compound MAC.

 If the EMSK is available but no EMSK Compound MAC was sent and its
 policy does not accept MSK-based MAC, then the receiver handles
 like an invalid Crypto-Binding TLV with a fatal error.

 If an inner method results in failure, then it is not included in
 this calculation.

 The derivation of S-IMCK is as follows:

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = the first 60 octets of TLS-PRF(S-IMCK[j-1],
 "Inner Methods Compound Keys",
 IMSK[j])
 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

 where TLS-PRF is the PRF described above negotiated as part of TLS
 handshake [RFC5246]. The value j refers to a corresponding inner
 method 1 through n. The special value of S-IMCK[0] is used to
 bootstrap the calculations, and can be done as soon as the TLS
 connection is established, and before any inner methods are run.

DeKok (Ed) Expires 27 September 2024 [Page 66]

Internet-Draft TEAP March 2024

 In practice, the requirement to use either MSK or EMSK means that an
 implement MUST track two independent derivations of IMCK[j], one
 which depends on the MSK, and another which depends on EMSK. That
 is, we have both values derived from MSK:

 IMSK_MSK[j]
 S-IMCK_MSK[j]
 CMK_MSK[j]

 and then also values derived from EMSK:

 IMSK_EMSK[j]
 S-IMCK_EMSK[j]
 CMK_EMSK[j]

5.3. Computing the Compound MAC

 For inner methods that generate keying material, further protection
 against on-path attacks is provided through cryptographically binding
 keying material established by both TEAP Phase 1 and TEAP Phase 2
 conversations. After each successful inner EAP authentication, EAP
 EMSK and/or MSKs are cryptographically combined with key material
 from TEAP Phase 1 to generate a Compound Session Key (CMK). The CMK
 is used to calculate the Compound MAC as part of the Crypto-Binding
 TLV described in Section 4.2.13, which helps provide assurance that
 the same entities are involved in all communications in TEAP. During
 the calculation of the Compound MAC, the MAC field is filled with
 zeros.

 The Compound MAC computation is as follows:

 Compound-MAC = the first 20 octets of MAC(CMK[n], BUFFER)

 where n is the number of the last successfully executed inner method,
 MAC is the MAC function negotiated in TLS (e.g. TLS 1.2 in
 [RFC5246]), and BUFFER is created after concatenating these fields in
 the following order:

 1. The entire Crypto-Binding TLV attribute with both the EMSK and
 MSK Compound MAC fields zeroed out.

 2. The EAP Type sent by the other party in the first TEAP message,
 which MUST be TEAP, encoded as one octet of 0x37.

 3. All the Outer TLVs from the first TEAP message sent by EAP server
 to peer. If a single TEAP message is fragmented into multiple
 TEAP packets, then the Outer TLVs in all the fragments of that
 message MUST be included.

DeKok (Ed) Expires 27 September 2024 [Page 67]

Internet-Draft TEAP March 2024

 4. All the Outer TLVs from the first TEAP message sent by the peer
 to the EAP server. If a single TEAP message is fragmented into
 multiple TEAP packets, then the Outer TLVs in all the fragments
 of that message MUST be included.

 If no inner method is run, then no EMSK or MSK will be generated. If
 an IMSK needs to be generated then the MSK and therefore the IMSK is
 set to all zeroes (i.e., IMSK = MSK = 32 octets of 0x00s).

 Note that there is no boundary marker between the fields in steps (3)
 and (4). However, the server calculates the compound MAC using the
 outer TLVs it sent, and the outer TLVs it received from the peer. On
 the other side, the peer calculates the compound MAC using the outer
 TLVs it sent, and the outer TLVs it received from the server. As a
 result, and modification in transit of the outer TLVs will be
 detected because the two sides will calculate different values for
 the compound MAC.

 If no key generating inner method is run then no EMSK or MSK will be
 generated. If an IMSK needs to be generated then the MSK and
 therefore the IMSK is set to all zeroes (i.e., IMSK = MSK = 32 octets
 of 0x00s)

5.4. EAP Master Session Key Generation

 TEAP authentication assures the Master Session Key (MSK) and Extended
 Master Session Key (EMSK) output from running TEAP are the combined
 result of all inner methods by generating an Intermediate Compound
 Key (IMCK). The IMCK is mutually derived by the peer and the server
 as described in Section 5.2 by combining the MSKs from inner methods
 with key material from TEAP Phase 1. The resulting MSK and EMSK are
 generated from the final ("n"th) inner method, as part of the IMCK[n]
 key hierarchy via the following derivation:

 MSK = the first 64 octets of TLS-PRF(S-IMCK[n],
 "Session Key Generating Function")
 EMSK = the first 64 octets of TLS-PRF(S-IMCK[n],
 "Extended Session Key Generating Function")

 The TLS-PRF is defined in [RFC5246] as

 PRF(secret, label, seed) = P_<hash>(secret, label | seed).

 where "|" denotes concatenation. The secret is S-IMCK[n] where n is
 the number of the last generated S-IMCK[j] from Section 5.2. The
 label is the ASCII value for the string without quotes. The seed is
 empty (0 length) and is omitted from the derivation.

DeKok (Ed) Expires 27 September 2024 [Page 68]

Internet-Draft TEAP March 2024

 The EMSK is typically only known to the TEAP peer and server and is
 not provided to a third party. The derivation of additional keys and
 transportation of these keys to a third party are outside the scope
 of this document.

 If no inner method has created an EMSK or MSK, the MSK and EMSK will
 be generated directly from the session_key_seed meaning S-IMCK[0] =
 session_key_seed.

 As we noted above, not all inner methods generate both MSK and EMSK,
 so we have to maintain two independent derivations of S-IMCK[j], one
 for each of MSK[j] and EMSK[j]. The final derivation using S-IMCK[n]
 must choose only one of these keys.

 If the Crypto-Binding TLV contains an EMSK compound MAC, then the
 derivation is taken from the S_IMCK_EMSK[n]. Otherwise it is taken
 from the S_IMCK_MSK[n].

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the TEAP
 protocol, in accordance with BCP 26 [RFC5226].

 Except as noted below, IANA is instructed to update the "Tunnel
 Extensible Authentication Protocol (TEAP) Parameters" registry to
 change the Reference field in all tables from [RFC7170] to [THIS-
 DOCUMENT].

6.1. TEAP TLV Types

 IANA is instructed to update the references in the "TEAP TLV Types"
 registry as follows. Most references to [RFC7170] are changed to
 this document. TLV 11 is deprecated. TLV 18 and TLV 19 are new
 additions to the registry.

DeKok (Ed) Expires 27 September 2024 [Page 69]

Internet-Draft TEAP March 2024

 Value,Description,Reference
 0,Unassigned,
 1,Authority-ID TLV,[THIS-DOCUMENT]
 2,Identity-Type TLV,[THIS-DOCUMENT]
 3,Result TLV,[THIS-DOCUMENT]
 4,NAK TLV,[THIS-DOCUMENT]
 5,Error TLV,[THIS-DOCUMENT]
 6,Channel-Binding TLV,[THIS-DOCUMENT]
 7,Vendor-Specific TLV,[THIS-DOCUMENT]
 8,Request-Action TLV,[THIS-DOCUMENT]
 9,EAP-Payload TLV,[THIS-DOCUMENT]
 10,Intermediate-Result TLV,[THIS-DOCUMENT]
 11,PAC TLV,(DEPRECATED) [RFC7170][THIS-DOCUMENT]
 12,Crypto-Binding TLV,[THIS-DOCUMENT]
 13,Basic-Password-Auth-Req TLV,[THIS-DOCUMENT]
 14,Basic-Password-Auth-Resp TLV,[THIS-DOCUMENT]
 15,PKCS#7 TLV,[THIS-DOCUMENT]
 16,PKCS#10 TLV,[THIS-DOCUMENT]
 17,Trusted-Server-Root TLV,[THIS-DOCUMENT]
 18,CSR-Attributes TLV,[THIS-DOCUMENT]
 19,Identity-Hint TLV,[THIS-DOCUMENT]
 20-16383,Unassigned,

 IANA is instructed to update the "TEAP PAC TLV (value 11) PAC
 Attribute Type Codes" and "TEAP PAC TLV (value 11) PAC-Type Type
 Codes" registries with a NOTE:

 This registry has been closed. See [THIS-DOCUMENT].

6.2. TEAP Error TLV (value 5) Error Codes

 IANA is instructed to update the "TEAP Error TLV (value 5) Error
 Codes" registry to add the following entry:

 Value,Description,Reference
 1032,Inner method not supported,[THIS-DOCUMENT]

6.3. TLS Exporter Labels

 IANA is instructed to update the "TLS Exporter Labels" registry to
 change the Reference field for Value "EXPORTER: teap session key
 seed" as follows:

 Value,DTLS-OK,Recommended,Reference
 EXPORTER: teap session key seed,N,Y,[THIS-DOCUMENT]

DeKok (Ed) Expires 27 September 2024 [Page 70]

Internet-Draft TEAP March 2024

6.4. Extended Master Session Key (EMSK) Parameters

 IANA is instructed to update the "User Specific Root Keys (USRK) Key
 Labels" registry to change the Reference field for Value
 "TEAPbindkey@ietf.org" as follows:

 Value,Description,Reference
 TEAPbindkey@ietf.org,TEAP binding usage label,[THIS-DOCUMENT]

6.5. Extensible Authentication Protocol (EAP) Registry

 IANA is instructed to update the "Method Types" regisry to change the
 Reference field for Value "55" as follows:

 Value,Description,Reference
 55,TEAP,[THIS-DOCUMENT]

7. Security Considerations

 TEAP is designed with a focus on wireless media, where the medium
 itself is inherent to eavesdropping. Whereas in wired media an
 attacker would have to gain physical access to the wired medium,
 wireless media enables anyone to capture information as it is
 transmitted over the air, enabling passive attacks. Thus, physical
 security can not be assumed, and security vulnerabilities are far
 greater. The threat model used for the security evaluation of TEAP
 is defined in EAP [RFC3748].

7.1. Mutual Authentication and Integrity Protection

 As a whole, TEAP provides message and integrity protection by
 establishing a secure tunnel for protecting the inner method(s). The
 confidentiality and integrity protection is defined by TLS and
 provides the same security strengths afforded by TLS employing a
 strong entropy shared master secret. The integrity of the key
 generating inner methods executed within the TEAP tunnel is verified
 through the calculation of the Crypto-Binding TLV. This ensures that
 the tunnel endpoints are the same as the inner method endpoints.

 Where Server Unauthenticated Provisioning is performed, TEAP requires
 that the inner provisioning method provide for mutual authentication.

DeKok (Ed) Expires 27 September 2024 [Page 71]

Internet-Draft TEAP March 2024

7.2. Method Negotiation

 As is true for any negotiated EAP protocol, EAP NAK message used to
 suggest an alternate EAP authentication method are sent unprotected
 and, as such, are subject to spoofing. During unprotected EAP method
 negotiation, NAK packets may be interjected as active attacks to bid-
 down to a weaker form of authentication, such as EAP-MD5 (which only
 provides one-way authentication and does not derive a key). Both the
 peer and server should have a method selection policy that prevents
 them from negotiating down to weaker methods. Inner method
 negotiation resists attacks because it is protected by the mutually
 authenticated TLS tunnel established. Selection of TEAP as an
 authentication method does not limit the potential inner methods, so
 TEAP should be selected when available.

 An attacker cannot readily determine the inner method used, except
 perhaps by traffic analysis. It is also important that peer
 implementations limit the use of credentials with an unauthenticated
 or unauthorized server.

7.3. Separation of Phase 1 and Phase 2 Servers

 Separation of the TEAP Phase 1 from the Phase 2 conversation is NOT
 RECOMMENDED. Allowing the Phase 1 conversation to be terminated at a
 different server than the Phase 2 conversation can introduce
 vulnerabilities if there is not a proper trust relationship and
 protection for the protocol between the two servers. Some
 vulnerabilities include:

 * Loss of identity protection

 * Offline dictionary attacks

 * Lack of policy enforcement

 * on-path active attacks (as described in [RFC7029])

 There may be cases where a trust relationship exists between the
 Phase 1 and Phase 2 servers, such as on a campus or between two
 offices within the same company, where there is no danger in
 revealing the inner identity and credentials of the peer to entities
 between the two servers. In these cases, using a proxy solution
 without end-to-end protection of TEAP MAY be used. The TEAP
 encrypting/decrypting gateway MUST, at a minimum, provide support for
 IPsec, TLS, or similar protection in order to provide confidentiality
 for the portion of the conversation between the gateway and the EAP
 server. In addition, separation of the TEAP server and Inner servers
 allows for crypto-binding based on the inner method MSK to be

DeKok (Ed) Expires 27 September 2024 [Page 72]

Internet-Draft TEAP March 2024

 thwarted as described in [RFC7029]. If the inner method derives an
 EMSK, then this threat is mitigated as TEAP uses the Crypto-Binding
 TLV tie the inner EMSK to the TLS session via the TLS-PRF, as
 described above in Section 5.

 On the other hand, if the inner method is not deriving EMSK as with
 password authentication or unauthenticated provisioning, then this
 threat still exists. Implementations therefore need to limit the use
 of inner methods as discussed above in Section 3.6.4

7.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies

 TEAP addresses the known deficiencies and weaknesses in some EAP
 authentication methods. By employing a shared secret between the
 peer and server to establish a secured tunnel, TEAP enables:

 * Per-packet confidentiality and integrity protection

 * User identity protection

 * Better support for notification messages

 * Protected inner method negotiation, including EAP method

 * Sequencing of inner methods, including EAP methods

 * Strong mutually derived MSKs

 * Acknowledged success/failure indication

 * Faster re-authentications through session resumption

 * Mitigation of offline dictionary attacks

 * Mitigation of on-path attacks

 * Mitigation of some denial-of-service attacks

 It should be noted that in TEAP, as in many other authentication
 protocols, a denial-of-service attack can be mounted by adversaries
 sending erroneous traffic to disrupt the protocol. This is a problem
 in many authentication or key agreement protocols and is therefore
 noted for TEAP as well.

 TEAP was designed with a focus on protected inner methods that
 typically rely on weak credentials, such as password-based secrets.
 To that extent, the TEAP authentication mitigates several
 vulnerabilities, such as offline dictionary attacks, by protecting

DeKok (Ed) Expires 27 September 2024 [Page 73]

Internet-Draft TEAP March 2024

 the weak credential-based inner method. The protection is based on
 strong cryptographic algorithms in TLS to provide message
 confidentiality and integrity. The keys derived for the protection
 relies on strong random challenges provided by both peer and server
 as well as an established key with strong entropy. Implementations
 should follow the recommendation in [RFC4086] when generating random
 numbers.

7.4.1. User Identity Protection and Verification

 The initial identity request response exchange is sent in cleartext
 outside the protection of TEAP. Typically, the Network Access
 Identifier (NAI) [RFC7542] in the identity response is useful only
 for the realm of information that is used to route the authentication
 requests to the right EAP server. This means that the identity
 response may contain an anonymous identity and just contain realm
 information. In other cases, the identity exchange may be eliminated
 altogether if there are other means for establishing the destination
 realm of the request. In no case should an intermediary place any
 trust in the identity information in the identity response since it
 is unauthenticated and may not have any relevance to the
 authenticated identity. TEAP implementations should not attempt to
 compare any identity disclosed in the initial cleartext EAP Identity
 response packet with those Identities authenticated in Phase 2.

 When the server is authenticated, identity request/response exchanges
 sent after the TEAP tunnel is established are protected from
 modification and eavesdropping by attackers. For server
 unauthenticated provisioning, the outer TLS session provides little
 security, and the provisioning method must necessarily provide this
 protection instead.

 When a client certificate is sent outside of the TLS tunnel in Phase
 1, the peer MUST include Identity-Type as an outer TLV, in order to
 signal the type of identity which that client certificate is for.
 Further, when a client certificate is sent outside of the TLS tunnel,
 the server MUST proceed with Phase 2. If there is no Phase 2 data,
 then the EAP server MUST reject the session.

 Issues related to confidentiality of a client certificate are
 discussed above in Section 3.4.1

 Note that the Phase 2 data could simply be a Result TLV with value
 Success, along with a Crypto-Binding TLV. This Phase 2 data serves
 as a protected success indication as discussed in [RFC9190]
 Section 2.1.1

DeKok (Ed) Expires 27 September 2024 [Page 74]

Internet-Draft TEAP March 2024

7.5. Dictionary Attack Resistance

 TEAP was designed with a focus on protected inner methods that
 typically rely on weak credentials, such as password-based secrets.
 TEAP mitigates offline dictionary attacks by allowing the
 establishment of a mutually authenticated encrypted TLS tunnel
 providing confidentiality and integrity to protect the weak
 credential-based inner method.

 TEAP mitigates dictionary attacks by permitting inner methods such as
 EAP-pwd which are not vulnerable to dictionary attacks.

 TEAP implementations can mitigate against online "brute force"
 dictionary attempts by limiting the number of failed authentication
 attempts for a particular identity.

7.5.1. Protection against On-Path Attacks

 TEAP provides protection from on-path attacks in a few ways:

 1. By using a certificates or a session ticket to mutually
 authenticate the peer and server during TEAP authentication Phase
 1 establishment of a secure TLS tunnel.

 2. When the TLS tunnel is not secured, by using the keys generated
 by the inner method (if the inner methods are key generating) in
 the crypto-binding exchange and in the generation of the key
 material exported by the inner method described in Section 5.

 TEAP crypto binding does not guarantee protection from on-path
 attacks if the client allows a connection to an untrusted server,
 such as in the case where the client does not properly validate the
 server’s certificate. If the TLS cipher suite derives the master
 secret solely from the contribution of secret data from one side of
 the conversation (such as cipher suites based on RSA key transport),
 then an attacker who can convince the client to connect and engage in
 authentication can impersonate the client to another server even if a
 strong inner method is executed within the tunnel. If the TLS cipher
 suite derives the master secret from the contribution of secrets from
 both sides of the conversation (such as in cipher suites based on
 Diffie-Hellman), then crypto binding can detect an attacker in the
 conversation if a strong inner method is used.

DeKok (Ed) Expires 27 September 2024 [Page 75]

Internet-Draft TEAP March 2024

7.6. Protecting against Forged Cleartext EAP Packets

 EAP Success and EAP Failure packets are, in general, sent in
 cleartext and may be forged by an attacker without detection. Forged
 EAP Failure packets can be used to attempt to convince an EAP peer to
 disconnect. Forged EAP Success packets may be used to attempt to
 convince a peer that authentication has succeeded, even though the
 authenticator has not authenticated itself to the peer.

 By providing message confidentiality and integrity, TEAP provides
 protection against these attacks. Once the peer and authentication
 server (AS) initiate the TEAP authentication Phase 2, compliant TEAP
 implementations MUST silently discard all cleartext EAP messages,
 unless both the TEAP peer and server have indicated success or
 failure using a protected mechanism. Protected mechanisms include
 the TLS alert mechanism and the protected termination mechanism
 described in Section 3.6.5.

 The success/failure decisions within the TEAP tunnel indicate the
 final decision of the TEAP authentication conversation. After a
 success/failure result has been indicated by a protected mechanism,
 the TEAP peer can process unprotected EAP Success and EAP Failure
 messages; however, the peer MUST ignore any unprotected EAP Success
 or Failure messages where the result does not match the result of the
 protected mechanism.

 To abide by [RFC3748], the server sends a cleartext EAP Success or
 EAP Failure packet to terminate the EAP conversation. However, since
 EAP Success and EAP Failure packets are not retransmitted, the final
 packet may be lost. While a TEAP-protected EAP Success or EAP
 Failure packet should not be a final packet in a TEAP conversation,
 it may occur based on the conditions stated above, so an EAP peer
 should not rely upon the unprotected EAP Success and Failure
 messages.

7.7. Use of Clear-text Passwords

 TEAP can carry clear-text passwords in the Basic-Password-Auth-Resp
 TLV. Implementations should take care to protect this data. For
 example, passwords should not normally be logged, and password data
 should be securely scrubbed from memory when it is no longer needed.

7.8. Security Claims

 This section provides the needed security claim requirement for EAP
 [RFC3748].

DeKok (Ed) Expires 27 September 2024 [Page 76]

Internet-Draft TEAP March 2024

 Auth. mechanism: Certificate-based, shared-secret-based, and
 various tunneled authentication mechanisms.

 Cipher Suite negotiation: Yes

 Mutual authentication: Yes

 Integrity protection: Yes. Any method executed within the TEAP
 tunnel is integrity protected. The
 cleartext EAP headers outside the tunnel are
 not integrity protected. Server
 unauthenticated provisioning provides its own
 protection mechanisms.

 Replay protection: Yes

 Confidentiality: Yes

 Key derivation: Yes

 Key strength: See Note 1 below.

 Dictionary attack prot.: See Note 2 below.

 Fast reconnect: Yes

 Cryptographic binding: Yes

 Session independence: Yes

 Fragmentation: Yes

 Key Hierarchy: Yes

 Channel binding: Yes

 Notes

 Note 1. BCP 86 [RFC3766] offers advice on appropriate key sizes.
 The National Institute for Standards and Technology (NIST) also
 offers advice on appropriate key sizes in [NIST-SP-800-57].
 [RFC3766], Section 5 advises use of the following required RSA or DH
 (Diffie-Hellman) module and DSA (Digital Signature Algorithm)
 subgroup size in bits for a given level of attack resistance in bits.
 Based on the table below, a 2048-bit RSA key is required to provide
 112-bit equivalent key strength:

DeKok (Ed) Expires 27 September 2024 [Page 77]

Internet-Draft TEAP March 2024

 Attack Resistance RSA or DH Modulus DSA subgroup
 (bits) size (bits) size (bits)
 ----------------- ----------------- ------------
 70 947 129
 80 1228 148
 90 1553 167
 100 1926 186
 150 4575 284
 200 8719 383
 250 14596 482

 Note 2. TEAP protects against offline dictionary attacks when secure
 inner methods are used. TEAP protects against online dictionary
 attacks by limiting the number of failed authentications for a
 particular identity.

8. Acknowledgments

 Nearly all of the text in this document was taken directly from
 [RFC7170]. We are grateful to the original authors and reviewers for
 that document. The acknowledgments given here are only for the
 changes which resulted in this document.

 Alexander Clouter provided substantial and detailed technical
 feedback on nearly every aspect of the specification. The
 corrections in this document are based on his work.

 We wish to thank the many reviewers and commenters in the EMU WG,
 including Eliot Lear, Jouni Malinen, Joe Salowey, Heikki Vatiainen,
 Bruno Pereria Vidal, and Michael Richardson. Many corner cases and
 edge conditions were caught and corrected as a result of their
 feedback.

9. Changes from RFC 7170

 Alan DeKok was added as editor.

 The document was converted to Markdown, from the [RFC7170] text
 output.

 Any formatting changes mostly result from differences between using
 Markdown versus XML for source.

 The IANA considerations section was replaced with a note to change
 the IANA registry references to this document.

DeKok (Ed) Expires 27 September 2024 [Page 78]

Internet-Draft TEAP March 2024

 A new section was added to explain that the inner EAP-MSCHAPv2
 derivation follows EAP-FAST. This is the largest technical change
 from the previous revision of this document, and follows existing
 implementations.

 Many small changes have been made throughout the document to correct
 inconsistencies, and to address mistakes. At a high level:

 * All open errata have been addressed.

 * A new term "inner method" has been defined.

 * The definitions and derivation of IMSK, S-IMCK, etc. have been
 corrected and clarified.

 * The diagrams in Appendix C have been updated to match the TEAP
 state machine

 All uses of the PAC were removed. It had not been implemented, and
 there were no plans by implementors to use it.

 Text was added on recommendations for inner and outer identities.

Appendix A Evaluation against Tunnel-Based EAP Method Requirements

 This section evaluates all tunnel-based EAP method requirements
 described in [RFC6678] against TEAP version 1.

A.1. Requirement 4.1.1: RFC Compliance

 TEAPv1 meets this requirement by being compliant with RFC 3748
 [RFC3748], RFC 4017 [RFC4017], RFC 5247 [RFC5247], and RFC 4962
 [RFC4962]. It is also compliant with the "cryptographic algorithm
 agility" requirement by leveraging TLS 1.2 for all cryptographic
 algorithm negotiation.

A.2. Requirement 4.2.1: TLS Requirements

 TEAPv1 meets this requirement by mandating TLS version 1.2 support as
 defined in Section 3.2.

A.3. Requirement 4.2.1.1.1: Cipher Suite Negotiation

 TEAPv1 meets this requirement by using TLS to provide protected
 cipher suite negotiation.

DeKok (Ed) Expires 27 September 2024 [Page 79]

Internet-Draft TEAP March 2024

A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms

 TEAPv1 meets this requirement by mandating cipher suites as defined
 in Section 3.2.

A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment

 TEAPv1 meets this requirement by mandating cipher suites which only
 include cipher suites that use strong cryptographic algorithms. They
 do not include cipher suites providing mutually anonymous
 authentication or static Diffie-Hellman cipher suites as defined in
 Section 3.2.

A.6. Requirement 4.2.1.2: Tunnel Replay Protection

 TEAPv1 meets this requirement by using TLS to provide sufficient
 replay protection.

A.7. Requirement 4.2.1.3: TLS Extensions

 TEAPv1 meets this requirement by allowing TLS extensions, such as TLS
 Certificate Status Request extension [RFC6066] and SessionTicket
 extension [RFC5077], to be used during TLS tunnel establishment.

A.8. Requirement 4.2.1.4: Peer Identity Privacy

 TEAPv1 meets this requirement by establishment of the TLS tunnel and
 protection identities specific to the inner method. In addition, the
 peer certificate can be sent confidentially (i.e., encrypted).

A.9. Requirement 4.2.1.5: Session Resumption

 TEAPv1 meets this requirement by mandating support of TLS session
 resumption as defined in Section 3.5.1 and TLS session resumption
 using the methods defined in [RFC9190]

A.10. Requirement 4.2.2: Fragmentation

 TEAPv1 meets this requirement by leveraging fragmentation support
 provided by TLS as defined in Section 3.10.

A.11. Requirement 4.2.3: Protection of Data External to Tunnel

 TEAPv1 meets this requirement by including the TEAP version number
 received in the computation of the Crypto-Binding TLV as defined in
 Section 4.2.13.

DeKok (Ed) Expires 27 September 2024 [Page 80]

Internet-Draft TEAP March 2024

A.12. Requirement 4.3.1: Extensible Attribute Types

 TEAPv1 meets this requirement by using an extensible TLV data layer
 inside the tunnel as defined in Section 4.2.

A.13. Requirement 4.3.2: Request/Challenge Response Operation

 TEAPv1 meets this requirement by allowing multiple TLVs to be sent in
 a single EAP request or response packet, while maintaining the half-
 duplex operation typical of EAP.

A.14. Requirement 4.3.3: Indicating Criticality of Attributes

 TEAPv1 meets this requirement by having a mandatory bit in each TLV
 to indicate whether it is mandatory to support or not as defined in
 Section 4.2.

A.15. Requirement 4.3.4: Vendor-Specific Support

 TEAPv1 meets this requirement by having a Vendor-Specific TLV to
 allow vendors to define their own attributes as defined in
 Section 4.2.8.

A.16. Requirement 4.3.5: Result Indication

 TEAPv1 meets this requirement by having a Result TLV to exchange the
 final result of the TEAP authentication so both the peer and server
 have a synchronized state as defined in Section 4.2.4.

A.17. Requirement 4.3.6: Internationalization of Display Strings

 TEAPv1 meets this requirement by supporting UTF-8 format in the
 Basic-Password-Auth-Req TLV as defined in Section 4.2.14 and the
 Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.

A.18. Requirement 4.4: EAP Channel-Binding Requirements

 TEAPv1 meets this requirement by having a Channel-Binding TLV to
 exchange the EAP channel-binding data as defined in Section 4.2.7.

A.19. Requirement 4.5.1.1: Confidentiality and Integrity

 TEAPv1 meets this requirement by running the password authentication
 inside a protected TLS tunnel.

DeKok (Ed) Expires 27 September 2024 [Page 81]

Internet-Draft TEAP March 2024

A.20. Requirement 4.5.1.2: Authentication of Server

 TEAPv1 meets this requirement by mandating authentication of the
 server before establishment of the protected TLS and then running
 inner password authentication as defined in Section 3.2.

A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking

 TEAPv1 meets this requirement by supporting TLS Certificate Status
 Request extension [RFC6066] during tunnel establishment.

A.22. Requirement 4.5.2: Internationalization

 TEAPv1 meets this requirement by supporting UTF-8 format in Basic-
 Password-Auth-Req TLV as defined in Section 4.2.14 and Basic-
 Password-Auth-Resp TLV as defined in Section 4.2.15.

A.23. Requirement 4.5.3: Metadata

 TEAPv1 meets this requirement by supporting Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

A.24. Requirement 4.5.4: Password Change

 TEAPv1 meets this requirement by supporting multiple Basic-Password-
 Auth-Req TLV and Basic-Password-Auth-Resp TLV exchanges within a
 single EAP authentication, which allows "housekeeping"" functions
 such as password change.

A.25. Requirement 4.6.1: Method Negotiation

 TEAPv1 meets this requirement by supporting inner EAP method
 negotiation within the protected TLS tunnel.

A.26. Requirement 4.6.2: Chained Methods

 TEAPv1 meets this requirement by supporting inner EAP method chaining
 within protected TLS tunnels as defined in Section 3.6.1.

A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel

 TEAPv1 meets this requirement by supporting cryptographic binding of
 the inner EAP method keys with the keys derived from the TLS tunnel
 as defined in Section 4.2.13.

DeKok (Ed) Expires 27 September 2024 [Page 82]

Internet-Draft TEAP March 2024

A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication

 TEAPv1 meets this requirement by supporting the Request-Action TLV as
 defined in Section 4.2.9 to allow a peer to initiate another inner
 EAP method.

A.29. Requirement 4.6.5: Method Metadata

 TEAPv1 meets this requirement by supporting the Identity-Type TLV as
 defined in Section 4.2.3 to indicate whether the authentication is
 for a user or a machine.

Appendix B. Major Differences from EAP-FAST

 This document is a new standard tunnel EAP method based on revision
 of EAP-FAST version 1 [RFC4851] that contains improved flexibility,
 particularly for negotiation of cryptographic algorithms. The major
 changes are:

 1. The EAP method name has been changed from EAP-FAST to TEAP; this
 change thus requires that a new EAP Type be assigned.

 2. This version of TEAP MUST support TLS 1.2 [RFC5246]. TLS 1.1 and
 earlier MUST NOT be used with TEAP.

 3. The key derivation now makes use of TLS keying material exporters
 [RFC5705] and the PRF and hash function negotiated in TLS. This
 is to simplify implementation and better support cryptographic
 algorithm agility.

 4. TEAP is in full conformance with TLS ticket extension [RFC5077].

 5. Support is provided for passing optional Outer TLVs in the first
 two message exchanges, in addition to the Authority-ID TLV data
 in EAP-FAST.

 6. Basic password authentication on the TLV level has been added in
 addition to the existing inner EAP method.

 7. Additional TLV types have been defined to support EAP channel
 binding and metadata. They are the Identity-Type TLV and
 Channel-Binding TLVs, defined in Section 4.2.

Appendix C. Examples

DeKok (Ed) Expires 27 September 2024 [Page 83]

Internet-Draft TEAP March 2024

C.1. Successful Authentication

 The following exchanges show a successful TEAP authentication with
 basic password authentication. The conversation will appear as
 follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV(Response),

DeKok (Ed) Expires 27 September 2024 [Page 84]

Internet-Draft TEAP March 2024

 Result TLV (Success) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.2. Failed Authentication

 The following exchanges show a failed TEAP authentication due to
 wrong user credentials. The conversation will appear as follows:

DeKok (Ed) Expires 27 September 2024 [Page 85]

Internet-Draft TEAP March 2024

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity

 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 <- Intermediate-Result TLV (Failure),
 Result TLV (Failure)

 Intermediate-Result TLV (Failure),
 Result TLV (Failure) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

DeKok (Ed) Expires 27 September 2024 [Page 86]

Internet-Draft TEAP March 2024

C.3. Full TLS Handshake Using Certificate-Based Cipher Suite

 In the case within TEAP Phase 1 where an abbreviated TLS handshake is
 tried, fails, and falls back to the certificate-based full TLS
 handshake, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello with
 SessionTicket extension)->

 // If the server rejects the session resumption,
 it falls through to the full TLS handshake.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[EAP-Request/
 Identity])

DeKok (Ed) Expires 27 September 2024 [Page 87]

Internet-Draft TEAP March 2024

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.4. Client Authentication during Phase 1 with Identity Privacy

 In the case where a certificate-based TLS handshake occurs within
 TEAP Phase 1 and client certificate authentication and identity
 privacy is desired (and therefore TLS renegotiation is being used to
 transmit the peer credentials in the protected TLS tunnel), the
 conversation will appear as follows for TLS 1.2:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the

DeKok (Ed) Expires 27 September 2024 [Page 88]

Internet-Draft TEAP March 2024

 full user identity.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_key_exchange,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[EAP-Request/
 Identity])

 // TLS channel established
 (EAP Payload messages sent within the TLS channel)

 // peer sends TLS client_hello to request TLS renegotiation
 TLS client_hello ->

 <- TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->

 <- TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success)

DeKok (Ed) Expires 27 September 2024 [Page 89]

Internet-Draft TEAP March 2024

 Crypto-Binding TLV (Response),
 Result TLV (Success)) ->

 //TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.5. Fragmentation and Reassembly

 In the case where TEAP fragmentation is required, the conversation
 will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 (Fragment 1: L, M bits set)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 2: M bit set)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (Fragment 3)
 EAP-Response/

DeKok (Ed) Expires 27 September 2024 [Page 90]

Internet-Draft TEAP March 2024

 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 EAP-Response/
 EAP-Type=TEAP, V=1
 (Fragment 2)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 [EAP-Payload TLV[
 EAP-Request/Identity]])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity (MyID2)]->

 // identity protected by TLS.

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Method X exchanges followed by Protected Termination

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // TLS channel torn down

DeKok (Ed) Expires 27 September 2024 [Page 91]

Internet-Draft TEAP March 2024

 (messages sent in cleartext)

 <- EAP-Success

C.6. Sequence of EAP Methods

 When TEAP is negotiated with a sequence of EAP method X followed by
 method Y, the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Identity-Type TLV,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

DeKok (Ed) Expires 27 September 2024 [Page 92]

Internet-Draft TEAP March 2024

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel

 Identity_Type TLV
 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 // Optional additional X Method exchanges...

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Identity-Type TLV,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // Compound MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

 // Next EAP conversation started (with EAP-Request/Identity)
 after successful completion of previous method X. The
 Intermediate-Result and Crypto-Binding TLVs are sent in
 the next packet to minimize round trips.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 EAP-Payload TLV [EAP-Response/Identity (MyID2)] ->

 // Optional additional EAP method Y exchanges...

 <- EAP Payload TLV [
 EAP-Type=Y]

 EAP Payload TLV
 [EAP-Type=Y] ->

 <- Intermediate-Result TLV (Success),

DeKok (Ed) Expires 27 September 2024 [Page 93]

Internet-Draft TEAP March 2024

 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success) ->

 // Compound MAC calculated using keys generated from EAP
 methods X and Y and the TLS tunnel. Compound keys are
 generated using keys generated from EAP methods X and Y
 and the TLS tunnel.

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

C.7. Failed Crypto-Binding

 The following exchanges show a failed crypto-binding validation. The
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS Server Key Exchange
 TLS Server Hello Done)
 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS Client Key Exchange
 TLS change_cipher_spec,
 TLS finished)

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec
 TLS finished)

DeKok (Ed) Expires 27 September 2024 [Page 94]

Internet-Draft TEAP March 2024

 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV/
 EAP Identity Response ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Challenge)

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Response) ->

 <- EAP Payload TLV, EAP-Request,
 (EAP-MSCHAPV2, Success Request)

 EAP Payload TLV, EAP-Response,
 (EAP-MSCHAPV2, Success Response) ->

 <- Intermediate-Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate-Result TLV (Success),
 Result TLV (Failure)
 Error TLV with
 (Error Code = 2001) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange

 When TEAP is negotiated with a sequence of EAP methods followed by a
 Vendor-Specific TLV exchange, the conversation will occur as follows:

DeKok (Ed) Expires 27 September 2024 [Page 95]

Internet-Draft TEAP March 2024

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Payload TLV[
 EAP-Request/Identity])

 // TLS channel established
 (messages sent within the TLS channel)

 // First EAP Payload TLV is piggybacked to the TLS Finished as
 Application Data and protected by the TLS tunnel.

 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV

DeKok (Ed) Expires 27 September 2024 [Page 96]

Internet-Draft TEAP March 2024

 [EAP-Response/EAP-Type=X] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Vendor-Specific TLV,

 // Vendor-Specific TLV exchange started after successful
 completion of previous method X. The Intermediate-Result
 and Crypto-Binding TLVs are sent with Vendor-Specific TLV
 in next packet to minimize round trips.

 // Compound MAC calculated using keys generated from
 EAP method X and the TLS tunnel.

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Vendor-Specific TLV ->

 // Optional additional Vendor-Specific TLV exchanges...

 <- Vendor-Specific TLV

 Vendor-Specific TLV ->
 <- Result TLV (Success)

 Result TLV (Success) ->

 // TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

C.9. Peer Requests Inner Method after Server Sends Result TLV

 In the case where the peer is authenticated during Phase 1 and the
 server sends back a Result TLV but the peer wants to request another
 inner method, the conversation will appear as follows:

DeKok (Ed) Expires 27 September 2024 [Page 97]

Internet-Draft TEAP March 2024

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route
 the authentication request to EAP server, instead of the
 full user identity. TLS client certificate is also sent.

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)
 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)

 EAP-Response/
 EAP-Type=TEAP, V=1
 [TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished ->
 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS change_cipher_spec,
 TLS finished,
 Crypto-Binding TLV (Request),
 Result TLV (Success))

 // TLS channel established
 (TLV Payload messages sent within the TLS channel)

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Negotiate-EAP)->

 <- EAP-Payload TLV
 [EAP-Request/Identity]

DeKok (Ed) Expires 27 September 2024 [Page 98]

Internet-Draft TEAP March 2024

 EAP-Payload TLV
 [EAP-Response/Identity] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X] ->

 <- EAP-Payload TLV
 [EAP-Request/EAP-Type=X]

 EAP-Payload TLV
 [EAP-Response/EAP-Type=X]->

 <- Intermediate Result TLV (Success),
 Crypto-Binding TLV (Request),
 Result TLV (Success)

 Intermediate Result TLV (Success),
 Crypto-Binding TLV (Response),
 Result TLV (Success)) ->

 // TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.10. Channel Binding

 The following exchanges show a successful TEAP authentication with
 basic password authentication and channel binding using a Request-
 Action TLV. The conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TEAP Start, S bit set, Authority-ID)

 EAP-Response/
 EAP-Type=TEAP, V=1
 (TLS client_hello) ->

DeKok (Ed) Expires 27 September 2024 [Page 99]

Internet-Draft TEAP March 2024

 <- EAP-Request/
 EAP-Type=TEAP, V=1
 (TLS server_hello,
 (TLS change_cipher_spec,
 TLS finished)

 EAP-Response/
 EAP-Type=TEAP, V=1 ->
 (TLS change_cipher_spec,
 TLS finished)

 TLS channel established
 (messages sent within the TLS channel)

 <- Basic-Password-Auth-Req TLV, Challenge

 Basic-Password-Auth-Resp TLV, Response with both
 username and password) ->

 optional additional exchanges (new pin mode,
 password change, etc.) ...

 <- Crypto-Binding TLV (Request),
 Result TLV (Success),

 Crypto-Binding TLV(Response),
 Request-Action TLV
 (Status=Failure, Action=Process TLV,
 TLV=Channel-Binding TLV)->

 <- Channel-Binding TLV (Response),
 Result TLV (Success),

 Result TLV (Success) ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

C.11. PKCS Exchange

 The following exchanges show the peer sending a PKCS#10 TLV, and
 server replying with a PKCS7 TLV. The exchange below assumes that
 the EAP peer is authenticated in Phase 1, either via bi-directional
 certificate exchange, or some other TLS method such as a proof of
 knowledge (TLS-POK). The conversation will appear as follows:

DeKok (Ed) Expires 27 September 2024 [Page 100]

Internet-Draft TEAP March 2024

 ,----. ,-------.
 |Peer| |AuthSrv|
 ‘-+--’ ‘---+---’
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | - >
 | |
 | EAP-Request/EAP-Type=TEAP, |
 | V=1(TEAP Start, |
 | S bit set, |
 | Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS client_hello) |
 | - >
 | |
 | EAP-Request/ EAP-Type=TEAP, |
 | V=1(TLS server_hello, |
 | TLS certificate, |
 | TLS certificate_request, |
 | TLS finished) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS change_cipher_spec, |
 | TLS certificate, |
 | TLS finished) TLS channel established |
 | - >
 | |
 | Send Request Action TLV |
 | <- -
 | |
 | Send PKCS10 TLV |
 | - >
 | |
 | Sign the CSR and send PKCS7 TLV Intermediate-Result|
 | TLV request(Success), |
 | Crypto-Binding TLV(Request), |
 | Result TLV(Success) |
 | <- -
 | |
 | Intermediate-Result TLV response(Success), |
 | Crypto-Binding TLV(Response), |
 | Result TLV(Success) |
 | - >

DeKok (Ed) Expires 27 September 2024 [Page 101]

Internet-Draft TEAP March 2024

 | |
 | EAP Success |
 | <- -

C.12. Failure Scenario

 The following exchanges shows a failure scenario. The conversation
 will appear as follows:

DeKok (Ed) Expires 27 September 2024 [Page 102]

Internet-Draft TEAP March 2024

 ,----. ,-------.
 |Peer| |AuthSrv|
 ‘-+--’ ‘---+---’
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | ->
 | |
 | EAP-Request/EAP-Type=TEAP, V=1 |
 | (TEAP Start, S bit set, Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, V=1(TLS client_hello) |
 | ->
 | |
 | EAP-Request/ EAP-Type=TEAP, V=1 |
 | (TLS server_hello,(TLS change_cipher_spec, TLS finished)|
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, V=1 |
 | (TLS change_cipher_spec, |
 | TLS finished) |
 | TLS channel established |
 | ->
 | |
 | Request Action TLV |
 | <- -
 | |
 | Bad PKCS10 TLV |
 | ->
 | |
 | Intermediate-Result TLV request(Failure), |
 | Result TLV(Failure) |
 | <- -
 | |
 | Intermediate-Result TLV response(Failure), |
 | Result TLV(Failure) |
 | ->
 | |
 | EAP Failure |
 | <- -

C.13. Client certificate in Phase 1

 The following exchanges shows a scenario where the client certificate
 is sent in Phase 1, and no additional authentication or provisioning
 is performed in Phase 2. The conversation will appear as follows:

DeKok (Ed) Expires 27 September 2024 [Page 103]

Internet-Draft TEAP March 2024

 ,----. ,-------.
 |Peer| |AuthSrv|
 ‘-+--’ ‘---+---’
 | EAP-Request / Identity |
 | <- -
 | |
 | EAP-Response / Identity (MYID1) |
 | ->
 | |
 | EAP-Request/EAP-Type=TEAP, |
 | V=1(TEAP Start, |
 | S bit set, |
 | Authority-ID) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS client_hello) |
 | ->
 | |
 | EAP-Request/ EAP-Type=TEAP, |
 | V=1(TLS server_hello, |
 | TLS certificate, |
 | TLS certificate_request, |
 | TLS change_cipher_spec, |
 | TLS finished) |
 | <- -
 | |
 | EAP-Response/EAP-Type=TEAP, |
 | V=1(TLS certificate, |
 | TLS change_cipher_spec, |
 | TLS finished) TLS channel established |
 | ->
 | |
 | Crypto-Binding TLV(Request), |
 | Result TLV(Success) |
 | <- -
 | |
 | Crypto-Binding TLV(Response), |
 | Result TLV(Success) |
 | ->
 | |
 | EAP Success |
 | <- -

References

Normative References

DeKok (Ed) Expires 27 September 2024 [Page 104]

Internet-Draft TEAP March 2024

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [I-D.ietf-lamps-rfc7030-csrattrs]
 Richardson, M., Friel, O., von Oheimb, D., and D. Harkins,
 "Clarification of RFC7030 CSR Attributes definition", Work
 in Progress, Internet-Draft, draft-ietf-lamps-rfc7030-
 csrattrs-08, 3 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-lamps-
 rfc7030-csrattrs-08>.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 DOI 10.17487/RFC2985, November 2000,
 <https://www.rfc-editor.org/rfc/rfc2985>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/rfc/rfc2986>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/rfc/rfc3748>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/rfc/rfc5077>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <https://www.rfc-editor.org/rfc/rfc5216>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5246>.

 [RFC5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
 "Specification for the Derivation of Root Keys from an
 Extended Master Session Key (EMSK)", RFC 5295,
 DOI 10.17487/RFC5295, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5295>.

DeKok (Ed) Expires 27 September 2024 [Page 105]

Internet-Draft TEAP March 2024

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/rfc/rfc5705>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/rfc/rfc5746>.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <https://www.rfc-editor.org/rfc/rfc5929>.

 [RFC6677] Hartman, S., Ed., Clancy, T., and K. Hoeper, "Channel-
 Binding Support for Extensible Authentication Protocol
 (EAP) Methods", RFC 6677, DOI 10.17487/RFC6677, July 2012,
 <https://www.rfc-editor.org/rfc/rfc6677>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/rfc/rfc7030>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC8996] Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS
 1.1", BCP 195, RFC 8996, DOI 10.17487/RFC8996, March 2021,
 <https://www.rfc-editor.org/rfc/rfc8996>.

 [RFC9190] Preuß Mattsson, J. and M. Sethi, "EAP-TLS 1.3: Using the
 Extensible Authentication Protocol with TLS 1.3",
 RFC 9190, DOI 10.17487/RFC9190, February 2022,
 <https://www.rfc-editor.org/rfc/rfc9190>.

 [RFC9427] DeKok, A., "TLS-Based Extensible Authentication Protocol
 (EAP) Types for Use with TLS 1.3", RFC 9427,
 DOI 10.17487/RFC9427, June 2023,
 <https://www.rfc-editor.org/rfc/rfc9427>.

 [RFC9525] Saint-Andre, P. and R. Salz, "Service Identity in TLS",
 RFC 9525, DOI 10.17487/RFC9525, November 2023,
 <https://www.rfc-editor.org/rfc/rfc9525>.

Informative References

DeKok (Ed) Expires 27 September 2024 [Page 106]

Internet-Draft TEAP March 2024

 [IEEE.802-1X.2013]
 "*** BROKEN REFERENCE ***".

 [KAMATH] Palekar, R. H. and A., "Microsoft EAP CHAP Extensions",
 June 2007.

 [MSCHAP] Corporation, M., "Master Session Key (MSK) Derivation",
 n.d., <https://learn.microsoft.com/en-
 us/openspecs/windows_protocols/ms-chap/5a860bf5-2aeb-485b-
 82ee-fac1e8e6b76f>.

 [NIST-SP-800-57]
 Technology, N. I. of S. and., "Recommendation for Key
 Management", July 2012.

 [PEAP] Corporation, M., "[MS-PEAP]: Protected Extensible
 Authentication Protocol (PEAP)", February 2014.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
 <https://www.rfc-editor.org/rfc/rfc2315>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579,
 DOI 10.17487/RFC3579, September 2003,
 <https://www.rfc-editor.org/rfc/rfc3579>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/rfc/rfc3629>.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,
 RFC 3766, DOI 10.17487/RFC3766, April 2004,
 <https://www.rfc-editor.org/rfc/rfc3766>.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, DOI 10.17487/RFC4017, March
 2005, <https://www.rfc-editor.org/rfc/rfc4017>.

 [RFC4072] Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP) Application",
 RFC 4072, DOI 10.17487/RFC4072, August 2005,
 <https://www.rfc-editor.org/rfc/rfc4072>.

DeKok (Ed) Expires 27 September 2024 [Page 107]

Internet-Draft TEAP March 2024

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/rfc/rfc4086>.

 [RFC4334] Housley, R. and T. Moore, "Certificate Extensions and
 Attributes Supporting Authentication in Point-to-Point
 Protocol (PPP) and Wireless Local Area Networks (WLAN)",
 RFC 4334, DOI 10.17487/RFC4334, February 2006,
 <https://www.rfc-editor.org/rfc/rfc4334>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC4851] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
 Flexible Authentication via Secure Tunneling Extensible
 Authentication Protocol Method (EAP-FAST)", RFC 4851,
 DOI 10.17487/RFC4851, May 2007,
 <https://www.rfc-editor.org/rfc/rfc4851>.

 [RFC4945] Korver, B., "The Internet IP Security PKI Profile of
 IKEv1/ISAKMP, IKEv2, and PKIX", RFC 4945,
 DOI 10.17487/RFC4945, August 2007,
 <https://www.rfc-editor.org/rfc/rfc4945>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/rfc/rfc4949>.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management",
 BCP 132, RFC 4962, DOI 10.17487/RFC4962, July 2007,
 <https://www.rfc-editor.org/rfc/rfc4962>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5226>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5247>.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/rfc/rfc5272>.

DeKok (Ed) Expires 27 September 2024 [Page 108]

Internet-Draft TEAP March 2024

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5280>.

 [RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
 Protocol Tunneled Transport Layer Security Authenticated
 Protocol Version 0 (EAP-TTLSv0)", RFC 5281,
 DOI 10.17487/RFC5281, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5281>.

 [RFC5421] Cam-Winget, N. and H. Zhou, "Basic Password Exchange
 within the Flexible Authentication via Secure Tunneling
 Extensible Authentication Protocol (EAP-FAST)", RFC 5421,
 DOI 10.17487/RFC5421, March 2009,
 <https://www.rfc-editor.org/rfc/rfc5421>.

 [RFC5422] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou,
 "Dynamic Provisioning Using Flexible Authentication via
 Secure Tunneling Extensible Authentication Protocol (EAP-
 FAST)", RFC 5422, DOI 10.17487/RFC5422, March 2009,
 <https://www.rfc-editor.org/rfc/rfc5422>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/rfc/rfc5652>.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password",
 RFC 5931, DOI 10.17487/RFC5931, August 2010,
 <https://www.rfc-editor.org/rfc/rfc5931>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/rfc/rfc6066>.

 [RFC6124] Sheffer, Y., Zorn, G., Tschofenig, H., and S. Fluhrer, "An
 EAP Authentication Method Based on the Encrypted Key
 Exchange (EKE) Protocol", RFC 6124, DOI 10.17487/RFC6124,
 February 2011, <https://www.rfc-editor.org/rfc/rfc6124>.

 [RFC6238] M’Raihi, D., Machani, S., Pei, M., and J. Rydell, "TOTP:
 Time-Based One-Time Password Algorithm", RFC 6238,
 DOI 10.17487/RFC6238, May 2011,
 <https://www.rfc-editor.org/rfc/rfc6238>.

DeKok (Ed) Expires 27 September 2024 [Page 109]

Internet-Draft TEAP March 2024

 [RFC6678] Hoeper, K., Hanna, S., Zhou, H., and J. Salowey, Ed.,
 "Requirements for a Tunnel-Based Extensible Authentication
 Protocol (EAP) Method", RFC 6678, DOI 10.17487/RFC6678,
 July 2012, <https://www.rfc-editor.org/rfc/rfc6678>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/rfc/rfc6960>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/rfc/rfc6961>.

 [RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
 Authentication Protocol (EAP) Mutual Cryptographic
 Binding", RFC 7029, DOI 10.17487/RFC7029, October 2013,
 <https://www.rfc-editor.org/rfc/rfc7029>.

 [RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel Extensible Authentication Protocol (TEAP) Version
 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7170>.

 [RFC7299] Housley, R., "Object Identifier Registry for the PKIX
 Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
 <https://www.rfc-editor.org/rfc/rfc7299>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7542>.

 [RFC8146] Harkins, D., "Adding Support for Salted Password Databases
 to EAP-pwd", RFC 8146, DOI 10.17487/RFC8146, April 2017,
 <https://www.rfc-editor.org/rfc/rfc8146>.

 [RFC9325] Sheffer, Y., Saint-Andre, P., and T. Fossati,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November
 2022, <https://www.rfc-editor.org/rfc/rfc9325>.

 [X.690] ITU-T, "SN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", November 2008.

DeKok (Ed) Expires 27 September 2024 [Page 110]

Internet-Draft TEAP March 2024

Contributors

 Han Zhou

 Joseph Salowey
 Email: joe@salowey.net

 Nancy Cam-Winget
 Email: ncamwing@cisco.com

 Steve Hanna
 Email: steve.hanna@infineon.com

Author’s Address

 Alan DeKok
 Email: aland@freeradius.org

DeKok (Ed) Expires 27 September 2024 [Page 111]

EMU Working Group E. Ingles-Sanchez
Internet-Draft University of Murcia
Intended status: Standards Track D. Garcia-Carrillo
Expires: 15 March 2024 University of Oviedo
 R. Marin-Lopez
 University of Murcia
 G. Selander
 J. Preuß Mattsson
 Ericsson
 12 September 2023

 Using the Extensible Authentication Protocol with Ephemeral Diffie-
 Hellman over COSE (EDHOC)
 draft-ingles-eap-edhoc-05

Abstract

 The Extensible Authentication Protocol (EAP), defined in RFC 3748,
 provides a standard mechanism for support of multiple authentication
 methods. This document specifies the use of EAP-EDHOC with Ephemeral
 Diffie-Hellman Over COSE (EDHOC). EDHOC provides a lightweight
 authenticated Diffie-Hellman key exchange with ephemeral keys, using
 COSE (RFC 8152) to provide security services efficiently encoded in
 CBOR (RFC 8949). This document also provides guidance on
 authentication and authorization for EAP-EDHOC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 15 March 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 1]

Internet-Draft EAP-EDHOC September 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Protocol Overview . 3
 3.1. Overview of the EAP-EDHOC Conversation 3
 3.1.1. Authentication 3
 3.1.2. Transport and Message Correlation 5
 3.1.3. Termination . 5
 3.1.4. Identity . 9
 3.1.5. Privacy . 10
 3.1.6. Fragmentation . 10
 3.2. Identity Verification 13
 3.3. Key Hierarchy . 14
 3.4. Parameter Negotiation and Compliance Requirements 15
 3.5. EAP State Machines 15
 4. Detailed Description of the EAP-EDHOC Protocol 15
 4.1. EAP-EDHOC Request Packet 15
 4.2. EAP-EDHOC Response Packet 17
 5. IANA Considerations . 18
 5.1. EAP Type . 18
 5.2. EDHOC Exporter Label Registry 18
 6. Security Considerations 19
 6.1. Security Claims . 19
 7. References . 19
 7.1. Normative References 19
 7.2. Informative References 20
 Acknowledgments . 21
 Authors’ Addresses . 21

1. Introduction

 The Extensible Authentication Protocol (EAP), defined in [RFC3748],
 provides a standard mechanism for support of multiple authentication
 methods. This document specifies the EAP authentication method EAP-
 EDHOC which uses COSE defined credential-based mutual authentication,
 utilizing the EDHOC protocol cipher suite negotiation and
 establishment of shared secret keying material. Ephemeral Diffie-
 Hellman Over COSE (EDHOC, [I-D.ietf-lake-edhoc]) is a very compact

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 2]

Internet-Draft EAP-EDHOC September 2023

 and lightweight authenticated key exchange protocol designed for
 highly constrained settings. The main objective for EDHOC is to be a
 matching security handshake protocol to OSCORE [RFC8613], i.e., to
 provide authentication and session key establishment for IoT use
 cases such as those built on CoAP [RFC7252] involving ’things’ with
 embedded microcontrollers, sensors, and actuators. EDHOC reuses the
 same lightweight primitives as OSCORE, CBOR [RFC8949] and COSE
 [RFC8152], and specifies the use of CoAP but is not bound to a
 particular transport. The EAP-EDHOC method will enable the
 integration of EDHOC in different applications and use cases making
 use of the EAP framework.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

3.1. Overview of the EAP-EDHOC Conversation

 The EDHOC protocol running between an Initiator and a Responder
 consists of three mandatory messages (message_1, message_2,
 message_3), an optional message_4, and an error message. EAP-EDHOC
 uses all messages in the exchange, and message_4 is mandatory, as an
 alternate success indication.

 After receiving an EAP-Request packet with EAP-Type=EAP-EDHOC as
 described in this document, the conversation will continue with the
 EDHOC protocol encapsulated in the data fields of EAP-Response and
 EAP-Request packets. When EAP-EDHOC is used, the formatting and
 processing of the EDHOC message SHALL be done as specified in
 [I-D.ietf-lake-edhoc]. This document only lists additional and
 different requirements, restrictions, and processing compared to
 [I-D.ietf-lake-edhoc].

3.1.1. Authentication

 EAP-EDHOC authentication credentials can be of any type supported by
 COSE and be transported or referenced by EDHOC.

 EAP-EDHOC provides forward secrecy by exchange of ephemeral Diffie-
 Hellman public keys in message_1 and message_2.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 3]

Internet-Draft EAP-EDHOC September 2023

 The optimization combining the execution of EDHOC with the first
 subsequent OSCORE transaction specified in
 [I-D.ietf-core-oscore-edhoc] is not supported in this EAP method.

 Figure 1 shows an example message flow for a successful EAP-EDHOC.

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_2) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3) |
 | --> |
 | |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_4) |
 | <--- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | ---> |
 | EAP-Success |
 | <--- |
 + +

 Figure 1: EAP-EDHOC Mutual Authentication

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 4]

Internet-Draft EAP-EDHOC September 2023

3.1.2. Transport and Message Correlation

 EDHOC is not bound to a particular transport layer and can even be
 used in environments without IP. Nonetheless, EDHOC specification
 has a set of requirements for its transport protocol
 [I-D.ietf-lake-edhoc]. These include handling message loss,
 reordering, duplication, fragmentation, demultiplex EDHOC messages
 from other types of messages, denial-of-service protection, and
 message correlation. All these requirements are fulfilled either by
 the EAP protocol, EAP method or EAP lower layer, as specified in
 [RFC3748].

 For message loss, this can be either fulfilled by the EAP protocol or
 the EAP lower layer, as retransmissions can occur both in the lower
 layer and the EAP layer when EAP is run over a reliable lower layer.
 In other words, the EAP layer will do the retransmissions if the EAP
 lower layer cannot do it.

 For reordering, EAP is reliant on the EAP lower layer ordering
 guarantees for correct operation.

 For duplication and message correlation, EAP has the Identifier
 field, which provides both the peer and authenticator with the
 ability to detect duplicates and match a request with a response.

 Fragmentation is defined by this EAP method, see Section 3.1.6. The
 EAP framework [RFC3748] specifies that EAP methods need to provide
 fragmentation and reassembly if EAP packets can exceed the minimum
 MTU of 1020 octets.

 To demultiplex EDHOC messages from other types of messages, EAP
 provides the Code field.

 This method does not provide other mitigation against denial-of-
 service than EAP [RFC3748].

3.1.3. Termination

 If the EAP-EDHOC peer authenticates successfully, the EAP-EDHOC
 server MUST send an EAP-Request packet with EAP-Type=EAP-EDHOC
 containing message_4 as a protected success indication.

 If the EAP-EDHOC server authenticates successfully, the EAP-EDHOC
 peer MUST send an EAP-Response message with EAP-Type=EAP-EDHOC
 containing no data. Finally, the EAP-EDHOC server sends an EAP-
 Success.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 5]

Internet-Draft EAP-EDHOC September 2023

 Figure 2, Figure 3 and Figure 4 illustrate message flows in several
 cases where the EAP-EDHOC peer or EAP-EDHOC server sends an EDHOC
 error message.

 Figure 2 shows an example message flow where the EAP-EDHOC server
 rejects message_1 with an EDHOC error message.

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC error) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | --> |
 | |
 | EAP-Failure |
 | <-- |
 | |

 Figure 2: EAP-EDHOC Server rejection of message_1

 Figure 3 shows an example message flow where the EAP-EDHOC server
 authentication is unsuccessful and the EAP-EDHOC peer sends an EDHOC
 error message.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 6]

Internet-Draft EAP-EDHOC September 2023

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_2) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC error) |
 | --> |
 | EAP-Failure |
 | <-- |

 Figure 3: EAP-EDHOC Peer rejection of message_2

 Figure 4 shows an example message flow where the EAP-EDHOC server
 authenticates to the EAP-EDHOC peer successfully, but the EAP-EDHOC
 peer fails to authenticate to the EAP-EDHOC server and the server
 sends an EDHOC error message.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 7]

Internet-Draft EAP-EDHOC September 2023

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_2) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC error) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | --> |
 | |
 | EAP-Failure |
 | <-- |
 | |

 Figure 4: EAP-EDHOC Server rejection of message_3

 Figure 4 shows an example message flow where the EAP-EDHOC server
 sends the EDHOC message_4 to the EAP peer, but the success indication
 fails, and the peer sends an EDHOC error message.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 8]

Internet-Draft EAP-EDHOC September 2023

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_2) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_4) |
 | <--- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC error) |
 | --> |
 | EAP-Failure |
 | <-- |
 | |

 Figure 5: EAP-EDHOC Peer rejection of message_4

3.1.4. Identity

 It is RECOMMENDED to use anonymous NAIs [RFC7542] in the Identity
 Response as such identities are routable and privacy-friendly.

 While opaque blobs are allowed by [RFC3748], such identities are NOT
 RECOMMENDED as they are not routable and should only be considered in
 local deployments where the EAP-EDHOC peer, EAP authenticator, and
 EAP-EDHOC server all belong to the same network.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 9]

Internet-Draft EAP-EDHOC September 2023

 Many client certificates contain an identity such as an email
 address, which is already in NAI format. When the client certificate
 contains an NAI as subject name or alternative subject name, an
 anonymous NAI SHOULD be derived from the NAI in the certificate; See
 Section 3.1.5.

3.1.5. Privacy

 EAP-EDHOC peer and server implementations supporting EAP-EDHOC MUST
 support anonymous Network Access Identifiers (NAIs) (Section 2.4 of
 [RFC7542]). A client supporting EAP-EDHOC MUST NOT send its username
 (or any other permanent identifiers) in cleartext in the Identity
 Response (or any message used instead of the Identity Response).
 Following [RFC7542], it is RECOMMENDED to omit the username (i.e.,
 the NAI is @realm), but other constructions such as a fixed username
 (e.g., anonymous@realm) or an encrypted username (e.g.,
 xCZINCPTK5+7y81CrSYbPg+RKPE3OTrYLn4AQc4AC2U=@realm) are allowed.
 Note that the NAI MUST be a UTF-8 string as defined by the grammar in
 Section 2.2 of [RFC7542].

 EAP-EDHOC is always used with privacy. This does not add any extra
 round trips and the message flow with privacy is just the normal
 message flow as shown in Figure 1.

3.1.6. Fragmentation

 EAP-EDHOC fragmentation support is provided through the addition of a
 flags octet within the EAP-Response and EAP-Request packets, as well
 as a (conditional) EAP-EDHOC Message Length field of four octets. To
 do so, the EAP request and response messages of EAP-EDHOC have a set
 of information fields that allow for the specification of the
 fragmentation process (See Section 4 for the detailed description).
 Of these fields, we will highlight the one that contains the flag
 octet, which is used to steer the fragmentation process. If the L
 bit is set, we are specifying that the next message will be
 fragmented and that in such a message we can also find the length of
 the message.

 Implementations MUST NOT set the L bit in unfragmented messages, but
 they MUST accept unfragmented messages with and without the L bit
 set. Some EAP implementations and access networks may limit the
 number of EAP packet exchanges that can be handled. To avoid
 fragmentation, it is RECOMMENDED to keep the sizes of EAP-EDHOC peer,
 EAP-EDHOC server, and trust anchor authentication credentials small
 and the length of the certificate chains short. In addition, it is
 RECOMMENDED to use mechanisms that reduce the sizes of Certificate
 messages.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 10]

Internet-Draft EAP-EDHOC September 2023

 EDHOC is designed to perform well in constrained networks where
 message sizes are restricted for performance reasons. In the basic
 message construction, the size of plaintext in message_2 is limited
 to the length of the output of the key derivation function which in
 turn is decided by the EDHOC hash function. For example, with
 SHA-256 as EDHOC hash algorithm the maximum size of plaintext in
 message_2 is 8160 bytes. However, EDHOC also defines an optional
 backwards compatible method for handling arbitrarily long message_2
 plaintext sizes, see Appendix G in [I-D.ietf-lake-edhoc]. The other
 three EAP-EDHOC messages do not have an upper bound.

 Furthermore, in the case of sending a certificate in a message
 instead of a reference, a certificate may in principle be as long as
 16 MB. Hence, the EAP-EDHOC messages sent in a single round may thus
 be larger than the MTU size or the maximum Remote Authentication
 Dial-In User Service (RADIUS) packet size of 4096 octets. As a
 result, an EAP-EDHOC implementation MUST provide its own support for
 fragmentation and reassembly.

 Since EAP is a simple ACK-NAK protocol, fragmentation support can be
 added in a simple manner. In EAP, fragments that are lost or damaged
 in transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a
 fragment offset field as is provided in IPv4 EAP-EDHOC fragmentation
 support is provided through the addition of a flags octet within the
 EAP-Response and EAP-Request packets, as well as a EDHOC Message
 Length field of four octets. Flags include the Length included (L),
 More fragments (M), and EAP-EDHOC Start (S) bits. The L flag is set
 to indicate the presence of the four-octet EDHOC Message Length
 field, and MUST be set for the first fragment of a fragmented EDHOC
 message or set of messages. The M flag is set on all but the last
 fragment. The S flag is set only within the EAP-EDHOC start message
 sent from the EAP server to the peer. The EDHOC Message Length field
 is four octets, and provides the total length of the EDHOC message or
 set of messages that is being fragmented; this simplifies buffer
 allocation.

 When an EAP-EDHOC peer receives an EAP-Request packet with the M bit
 set, it MUST respond with an EAP-Response with EAP-Type=EAP-EDHOC and
 no data. This serves as a fragment ACK. The EAP server MUST wait
 until it receives the EAP-Response before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier field for each fragment
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the fragment ACK contained within the EAP-
 Response. Retransmitted fragments will contain the same Identifier
 value.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 11]

Internet-Draft EAP-EDHOC September 2023

 Similarly, when the EAP server receives an EAP-Response with the M
 bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-EDHOC
 and no data. This serves as a fragment ACK. The EAP peer MUST wait
 until it receives the EAP-Request before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

 In the case where the EAP-EDHOC mutual authentication is successful,
 and fragmentation is required, the conversation will appear as
 follows:

 EAP-EDHOC Peer EAP-EDHOC Server

 | EAP-Request/Identity |
 | <-- |
 | EAP-Response/Identity (Privacy-Friendly) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC Start, S bit set) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_1) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_2, |
 | Fragment 1: L,M bits set) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (Fragment 2: M bits set) |
 | <-- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (Fragment 3) |
 | <-- |
 | EAP-Response/ |

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 12]

Internet-Draft EAP-EDHOC September 2023

 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3, |
 | Fragment 1: L,M bits set) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | <--- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3, |
 | Fragment 2: M bits set) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | <--- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_3, |
 | Fragment 3) |
 | --> |
 | EAP-Request/ |
 | EAP-Type=EAP-EDHOC |
 | (EDHOC message_4) |
 | <--- |
 | EAP-Response/ |
 | EAP-Type=EAP-EDHOC |
 | ---> |
 | EAP-Success |
 | <--- |
 + +

 Figure 6: Fragmentation example of EAP-EDHOC Authentication

3.2. Identity Verification

 The EAP peer identity provided in the EAP-Response/Identity is not
 authenticated by EAP-EDHOC. Unauthenticated information MUST NOT be
 used for accounting purposes or to give authorization. The
 authenticator and the EAP-EDHOC server MAY examine the identity
 presented in EAP-Response/Identity for purposes such as routing and
 EAP method selection. EAP-EDHOC servers MAY reject conversations if
 the identity does not match their policy.

 The EAP server identity in the EDHOC server certificate is typically
 a fully qualified domain name (FQDN) in the SubjectAltName (SAN)
 extension. Since EAP-EDHOC deployments may use more than one EAP
 server, each with a different certificate, EAP peer implementations
 SHOULD allow for the configuration of one or more trusted root

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 13]

Internet-Draft EAP-EDHOC September 2023

 certificates (CA certificate) to authenticate the server certificate
 and one or more server names to match against the SubjectAltName
 (SAN) extension in the server certificate. If any of the configured
 names match any of the names in the SAN extension, then the name
 check passes. To simplify name matching, an EAP-EDHOC deployment can
 assign a name to represent an authorized EAP server and EAP Server
 certificates can include this name in the list of SANs for each
 certificate that represents an EAP-EDHOC server. If server name
 matching is not used, then it degrades the confidence that the EAP
 server with which it is interacting is authoritative for the given
 network. If name matching is not used with a public root CA, then
 effectively any server can obtain a certificate that will be trusted
 for EAP authentication by the peer.

 The process of configuring a root CA certificate and a server name is
 non-trivial; therefore, automated methods of provisioning are
 RECOMMENDED. For example, the eduroam federation [RFC7593] provides
 a Configuration Assistant Tool (CAT) to automate the configuration
 process. In the absence of a trusted root CA certificate (user-
 configured or system-wide), EAP peers MAY implement a trust on first
 use (TOFU) mechanism where the peer trusts and stores the server
 certificate during the first connection attempt. The EAP peer
 ensures that the server presents the same stored certificate on
 subsequent interactions. The use of a TOFU mechanism does not allow
 for the server certificate to change without out-of-band validation
 of the certificate and is therefore not suitable for many deployments
 including ones where multiple EAP servers are deployed for high
 availability. TOFU mechanisms increase the susceptibility to traffic
 interception attacks and should only be used if there are adequate
 controls in place to mitigate this risk.

3.3. Key Hierarchy

 The key schedule for EDHOC is described in Section 4 of
 [I-D.ietf-lake-edhoc]. The Key_Material and Method-Id SHALL be
 derived from the PRK_exporter using the EDHOC-Exporter interface, see
 Section 4.2.1 of [I-D.ietf-lake-edhoc].

 Type is the value of the EAP Type field defined in Section 2 of
 [RFC3748]. For EAP-EDHOC, the Type field has the value TBD1.

 Type = TBD1
 MSK = EDHOC-Exporter(TBD2 ,<< Type >>, 64)
 EMSK = EDHOC-Exporter(TBD3 ,<< Type >>, 64)
 Method-Id = EDHOC-Exporter(TBD4, << Type >>, 64)
 Session-Id = Type || Method-Id

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 14]

Internet-Draft EAP-EDHOC September 2023

 EAP-EDHOC exports the MSK and the EMSK and does not specify how it is
 used by lower layers.

3.4. Parameter Negotiation and Compliance Requirements

 The EAP-EDHOC peers and EAP-EDHOC servers MUST comply with the
 compliance requirements (mandatory-to-implement cipher suites,
 signature algorithms, key exchange algorithms, extensions, etc.)
 defined in Section 7 of [I-D.ietf-lake-edhoc].

3.5. EAP State Machines

 The EAP-EDHOC server sends message_4 in an EAP-Request as a protected
 success result indication.

 EDHOC error messages SHOULD be considered failure result indication,
 as defined in [RFC3748]. After sending or receiving an EDHOC error
 message, the EAP-EDHOC server may only send an EAP-Failure. EDHOC
 error messages are unprotected.

 The keying material can be derived after the EDHOC message_2 has been
 sent or received. Implementations following [RFC4137] can then set
 the eapKeyData and aaaEapKeyData variables.

 The keying material can be made available to lower layers and the
 authenticator after the authenticated success result indication has
 been sent or received (message_4). Implementations following
 [RFC4137] can set the eapKeyAvailable and aaaEapKeyAvailable
 variables.

4. Detailed Description of the EAP-EDHOC Protocol

4.1. EAP-EDHOC Request Packet

 A summary of the EAP-EDHOC Request packet format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | EDHOC Message Length
 +-+
 | EDHOC Message Length | EDHOC Data...
 +-+

 Code

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 15]

Internet-Draft EAP-EDHOC September 2023

 1

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored on
 reception.

 Type

 TBD1 -- EAP-EDHOC

 Flags

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+
 |L M S R R R R R|
 +-+-+-+-+-+-+-+-+

 L = Length included
 M = More fragments
 S = EAP-EDHOC start
 R = Reserved

 The L bit (length included) is set to indicate the presence of the
 four-octet EDHOC Message Length field and MUST be set for the first
 fragment of a fragmented EDHOC message or set of messages. The M
 bit (more fragments) is set on all but the last fragment. The S
 bit (EAP-EDHOC start) is set in an EAP-EDHOC Start message. This
 differentiates the EAP-EDHOC Start message from a fragment
 acknowledgement. Implementations of this specification MUST set
 the reserved bits to zero and MUST ignore them on reception.

 EDHOC Message Length

 The EDHOC Message Length field is four octets and is present only
 if the L bit is set. This field provides the total length of the
 EDHOC message or set of messages that is being fragmented.

 EDHOC data

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 16]

Internet-Draft EAP-EDHOC September 2023

 The EDHOC data consists of the encapsulated EDHOC packet in EDHOC
 message format.

4.2. EAP-EDHOC Response Packet

 A summary of the EAP-EDHOC Response packet format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | EDHOC Message Length
 +-+
 | EDHOC Message Length | EDHOC Data...
 +-+

 Code

 2

 Identifier

 The Identifier field is one octet and MUST match the Identifier
 field from the corresponding request.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored on
 reception.

 Type

 TBD1 -- EAP-EDHOC

 Flags

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 17]

Internet-Draft EAP-EDHOC September 2023

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+
 |L M R R R R R R|
 +-+-+-+-+-+-+-+-+

 L = Length included
 M = More fragments
 R = Reserved

 The L bit (length included) is set to indicate the presence of the
 four-octet EDHOC Message Length field,
 and MUST be set for the first
 fragment of a fragmented EDHOC message or set of messages. The M
 bit (more fragments) is set on all but the last fragment.
 Implementations of this specification MUST set the reserved bits
 to zero and MUST ignore them on reception.

 EDHOC Message Length

 The EDHOC Message Length field is four octets and is present only
 if the L bit is set. This field provides the total length of the
 EDHOC message or set of messages that is being fragmented.

 EDHOC data

 The EDHOC data consists of the encapsulated EDHOC message.

5. IANA Considerations

5.1. EAP Type

 IANA has allocated EAP Type TBD1 for method EAP-EDHOC. The
 allocation has been updated to reference this document.

5.2. EDHOC Exporter Label Registry

 IANA has registered the following new labels in the "EDHOC Exporter
 Label" registry under the group name "Ephemeral Diffie-Hellman Over
 COSE (EDHOC)":

 Label: TBD2
 Description: MSK of EAP method EAP-EDHOC

 Label: TBD3
 Description: EMSK of EAP method EAP-EDHOC

 Label: TBD4
 Description: Method-Id of EAP method EAP-EDHOC

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 18]

Internet-Draft EAP-EDHOC September 2023

 The allocations have been updated to reference this document.

6. Security Considerations

 TBD.

 [Editor’s note: More security considerations to be added.]

6.1. Security Claims

 Using EAP-EDHOC provides the security claims of EDHOC, which are
 described next.

 [1] Mutual authentication: The initiator and responder authenticate
 each other through the EDHOC exchange.

 [2] Forward secrecy: Only ephemeral Diffie-Hellman methods are
 supported by EDHOC, which ensures that the compromise of one session
 key does not also compromise earlier sessions’ keys.

 [3] Identity protection: EDHOC secures the Responder’s credential
 identifier against passive attacks and the Initiator’s credential
 identifier against active attacks. An active attacker can get the
 credential identifier of the Responder by eavesdropping on the
 destination address used for transporting message_1 and then sending
 its own message_1 to the same address.

 [4] Cipher suite negotiation: The Initiator’s list of supported
 cipher suites and order of preference is fixed and the selected
 cipher suite is the first cipher suite that the Responder supports.

 [5] Integrity protection: EDHOC integrity protects all message
 content using transcript hashes for key derivation and as additional
 authenticated data, including, e.g., method type, ciphersuites, and
 external authorization data.

7. References

7.1. Normative References

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-22, 25
 August 2023, <https://datatracker.ietf.org/doc/html/draft-
 ietf-lake-edhoc-22>.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 19]

Internet-Draft EAP-EDHOC September 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC4137] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137,
 DOI 10.17487/RFC4137, August 2005,
 <https://www.rfc-editor.org/info/rfc4137>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [I-D.ietf-core-oscore-edhoc]
 Palombini, F., Tiloca, M., Höglund, R., Hristozov, S., and
 G. Selander, "Using EDHOC with CoAP and OSCORE", Work in
 Progress, Internet-Draft, draft-ietf-core-oscore-edhoc-08,
 8 August 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-core-oscore-edhoc-08>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7593] Wierenga, K., Winter, S., and T. Wolniewicz, "The eduroam
 Architecture for Network Roaming", RFC 7593,
 DOI 10.17487/RFC7593, September 2015,
 <https://www.rfc-editor.org/info/rfc7593>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 20]

Internet-Draft EAP-EDHOC September 2023

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

Acknowledgments

 Work on this document has in part been supported by the H2020
 Projects IoTCrawler (grant agreement no. 779852) and INSPIRE-5Gplus
 (grant agreement no. 871808).

Authors’ Addresses

 Eduardo Ingles-Sanchez
 University of Murcia
 Murcia 30100
 Spain
 Email: eduardo.ingles@um.es

 Dan Garcia-Carrillo
 University of Oviedo
 Gijon, Asturias 33203
 Spain
 Email: garciadan@uniovi.es

 Rafael Marin-Lopez
 University of Murcia
 Murcia 30100
 Spain
 Email: rafa@um.es

 Göran Selander
 Ericsson
 SE-164 80 Stockholm
 Sweden
 Email: goran.selander@ericsson.com

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 21]

Internet-Draft EAP-EDHOC September 2023

 John Preuß Mattsson
 Ericsson
 SE-164 80 Stockholm
 Sweden
 Email: john.mattsson@ericsson.com

Ingles-Sanchez, et al. Expires 15 March 2024 [Page 22]

anima Working Group A. Dekok

Internet-Draft FreeRADIUS

Intended status: Standards Track M. Richardson

Expires: 4 October 2023 Sandelman Software Works

 2 April 2023

 EAP defaults for devices that need to onboard

 draft-richardson-emu-eap-onboarding-03

Abstract

 This document describes a method by which an unconfigured device can

 use EAP to join a network on which further device onboarding, network

 attestation or other remediation can be done. While RFC 5216

 supports EAP-TLS without a client certificate, that document defines

 no method by which unauthenticated EAP-TLS can be used. This draft

 addresses that issue. First, by defining the @eap.arpa domain, and

 second by showing how it can be used to provide quarantined network

 access for onboarding unauthenticated devices.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-richardson-emu-eap-

 onboarding/.

 Discussion of this document takes place on the anima Working Group

 mailing list (mailto:anima@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/anima/.

 Source for this draft and an issue tracker can be found at

 https://github.com/mcr/eap-onboarding.git.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

Dekok & Richardson Expires 4 October 2023 [Page 1]

Internet-Draft EAP-onboarding April 2023

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 4 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Terminology . 4

 3. Protocol Details . 4

 3.1. Discovery . 4

 3.2. Authentication . 5

 3.3. Authorization . 5

 3.4. Characteristics of the Quarantine Network 5

 4. Captive Portal . 6

 5. Privacy Considerations 6

 6. Security Considerations 6

 6.1. Use of eap.arpa . 7

 7. IANA Considerations . 7

 7.1. Domain Name Reservation Considerations 7

 8. Acknowledgements . 8

 9. Changelog . 8

 10. References . 8

 10.1. Normative References 8

 10.2. Informative References 8

 Authors’ Addresses . 10

Dekok & Richardson Expires 4 October 2023 [Page 2]

Internet-Draft EAP-onboarding April 2023

1. Introduction

 There are a multitude of situations where a network device needs to

 join a new (wireless) network but where the device does not yet have

 the right credentials for that network. As the device does not have

 credentials, it cannot access networks which typically require

 authentication. However, since the device does not have network

 access, it cannot download a new configuration which contains updated

 credentials.

 The process by which a device acquires these credentials has become

 known as onboarding [I-D.irtf-t2trg-secure-bootstrapping]. There are

 many onboarding protocols, including [RFC8995], [RFC9140], [dpp], CSA

 MATTER, and OPC UA Part 21. Some of these protocols use WiFi Public

 frames, or provide for provisioning as part of EAP, such as

 [RFC7170]. Other systems require pre-existing IP connectivity in

 order to configure credentials for a device, which causes a circular

 dependancy.

 This document defines a method where devices can use unauthenticated

 EAP in order to obtain network access, albeit in a captive portal

 [RFC8952]. Once the device is in a captive portal, it has access to

 the full suite of Internet Protocol (IP) technologies, and can

 proceed with onboarding. We believe that the method defined here is

 clearer, safer, and easier to implement and deploy than alternatives.

 This method also allows for multiple onboarding technologies to co-

 exist, and for the technologies to evolve without requiring invasive

 upgrades to layer-2 infrastructure.

 The method detailed in this document uses the unauthenticated client

 mode of EAP-TLS. While [RFC5216] defines EAP-TLS without a client

 certificate, that document defines no method by which unauthenticated

 EAP-TLS can be used.

 This draft addresses that issue. First, by defining the @eap.arpa

 domain, and second by showing how it can be used to provid network

 access for onboarding unauthenticated devices.

 Note that this specification does not specify the exact method used

 for onboarding devices! There are many possibilities, with some

 methods yet to be defined. Not all of them are enumerated here.

Dekok & Richardson Expires 4 October 2023 [Page 3]

Internet-Draft EAP-onboarding April 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The term _supplicant_ is used to refer to the network device which is

 attempting to do EAP-TLS.

 The term _pledge_ (from [RFC8995]) is used to refer to the network

 device which has successfully performed unauthenticated client mode

 EAP-TLS, and now has access to a network on which is may perform

 onboarding.

3. Protocol Details

 The onboarding is divided into the following phases:

 * Discovery - the supplicant determines that a network can do

 onboarding,

 * Authentication - the supplicant connects to the network as an

 unauthenticated device,

 * Authorization - the network provides limited connectivity to the

 device/pledge,

 * Onboarding - the device/pledge uses standard IP protocols to

 perform onboarding,

 * Full network access - the device has provisioned credentials, and

 can proceed with normal network access.

3.1. Discovery

 The network should use 802.11u to signal that it can potentially

 perform onboarding, by using 802.11u and indicating that it supports

 the realm "eap.arpa".

 When a supplicant which requires onboarding sees this realm, it knows

 that the network may be suitable for onboarding.

 Note that not all such networks are suitable for onboarding using the

 technologies that a supplicant has. Some networks might have only a

 captive portal, intended for human use. This is the "coffee shop"

 case.

Dekok & Richardson Expires 4 October 2023 [Page 4]

Internet-Draft EAP-onboarding April 2023

 There may be multiple such networks available, and only one (or none)

 may be willing to onboard this particular device. Further, the

 device does not necessarily trust any such network.

 There are situations where there may be many hundreds of networks

 which offer onboarding, and a supplicant device may need to try all

 of them until it finds a network to which it can successfully

 onboard. An example of such a situation is in a large (dozens to

 hundreds of floors) apartment building in a downtown core, where

 radio signals may leak from adjacent units, reflect off glass

 windows, come from other floors, and even cross the street from

 adjacent buildings. This document does not address this issue, but

 anticipates future work in 802.11u, perhaps involving some filtering

 mechanism using Bloom Filters.

 Supplicants MUST limit their actions in the onboarding network to the

 action of onboarding. If this process cannot be completed, the

 device MUST disconnect from the onboarding network, and try again,

 usually by selecting a different network.

 As soon as the device has been onboarded, the device MUST disconnect

 from the onboarding network, and use the provided configuration to

 authenticate and connect to a fully-capable network.

3.2. Authentication

 The supplicant presents itself as an unauthenticated peer, which is

 allowed by EAP-TLS [RFC5216] Section 2.1.1. TLS 1.2 or TLS 1.3

 [RFC9190] may be used, but TLS 1.3 or higher is RECOMMENDED.

 The supplicant uses an identity of onboarding@eap.arpa, and provides

 no TLS client certificate. The use of the "eap.arpa" domain signals

 to the network that the device wishes to use unauthenticated EAP-TLS.

3.3. Authorization

 Upon receipt of a supplicant without any authentication, the AAA

 server returns instructions to the authenticator to place the new

 client into the quarantined or captive portal network. The exact

 method is network-dependent, but it is usually done with a dedicated

 VLAN which has limited network access.

3.4. Characteristics of the Quarantine Network

 The quarantine network SHOULD be segregated at layer-two (ethernet),

 and should not permit ethernet frames to any destination other than a

 small set of specified routers.

Dekok & Richardson Expires 4 October 2023 [Page 5]

Internet-Draft EAP-onboarding April 2023

 Specifically, the layer infrastructure should prevent one pledge from

 attempting to connect to another pledge.

 For some onboarding protocols such as [RFC8995], only IPv6 Link-Local

 frames are needed. Such a network MUST provide a Join Proxy as

 specified in [RFC8995], Section 4.

 For other onboarding protocols more capabilities may be needed, in

 particular there need for a DHCPv4 server may be critical for the

 device to believe it has connected correctly. This is particularly

 the case where a normal "smartphone" or laptop system will onboard

 via a captive portal.

 Once on the quarantine network, device uses other protocols [RFC6876]

 to perform the onboarding action.

4. Captive Portal

 While this document imposes no requirements on the rest of the

 network, captive portals [RFC8952] have been used for almost two

 decades. The administration and operation of captive portals is

 typically within the authority of administrators who are responsible

 for network access. As such, this document defines additional

 behavior on, and requirements for, captive portals, so long as those

 changes materially benefit the network access administrator.

5. Privacy Considerations

 Devices should take care to hide all identifying information from the

 onboarding network. Any identifying information MUST be sent

 encrypted via a method such as TLS.

6. Security Considerations

 Devices using an onboarding network MUST assume that the network is

 untrusted. All network traffic SHOULD be encrypted in order to

 prevent attackers from both eavesdropping, and from modifying any

 provisioning information.

 Similarly onboarding networks MUST assume that devices are untrusted,

 and could be malicious. Networks MUST make provisions to prevent

 Denial of Service (DoS) attacks, such as when many devices attempt to

 connect at the same time.

 Networks MUST limit network access to onboarding protocols only.

 Networks SHOULD also limit the bandwidth used by any device which is

 being onboarded.

Dekok & Richardson Expires 4 October 2023 [Page 6]

Internet-Draft EAP-onboarding April 2023

 The configuration information is likely to be small (megabytes at

 most), and it is reasonable to require a second or two for this

 process to take place.

 Any device which cannot be onboarded within approximately 30 seconds

 SHOULD be disconnected. Such a delay signals either a malicious

 device / network, or a misconfigured device / network. If onboarding

 cannot be finished within a short timer, the device should choose

 another network.

6.1. Use of eap.arpa

 Supplicants MUST use the "eap.arpa" domain only for onboarding and

 related activities. Supplicant MUST use unauthenticated EAP-TLS.

 Networks which support onboarding via the "eap.arpa" domain MUST

 require that supplicants use unauthenticated EAP-TLS. The use of

 other EAP types MUST result in rejection, and a denial of all network

 access.

 The "eap.arpa" domain MUST NOT be used in any other context, such as

 in an NAI [RFC7542], etc. in any other protocol.

7. IANA Considerations

 The special-use domain "eap.arpa" should be registered in the .arpa

 registry (https://www.iana.org/domains/arpa

 (https://www.iana.org/domains/arpa)). No A, AAAA, or PTR records are

 requested.

7.1. Domain Name Reservation Considerations

 This template is filled in, complying with [RFC6761] section 5.

 Users: Human users are not expected to recognize this name as

 special.

 Application Software: Only writers of network connectivity sub-

 systems (WiFi) are expected to see this new domain. No other

 software (such browsers) should care about this name.

 Name Resolution APIs and Libraries: Name Resolution APIs and

 Libraries do not need to mark this name as special.

 Caching DNS Servers: DNS Caches do not need to do any special

 processing for this name.

 Authoritative DNS Servers: Authoritative DNS servers do not need any

Dekok & Richardson Expires 4 October 2023 [Page 7]

Internet-Draft EAP-onboarding April 2023

 special processing.

 DNS Server Operators: ; DNS Server Opreators do not need to do

 anything special.

 DNS Registries/Registrars: DNS Registrars presently do not registar

 any names in .arpa, and this name reservation will be no

 different.

8. Acknowledgements

 TBD.

9. Changelog

 01 to 02: minor edits.

10. References

10.1. Normative References

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS

 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,

 March 2008, <https://www.rfc-editor.org/info/rfc5216>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC9190] Preuß Mattsson, J. and M. Sethi, "EAP-TLS 1.3: Using the

 Extensible Authentication Protocol with TLS 1.3",

 RFC 9190, DOI 10.17487/RFC9190, February 2022,

 <https://www.rfc-editor.org/info/rfc9190>.

10.2. Informative References

Dekok & Richardson Expires 4 October 2023 [Page 8]

Internet-Draft EAP-onboarding April 2023

 [dpp] "Device Provisioning Protocol Specification", n.d.,

 <https://www.wi-fi.org/downloads-registered-guest/Device_P

 rovisioning_Protocol_Draft_Technical_Specification_Package

 _v0_0_23_0.zip/31255>.

 [I-D.irtf-t2trg-secure-bootstrapping]

 Sethi, M., Sarikaya, B., and D. Garcia-Carrillo,

 "Terminology and processes for initial security setup of

 IoT devices", Work in Progress, Internet-Draft, draft-

 irtf-t2trg-secure-bootstrapping-03, 26 November 2022,

 <https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-

 secure-bootstrapping-03>.

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",

 RFC 6761, DOI 10.17487/RFC6761, February 2013,

 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC6876] Sangster, P., Cam-Winget, N., and J. Salowey, "A Posture

 Transport Protocol over TLS (PT-TLS)", RFC 6876,

 DOI 10.17487/RFC6876, February 2013,

 <https://www.rfc-editor.org/info/rfc6876>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

 "Enrollment over Secure Transport", RFC 7030,

 DOI 10.17487/RFC7030, October 2013,

 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,

 "Tunnel Extensible Authentication Protocol (TEAP) Version

 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,

 <https://www.rfc-editor.org/info/rfc7170>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,

 DOI 10.17487/RFC7542, May 2015,

 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC8952] Larose, K., Dolson, D., and H. Liu, "Captive Portal

 Architecture", RFC 8952, DOI 10.17487/RFC8952, November

 2020, <https://www.rfc-editor.org/info/rfc8952>.

 [RFC8995] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

 and K. Watsen, "Bootstrapping Remote Secure Key

 Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

 May 2021, <https://www.rfc-editor.org/info/rfc8995>.

Dekok & Richardson Expires 4 October 2023 [Page 9]

Internet-Draft EAP-onboarding April 2023

 [RFC9140] Aura, T., Sethi, M., and A. Peltonen, "Nimble Out-of-Band

 Authentication for EAP (EAP-NOOB)", RFC 9140,

 DOI 10.17487/RFC9140, December 2021,

 <https://www.rfc-editor.org/info/rfc9140>.

Authors’ Addresses

 Alan DeKok

 FreeRADIUS

 Email: aland@freeradius.org

 Michael Richardson

 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca

Dekok & Richardson Expires 4 October 2023 [Page 10]

	draft-chen-emu-eap-tls-ibs-05
	draft-ietf-emu-bootstrapped-tls-05
	draft-ietf-emu-rfc7170bis-16
	draft-ingles-eap-edhoc-05
	draft-richardson-emu-eap-onboarding-03

