
OPSAWG C. Feng, Ed.
Internet-Draft Huawei
Intended status: Standards Track T. Hu
Expires: 14 September 2023 CMCC
 LM. Contreras
 Telefonica I+D
 Q. Wu
 C. Yu
 Huawei
 13 March 2023

 Incident Management for Network Services
 draft-feng-opsawg-incident-management-00

Abstract

 This document provides an architecture for the incident management
 system and related function interface requirements.

 This document also defines a YANG module to support the incident
 lifecycle management. This YANG module is meant to provide a
 standard way to report, diagnose, and resolve incidents for the sake
 of enhanced network services.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Feng, et al. Expires 14 September 2023 [Page 1]

Internet-Draft Incident Management March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Sample Use Cases . 5
 3.1. Incident-Based Trouble Tickets dispatching 5
 3.2. Fault Locating . 6
 3.3. Fault Labelling . 6
 3.4. Energy Conservation 7
 4. Incident Management Architecture 7
 5. Functional Interface Requirements between the Client and the
 Agent . 9
 5.1. Incident Detection 9
 5.2. Incident Diagnosis 12
 5.3. Incident Resolution 13
 6. Incident Data Model Concepts 13
 6.1. Identifying the Incident Instance 13
 6.2. The Incident Lifecycle 13
 6.2.1. Incident Instance Lifecycle 13
 6.2.2. Operator Incident Lifecycle 14
 7. Incident Data Model . 14
 7.1. Overview . 14
 7.2. Incident Notifications 15
 7.3. Incident Acknowledge 17
 7.4. Incident Diagnose . 17
 7.5. Incident Resolution 19
 8. Incident Management YANG Module 19
 9. IANA Considerations . 32
 9.1. The "IETF XML" Registry 32
 9.2. The "YANG Module Names" Registry 32
 10. Security Considerations 32
 11. Contributors . 33
 12. Acknowledgments . 33
 13. References . 33
 13.1. Normative References 33
 13.2. Informative References 34
 Authors’ Addresses . 34

Feng, et al. Expires 14 September 2023 [Page 2]

Internet-Draft Incident Management March 2023

1. Introduction

 Network performance management and fault management are used for
 monitoring and troubleshooting separately in networking
 infrastructures. Typically, metrics and alarms, transaction
 operations are monitored centrally and incident tickets are triggered
 accordingly. A YANG [RFC7950] data model for alarm management
 [RFC8632] defines a standard interface for alarm management.

 A data model for Network and VPN Service Performance Monitoring [I-
 D.opsawg-yang-vpn-service-pm] defines a standard interface for
 performance management. In addition, distributed tracing mechanism
 defined in [W3C-Trace-Context] can also be used to follow, analyze
 and debug operations, such as configuration transactions, across
 multiple distributed systems.

 However, alarm-centric solution described in [RFC8632] and
 performance-centric solution described in [I-D.opsawg-yang-vpn-
 service-pm], trace context-centric solution is based on a data source
 specific information and maintenance engineers’ experience and fall
 short when keeping track of them separately in various different
 management systems, e.g., the frequency and quantity of alarms
 reported to Operating Support System (OSS) increased dramatically (in
 many cases multiple orders of magnitude) with the growth of service
 types and complexity, hard to aggregate in a single domain along with
 key performance metrics, various different events, notifications,
 overwhelm OSS platforms, result in low processing efficiency,
 inaccurate root cause identification and duplicated tickets.

 Usually, the network modeling from device to different connection and
 service layers follows some existing standards. Once there are some
 failures happened on network devices, there could be some correlative
 alarms appeared on the upper layers. Theoretically, it is possible
 to compress a series of alarms into fewer incidents. The traditional
 working manner is also based on this correlation relationship. But
 the traditional working manner is time-consuming and labor-intensive
 which reduces efficiency. Additionally, it quite depends on the
 experience of maintenance engineers. Moreover, the investigation of
 some faults also depends on some other data like topology data or
 performance data. This complicates network troubleshooting, and the
 correlation of alarms and network services. Therefore, it is
 difficult to assess the impact of alarms on network services.

 To address these challenges, an incident-centric solution is
 proposed, which also supports cross-domain or cross-layer root cause
 analysis and network troubleshooting. A network incident refers to
 an unexpected interruption of a network service, degradation of a
 network service quality, or sub-health of a network service while an

Feng, et al. Expires 14 September 2023 [Page 3]

Internet-Draft Incident Management March 2023

 alarm described in [RFC8632] represents an undesirable state in a
 resource that requires corrective actions. An alarm will always be
 reported when network resources are unexpected while an incident is
 reported only when network services are affected, e.g., symptoms
 (e.g.,CPU overloaded) at the device level defined in [I-D.opsawg-
 service-assurance-yang] or root cause alarms can be used to generate
 and report incidents when the network service is in sub-health state
 or gets degraded. An incident may be triggered by aggregation and
 analysis of multiple alarms or other network anomalies, for example,
 the protocols related to the interface fail to work properly due to
 the interface down, as a result, the network service becomes
 unavailable. An incident may also be raised through the analysis of
 some network performance metrics, for example, the delay or packet
 loss rate exceeds the threshold, causing degradation of the network
 service.

 Artificial Intelligence (AI) and Machine Learning (ML) play a
 important role in the processing of large amounts of data with
 complex correlations. For example, Neural Network Algorithm or
 Hierarchy Aggregation Algorithm can be used to replace manual alarm
 correlation. Through online and offline learning, these algorithms
 can be continuously optimized to improve the efficiency of fault
 diagnosis.

 This document defines the concepts, requirements, and architecture of
 incident management. The document also defines a YANG data model for
 incident lifecycle management, which improves troubleshooting
 efficiency, ensures network service quality, and improves network
 automation [RFC8969].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC8632] are not redefined here:

 * alarm

 The following terms are defined in this document:

 Incident: An unexpected interruption of a network service,
 degradation of network service quality, or sub-health of a network
 service.

Feng, et al. Expires 14 September 2023 [Page 4]

Internet-Draft Incident Management March 2023

 Incident management: Lifecycle management of incidents including
 incident identification, reporting, acknowledge, diagnosis, and
 resolution.

 Incident management system: An entity which implements incident
 management. It include incident management agent and incident
 management client.

 Incident management agent: An entity which provides some functions
 of incident management. For example, it can detect an incident,
 perform incident diagnosis, resolution and prediction,etc.

 Incident management client: An entity which can manage incidents.
 For example, it can receive incident notifications, query the
 information of incidents, instruct the incident management agent
 to diagnose, resolve, etc.

3. Sample Use Cases

3.1. Incident-Based Trouble Tickets dispatching

 Currently, the dispatching of trouble tickets is mostly based on
 dispatching alarms. Some operators’ maintenance engineers monitor
 and identify alarms which could link to the same fault. Then they
 dispatch these alarms to the same trouble ticket, which is in low
 automation. If there are many alarms, then the human costs are
 increased accordingly.

 Some operators preset whitelist and adopt some coarse granularity
 association rules for the alarm management. It seems to improve
 fault management automation. However, some trouble tickets could be
 missed if the filtering conditions are too tight. If the filtering
 conditions are too loose, multiple trouble tickets would be
 dispatched to the same fault.

 It is hard to achieve a perfect balance between the automation and
 duplicated trouble tickets under the traditional working situations.
 However, with the help of incident management, massive alarms can be
 aggregated into a few incidents, multiple trouble tickets will be
 saved. At the same time, incident management can keep high accuracy
 and automation. This could be an answer to this pain point of
 traditional trouble ticket dispatching

Feng, et al. Expires 14 September 2023 [Page 5]

Internet-Draft Incident Management March 2023

3.2. Fault Locating

 Currently, to accomplish fault isolation and locating work,
 maintenance experts need to combine topology data, service data with
 huge amount of alarm data to do the analysis. Sometimes they also
 require some cooperation from the construction engineers who work on
 site, to operate fixing attempts on devices and then further
 investigation the root cause is required.

 For example, for a common cable interruption, maintenance experts
 need to analyze the root cause alarm from massive alarms, and then
 trace the root alarm to the faulty span segment by segment. Next,
 site engineers perform tests at the source station to locate the
 interruption and locate the faulty optical exchange station. Then
 travel to the located optical exchange station to replace or splice
 fibers. During the whole process, multiple people are needed inside
 and outside the site.

 With the help of incident management, the system can automatically
 locate the faulty span, and eliminate the need for manual analysis.
 By cooperating with the integrated OTDR within the equipment, we can
 determine the target optical exchange station before site visits.
 Multiple site visits and time are saved.

3.3. Fault Labelling

 Fiber cutover is a common maintenance scenario for Operators. During
 the cutover process, maintenance experts must identify affected
 devices based on the cutover object and their experience. They will
 give these devices a mark to remind other maintenance engineers that
 it is not necessary to dispatch trouble tickets before the ending of
 cutover.

 However, depending on human experience, it is very likely to make
 some mistakes. For example, some devices are missing to mark and
 some devices are marked incorrectly. If the devices are missing to
 mark, some trouble tickets will be dispatched during cutover, which
 are not needed actually. If the devices are wrongly marked, some
 fault not related to this cutover will be missing.

 With incident management, maintenance experts only need to mark the
 cutover objects and do not need to mark the devices that would be
 affected. Because of the alarm aggregation capabilities and knowing
 the relationship between root cause alarm and correlative alarm, the
 fault management system can automatically identify correlative
 alarms, without dispatching any trouble tickets to the affected
 devices.

Feng, et al. Expires 14 September 2023 [Page 6]

Internet-Draft Incident Management March 2023

3.4. Energy Conservation

 Under the global trend of energy conservation, emission reduction and
 safety management, more and more enterprises have joined the energy
 conservation and emission reduction ranks and adopted measures to
 turn off the power after work during non-working hours, making due
 contributions to the green earth. However, this proactive power-off
 measure periodically generates a large number of alarms on the
 network, and the traditional Operation and Management system can not
 effectively identify such non-real faults caused by the enterprise
 users? operations. Operators need to manually identify and rectify
 faults based on expert experience, wasting a large number of human
 resources.

 Incident management can intelligently identify faults caused by
 periodic power-off on the tenant side and directly identify faults.
 As a result, operators do not need to dispatch trouble tickets for
 such faults any more, this can help to reduce human resource costs.

4. Incident Management Architecture

Feng, et al. Expires 14 September 2023 [Page 7]

Internet-Draft Incident Management March 2023

 +----------------------+-------------------+
 | |
 | Incident Management Client |
 | |
 | |
 +------------+---------+---------+---------+
 ^ | | |
 |Incident |Incident |Incident |Incident
 |Report |Ack |Diagnose |Resolve
 | | | |
 | V V V
 +--+-------------------+---------+----------+
 | |
 | |
 | Incident Management Agent |
 | |
 | |
 | |
 | |
 +----------------------+-----+--+-----------+
 ^ ^Abnormal ^
 |Alarm |Operations |Metrics
 |Report |Report |/Telemetry
 | | V
 +--------+-+-+-------+--------------++------------------+
 | |
 | Network |
 | |
 +------------------------------------+------------------+

 Figure 1: Incident Management Architecture

 Figure 1 illustrates the incident management architecture. Two key
 components for the incident management are incident management client
 and incident management agent.

 Incident management agent can be deployed in network analytics
 platform, controllers or Orchestrators and provides functionalities
 such as incident detection, report, diagnosis, resolution, querying
 for incident lifecycle management.

 Incident management client can be deployed in the network OSS or
 other business systems of operators and invokes the functionalities
 provided by incident management agent to meet the business
 requirements of fault management.

 A typical workflow of incident management is as follows:

Feng, et al. Expires 14 September 2023 [Page 8]

Internet-Draft Incident Management March 2023

 * Some alarms or abnormal operations, network performance metrics
 are reported from the network. Incident management agent receives
 these alarms/abnormal operations/metrics and analyzes the impact
 of these alarms on network services. If the analysis result
 indicates that network services are affected, an incident will be
 reported to the client.

 * Incident management client receives the incident raised by agent,
 and acknowledge it. Client may invoke the ’incident diagnose’ rpc
 to diagnose this incident to find the root causes.

 * If the root causes have been found, the client can resolve this
 incident by invoking the ’incident resolve’ rpc operation,
 dispatching a ticket or using other functions (e.g. routing
 calculation,configuration)

5. Functional Interface Requirements between the Client and the Agent

5.1. Incident Detection

 In alarm-centric solution, although alarms are processed (based on
 manual rules or preconfigured rule) before being sent to the network
 OSS, multiple alarms are still sent to the network OSS. Whether
 these alarms have impact on network services and how much of the
 impact they created, it highly depends on the network OSS to analyze,
 which affects the efficiency of network maintenance.

Feng, et al. Expires 14 September 2023 [Page 9]

Internet-Draft Incident Management March 2023

 +--------------+
 +--| Incident1 |
 | +--+-----------+
 | | +-----------+
 | +--+ alarm1 |
 | | +-----------+
 | |
 | | +-----------+
 | +--+ alarm2 |
 | | +-----------+
 | |
 | | +-----------+
 | +--+ alarm3 |
 | +-----------+
 | +--------------+
 +--| Incident2 |
 | +--+-----------+
 | | +-----------+
 | +--+ metric1 |
 | | +-----------+
 | | +-----------+
 | +--+ metric2 |
 | +-----------+
 |
 | +--------------+
 +--| Incident3 |
 +--+-----------+
 | +-----------+
 +--+ alarm1 |
 | +-----------+
 |
 | +-----------+
 +--| metric1 |
 +-----------+

 Figure 2: Incident Detection

 The incident management agent MUST be capable of detecting incidents.
 It can analyze the impact on network services from numerous alarms or
 monitor network service quality. Once the network service quality
 does not meet expectations, the incident agent MUST report the
 incident.

 As described in Figure 2, multiple alarms, metrics, or hybrid can be
 aggregated into an incident after analysis. Each incident is
 associated with network services.

Feng, et al. Expires 14 September 2023 [Page 10]

Internet-Draft Incident Management March 2023

 +----------------------+
 | |
 | Orchestrator |
 | |
 +----+-----------------+
 ^VPN A Unavailable
 |
 +---+----------------+
 | |
 | Controller |
 | |
 | |
 +-+-+-+-----+--+-----+
 ^ ^ ^
 IGP | |Interface |IGP Peer
 Down | |Down | Abnormal
 | | |
 VPN A | | |
 +-----------------+-+------------+------------------*
 | \ +---+ ++-++ +-+-+ +---+ /|
 | \ | | | | | | | | / |
 | \|PE1+-------| P1+X--------|P2 +--------|PE2|/ |
 | +---+ +---+ +---+ +---+ |
 +---+

 Figure 3: Example 1 of Incident Detection

 As described in Figure 3, vpn a is deployed from PE1 to PE2, if a
 interface of P1 is going down, many alarms are triggered, such as
 interface down, igp down, and igp peer abnormal from P2. These
 alarms are aggregated and analyzed by controller, and the incident
 ’vpn unavailable’ is triggered by the controller.

Feng, et al. Expires 14 September 2023 [Page 11]

Internet-Draft Incident Management March 2023

 +----------------------+
 | |
 | Orchestrator |
 | |
 +----+-----------------+
 ^VPN A Degradation
 |
 +---+----------------+
 | |
 | controller |
 | |
 | |
 +-+-+-+-----+--+-----+
 ^ ^
 |Packet |Path Delay
 |Loss |
 | |
 VPN A | |
 +-------------------+------------+-------------------+
 | \ +---+ ++-++ +-+-+ +---+ / |
 | \ | | | | | | | | / |
 | \|PE1+-------|P1 +---------|P2 +--------|PE2|/ |
 | +---+ +---+ +---+ +---+ |
 +--+

 Figure 4: Example 2 of Incident Detection

 As described in Figure 4, controller collect the network metrics from
 network elements, it finds the packet loss of P1 and the path delay
 of P2 exceed the thresholds, an incident ’VPN A degradation’ may be
 triggered after analysis.

5.2. Incident Diagnosis

 After an incident is reported to the incident management client, the
 client MAY diagnose the incident to determine the root cause. Some
 diagnosis operations may affect the running network services. The
 client can choose not to perform that diagnosis operation after
 determining the impact is not trivial. The incident management agent
 can also perform self-diagnosis. However, the self-diagnosis MUST
 not affect the running network services. Possible diagnosis methods
 include link reachability detection, link quality detection, alarm/
 log analysis, and short-term fine-grained monitoring of network
 quality metrics, etc.

Feng, et al. Expires 14 September 2023 [Page 12]

Internet-Draft Incident Management March 2023

5.3. Incident Resolution

 After the root cause is diagnosed, the client MAY resolve the
 incident. The client MAY choose resolve the incident by invoking
 other functions, such as routing calculation function, configuration
 function, dispatching a ticket or asking the agent to resolve it.
 Generally, the client would attempt to directly resolve the root
 cause. If the root cause cannot be resolved, an alternative solution
 SHOULD be required. For example, if an incident caused by a physical
 component failure, it cannot be automatically resolved, the standby
 link can be used to bypass the faulty component.

 If the incident has been resolved, the client MAY indicate the agent
 to change the incident status to ’cleared’. If the incident is
 resolved by the agent, this indicator is unnecessary.

 Incident resolution may affect the running network services. The
 client can choose not to perform those operations after determining
 the impact is not trivial.

6. Incident Data Model Concepts

6.1. Identifying the Incident Instance

 An incident instance is associated with the specific network services
 instance and an incident name. An incident ID is used as an
 identifier of an incident instance, if an incident instance is
 detected, a new incident ID is created. The incident ID MUST be
 unique in the whole system.

6.2. The Incident Lifecycle

6.2.1. Incident Instance Lifecycle

 From an incident instance perspective, an incident can have the
 following lifecycle: ’raised’, ’updated’, ’cleared’. When an
 incident is generated, the status is ’raised’. If the status changes
 after the incident is generated, (for example, self-diagnosis,
 diagnosis command issued by the client, or any other condition causes
 the status to change but does not reach the ’cleared’ level.) , the
 status changes to ’updated’. When an incident is successfully
 resolved, the status changes to ’cleared’.

Feng, et al. Expires 14 September 2023 [Page 13]

Internet-Draft Incident Management March 2023

6.2.2. Operator Incident Lifecycle

 From an operator perspective, the lifecycle of an incident instance
 includes ’acknowledged’, ’diagnosed’, and ’resolved’. When an
 incident instance is generated, the operator SHOULD acknowledge the
 incident. And then the operator attempts to diagnose the incident
 (for example, find out the root cause and affected components).
 Diagnosis is not mandatory. If the root cause and affected
 components are known when the incident is generated, diagnosis is not
 required. After locating the root cause and affected components,
 operator can try to resolve the incident.

7. Incident Data Model

7.1. Overview

Feng, et al. Expires 14 September 2023 [Page 14]

Internet-Draft Incident Management March 2023

 module: ietf-incident
 +--ro incidents
 +--ro incident* [incident-id]
 +--ro incident-id string
 +--ro csn uint64
 +--ro service-instance* string
 +--ro name string
 +--ro type enumeration
 +--ro domain identityref
 +--ro priority incident-priority
 +--ro status? enumeration
 +--ro ack-status? enumeration
 +--ro category identityref
 +--ro tenant? string
 +--ro detail? string
 +--ro resolve-suggestion? string
 +--ro sources
 | ...
 +--ro root-causes
 | ...
 +--ro events
 | ...
 +--ro raise-time? yang:date-and-time
 +--ro occur-time? yang:date-and-time
 +--ro clear-time? yang:date-and-time
 +--ro ack-time? yang:date-and-time
 +--ro last-updated? yang:date-and-time
 rpcs:
 +---x incident-acknowledge
 | ...
 +---x incident-diagnose
 | ...
 +---x incident-resolve
 ...
 notifications:
 +---n incident-notification
 +--ro incident-id? string
 ...

7.2. Incident Notifications

Feng, et al. Expires 14 September 2023 [Page 15]

Internet-Draft Incident Management March 2023

 notifications:
 +---n incident-notification
 +--ro incident-id? string
 +--ro csn uint64
 +--ro service-instance* string
 +--ro name string
 +--ro type enumeration
 +--ro domain identityref
 +--ro priority incident-priority
 +--ro status? enumeration
 +--ro ack-status? enumeration
 +--ro category identityref
 +--ro tenant? string
 +--ro detail? string
 +--ro resolve-suggestion? string
 +--ro sources
 | +--ro source* [node]
 | +--ro node
 | -> /nw:networks/nw:network/nw:node/nw-inv:name
 | +--ro resource* [name]
 | +--ro name al:resource
 +--ro root-causes
 | +--ro root-cause* [node]
 | +--ro node
 | -> /nw:networks/nw:network/nw:node/nw-inv:name
 | +--ro resource* [name]
 | | +--ro name al:resource
 | | +--ro cause-name? string
 | | +--ro detail? string
 | +--ro cause-name? string
 | +--ro detail? string
 +--ro events
 | +--ro event* [type original-node]
 | +--ro type enumeration
 | +--ro original-node union
 | +--ro is-root? boolean
 | +--ro (event-type-info)?
 | +--:(alarm)
 | | +--ro alarm
 | | +--ro resource? leafref
 | | +--ro alarm-type-id? leafref
 | | +--ro alarm-type-qualifier? leafref
 | +--:(notification)
 | +--:(log)
 | +--:(KPI)
 | +--:(unknown)
 +--ro time? yang:date-and-time

Feng, et al. Expires 14 September 2023 [Page 16]

Internet-Draft Incident Management March 2023

 A general notification, incident-notification, is provided here.
 When an incident instance is detected, the notification will be sent.
 After a notification is generated, if the incident management agent
 performs self diagnosis or the client uses the interfaces provided by
 the incident management agent to deliver diagnosis and resolution
 actions, the notification update behavior is triggered, for example,
 the root cause objects and affected objects are updated. When an
 incident is successfully resolved, the status of the incident would
 be set to ’cleared’.

7.3. Incident Acknowledge

 +---x incident-acknowledge
 | +---w input
 | | +---w incident-id* string

 After an incident is generated, updated, or cleared, (In some
 scenarios where automatic diagnosis and resolution are supported, the
 status of an incident may be updated multiple times or even
 automatically resolved.) The operator needs to confirm the incident
 to ensure that the client knows the incident.

 The incident-acknowledge rpc can confirm multiple incidents at a time

7.4. Incident Diagnose

 +---x incident-diagnose
 | +---w input
 | | +---w incident-id* string
 | +--ro output
 | +--ro incident* [incident-id]
 | +--ro incident-id? string
 | +--ro (result)?
 | +--:(success)
 | | +--ro service-instance? string
 | | +--ro name? string
 | | +--ro domain? identityref
 | | +--ro priority? incident-priority
 | | +--ro impact? enumeration
 | | +--ro status? enumeration
 | | +--ro ack-status? enumeration
 | | +--ro category? identityref
 | | +--ro tenant? string
 | | +--ro detail? string
 | | +--ro resolve-suggestion? string
 | | +--ro sources
 | | | +--ro source* [node]
 | | | +--ro node? leafref

Feng, et al. Expires 14 September 2023 [Page 17]

Internet-Draft Incident Management March 2023

 | | | +--ro resource* [name]
 | | | +--ro name? al:resource
 | | +--ro root-causes
 | | | +--ro root-cause* [node]
 | | | +--ro node? leafref
 | | | +--ro resource* [name]
 | | | | +--ro name? al:resource
 | | | | +--ro cause-name? string
 | | | | +--ro detail? string
 | | | +--ro cause-name? string
 | | | +--ro detail? string
 | | +--ro affects
 | | | +--ro affect* [node]
 | | | +--ro node? leafref
 | | | +--ro resource* [name]
 | | | | +--ro name? al:resource
 | | | | +--ro state? enumeration
 | | | | +--ro detail? string
 | | | +--ro state? enumeration
 | | | +--ro detail? string
 | | +--ro links
 | | | +--ro link* leafref
 | | +--ro events
 | | | +--ro event* [type original-node]
 | | | +--ro type? enumeration
 | | | +--ro original-node? union
 | | | +--ro is-root? boolean
 | | | +--ro (event-type-info)?
 | | | +--:(alarm)
 | | | | +--ro alarm
 | | | | +--ro resource? leafref
 | | | | +--ro alarm-type-id? leafref
 | | | | +--ro alarm-type-qualifier? leafref
 | | | +--:(notification)
 | | | +--:(log)
 | | | +--:(KPI)
 | | | +--:(unknown)
 | | +--ro time? yang:date-and-time
 | +--:(failure)
 | +--ro error-code? string
 | +--ro error-message? string

 After an incident is generated, incident diagnose rpc can be used to
 diagnose the incident and locate the root causes. Diagnosis can be
 performed on some detection tasks, such as BFD detection, flow
 detection, telemetry collection, short-term threshold alarm,
 configuration error check, or test packet injection.

Feng, et al. Expires 14 September 2023 [Page 18]

Internet-Draft Incident Management March 2023

 If the diagnosis is successful, the latest status of the incident
 will be returned and a notification of the incident update will be
 triggered. If the diagnosis fails, error code and error message will
 be returned.

7.5. Incident Resolution

 +---x incident-resolve
 +---w input
 | +---w incident* [incident-id]
 | +---w incident-id
 | -> /inc:incidents/inc:incident/inc:incident-id
 | +---w resolved? empty
 +--ro output
 +--ro incident* [incident-id]
 +--ro incident-id string
 +--ro (result)?
 +--:(success)
 | +--ro success? empty
 | +--ro time? yang:date-and-time
 +--:(failure)
 +--ro error-code? string
 +--ro error-message? string

 After the root cause and impact are determined, incident-resolve rpc
 can be used to resolve the incident (if the agent can resolve it) or
 indicate the incident instances have been resolved by other means.
 How to resolve an incident instance is out of the scope of this
 document.

 Incident resolve rpc allows multiple incident instances to be
 resolved at a time. If an incident instance is successfully
 resolved, the success flag and resolve time will be returned, and a
 notification will be triggered to update the incident status to
 ’cleared’. If an incident fails to be resolved, an error code and an
 error message will be returned. If the incident content is changed
 during this process, a notification update will be triggered.

8. Incident Management YANG Module

 <CODE BEGINS>
 file="ietf-incident@2023-03-13.yang"
 module ietf-incident {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-incident";
 prefix inc;
 import ietf-yang-types {
 prefix yang;

Feng, et al. Expires 14 September 2023 [Page 19]

Internet-Draft Incident Management March 2023

 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-network {
 prefix nw;
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf-network-inventory {
 prefix nw-inv;
 reference
 "draft-wzwb-opsawg-network-inventory-management-01:
 An Inventory Management Model for Enterprise Networks";
 }
 import ietf-alarms {
 prefix al;
 reference
 "RFC 8632: A YANG Data Model for Alarm Management";
 }
 organization
 "IETF OPSAWG Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>
 Author: Chong Feng <mailto:frank.fengchong@huawei.com>
 Author: Tong Hu <mailto:hutong@cmhi.chinamobile.com>
 Author: Luis Miguel Contreras Murillo <mailto:
 luismiguel.contrerasmurillo@telefonica.com>;
 Author : Qin Wu <mailto:bill.wu@huawei.com>
 Author: ChaoDe Yu <mailto:yuchaode@huawei.com>";

 description
 "This module defines the interfaces for incident management
 lifecycle.

 This module is intended for the following use cases:
 * incident lifecycle management:
 - incident report: report incident instance to client
 when an incident instance is detected.
 - incident acknowledge: acknowledge an incident instance.
 - incident diagnose: diagnose an incident instance.
 - incident resolve: resolve an incident instance.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject

Feng, et al. Expires 14 September 2023 [Page 20]

Internet-Draft Incident Management March 2023

 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices. ";
 revision 2023-03-13 {
 description "initial version";
 reference "RFC XXX: Yang module for incident management.";
 }
 //identities
 identity incident-domain {
 description "The abstract identity to indicate the domain of
 an incident.";
 }
 identity single-domain {
 base incident-domain;
 description "single domain.";
 }
 identity access {
 base single-domain;
 description "access domain.";
 }
 identity ran {
 base access;
 description "radio access network domain.";
 }
 identity transport {
 base single-domain;
 description "transport domain.";
 }
 identity otn {
 base transport;
 description "optical transport network domain.";
 }
 identity ip {
 base single-domain;
 description "ip domain.";
 }
 identity ptn {
 base ip;
 description "packet transport network domain.";
 }

 identity cross-domain {
 base incident-domain;
 description "cross domain.";
 }

Feng, et al. Expires 14 September 2023 [Page 21]

Internet-Draft Incident Management March 2023

 identity incident-category {
 description "The abstract identity for incident category.";
 }
 identity device {
 base incident-category;
 description "device category.";
 }
 identity power-enviorment {
 base device;
 description "power system category.";
 }
 identity device-hardware {
 base device;
 description "hardware of device category.";
 }
 identity device-software {
 base device;
 description "software of device category";
 }
 identity line {
 base device-hardware;
 description "line card category.";
 }
 identity maintenance {
 base incident-category;
 description "maintenance category.";
 }
 identity network {
 base incident-category;
 description "network category.";
 }
 identity protocol {
 base incident-category;
 description "protocol category.";
 }
 identity overlay {
 base incident-category;
 description "overlay category";
 }
 identity vm {
 base incident-category;
 description "vm category.";
 }

 //typedefs
 typedef incident-priority {
 type enumeration {
 enum critical {

Feng, et al. Expires 14 September 2023 [Page 22]

Internet-Draft Incident Management March 2023

 description "the incident MUST be handled immediately.";
 }
 enum high {
 description "the incident should be handled as soon as
 possible.";
 }
 enum medium {
 description "network services are not affected, or the
 services are slightly affected,but corrective
 measures need to be taken.";
 }
 enum low {
 description "potential or imminent service-affecting
 incidents are detected,but services are
 not affected currently.";
 }
 }
 description "define the priority of incident.";
 }
 typedef node-ref {
 type leafref {
 path "/nw:networks/nw:network/nw:node/nw-inv:name";
 }
 description "reference a network node.";
 }
 //groupings
 grouping resources-info {
 description "the grouping which defines the network
 resources of a node.";
 leaf node {
 type node-ref;
 description "reference to a network node.";
 }
 list resource {
 key name;
 description "the resources of a network node.";
 leaf name {
 type al:resource;
 description "network resource name.";
 }
 }
 }

 grouping incident-time-info {
 description "the grouping defines incident time information.";
 leaf raise-time {
 type yang:date-and-time;
 description "the time when an incident instance is raised.";

Feng, et al. Expires 14 September 2023 [Page 23]

Internet-Draft Incident Management March 2023

 }
 leaf occur-time {
 type yang:date-and-time;
 description "the time when an incident instance is occured.
 It’s the occur time of the first event during
 incident detection.";
 }
 leaf clear-time {
 type yang:date-and-time;
 description "the time when an incident instance is
 resolved.";
 }
 leaf ack-time {
 type yang:date-and-time;
 description "the time when an incident instance is
 acknowledged.";
 }
 leaf last-updated {
 type yang:date-and-time;
 description "the latest time when an incident instance is
 updated";
 }
 }

 grouping incident-info {
 description "the grouping defines the information of an
 incident.";
 leaf csn {
 type uint64;
 mandatory true;
 description "The sequence number of the incident instance.";
 }
 leaf-list service-instance {
 type string;
 description "the related network service instances of
 the incident instance.";
 }
 leaf name {
 type string;
 mandatory true;
 description "the name of an incident.";
 }
 leaf type {
 type enumeration {
 enum fault {
 description "It indicates the type of the incident
 is a fault, for example an interface
 fails to work.";

Feng, et al. Expires 14 September 2023 [Page 24]

Internet-Draft Incident Management March 2023

 }
 enum potential-risk {
 description "It indicates the type of the incident
 is a potential risk, for example high
 CPU rate may cause a fault in the
 future.";
 }
 }
 mandatory true;
 description "The type of an incident.";
 }
 leaf domain {
 type identityref {
 base incident-domain;
 }
 mandatory true;
 description "the domain of an incident.";
 }
 leaf priority {
 type incident-priority;
 mandatory true;
 description "the priority of an incident instance.";
 }

 leaf status {
 type enumeration {
 enum raised {
 description "an incident instance is raised.";
 }
 enum updated {
 description "the information of an incident instance
 is updated.";
 }
 enum cleared {
 description "an incident is cleared.";
 }
 }
 default raised;
 description "The status of an incident instance.";
 }
 leaf ack-status {
 type enumeration {
 enum acknowledged;
 enum unacknowledged;
 }
 default unacknowledged;
 description "the acknowledge status of an incident.";
 }

Feng, et al. Expires 14 September 2023 [Page 25]

Internet-Draft Incident Management March 2023

 leaf category {
 type identityref {
 base incident-category;
 }
 mandatory true;
 description "The category of an incident.";
 }

 leaf tenant {
 type string;
 description "the identifier of related tenant.";
 }
 leaf detail {
 type string;
 description "detail information of this incident.";
 }
 leaf resolve-suggestion {
 type string;
 description "The suggestion to resolve this incident.";
 }
 container sources {
 description "The source components.";
 list source {
 key node;
 uses resources-info;
 min-elements 1;
 description "The source components of incident.";
 }
 }

 container root-causes{
 description "The root cause objects.";
 list root-cause {
 key node;
 description "the root causes of incident.";
 grouping root-cause-info {
 description "The information of root cause.";
 leaf cause-name {
 type string;
 description "the name of cause";
 }
 leaf detail {
 type string;
 description "the detail information of the cause.";
 }
 }
 uses resources-info {
 augment resource {

Feng, et al. Expires 14 September 2023 [Page 26]

Internet-Draft Incident Management March 2023

 description "augment root cause information.";
 //if root cause object is a resource of a node
 uses root-cause-info;
 }
 }
 //if root cause object is a node
 uses root-cause-info;
 }
 }
 container events {
 description "related event.";
 list event {
 key "type original-node";
 description "related event.";
 leaf type {
 type enumeration {
 enum alarm {
 description "alarm type";
 }
 enum notification {
 description "notification type";
 }
 enum log {
 description "log type";
 }
 enum KPI {
 description "KPI type";
 }
 enum unknown {
 description "unknown type";
 }
 }
 description "event type.";
 }
 leaf original-node {
 type union {
 type node-ref;
 type empty;//self
 }
 description "the original node where the event occurs.";
 }
 leaf is-root {
 type boolean;
 default false;
 description "whether this event is the cause of
 incident.";
 }
 choice event-type-info {

Feng, et al. Expires 14 September 2023 [Page 27]

Internet-Draft Incident Management March 2023

 description "event type information.";
 case alarm {
 when "type = ’alarm’";
 container alarm {
 description "alarm type event.";
 leaf resource {
 type leafref {
 path "/al:alarms/al:alarm-list/al:alarm"
 +"/al:resource";
 }
 description "network resource.";
 reference "RFC 8632: A YANG Data Model for Alarm
 Management";
 }
 leaf alarm-type-id {
 type leafref {
 path "/al:alarms/al:alarm-list/al:alarm"
 +"[al:resource = current()/../resource]"
 +"/al:alarm-type-id";
 }
 description "alarm type id";
 reference "RFC 8632: A YANG Data Model for Alarm
 Management";
 }
 leaf alarm-type-qualifier {
 type leafref {
 path "/al:alarms/al:alarm-list/al:alarm"
 +"[al:resource = current()/../resource]"
 +"[al:alarm-type-id = current()/.."
 +"/alarm-type-id]/al:alarm-type-qualifier";
 }
 description "alarm type qualitifier";
 reference "RFC 8632: A YANG Data Model for Alarm
 Management";
 }
 }
 }
 case notification {
 //TODO
 }
 case log {
 //TODO
 }
 case KPI {
 //TODO
 }
 case unknown {
 //TODO

Feng, et al. Expires 14 September 2023 [Page 28]

Internet-Draft Incident Management March 2023

 }
 }
 }

 }

 }

 //data definitions
 container incidents {
 config false;
 description "the information of incidents.";
 list incident {
 key incident-id;
 description "the information of incident.";
 leaf incident-id {
 type string;
 description "the identifier of an incident instance.";
 }
 uses incident-info;
 uses incident-time-info;
 }
 }

 // notifications
 notification incident-notification {
 description "incident notification. It will be triggered when
 the incident is raised, updated or cleared.";
 leaf incident-id {
 type string;
 description "the identifier of an incident instance.";
 }
 uses incident-info;
 leaf time {
 type yang:date-and-time;
 description "occur time of an incident instance.";
 }
 }
 // rpcs
 rpc incident-acknowledge {
 description "This rpc can be used to acknowledge the specified
 incidents.";
 input {
 leaf-list incident-id {
 type string;
 description "the identifier of an incident instance.";
 }
 }

Feng, et al. Expires 14 September 2023 [Page 29]

Internet-Draft Incident Management March 2023

 }
 rpc incident-diagnose {
 description "This rpc can be used to diagnose the specified
 incidents.";
 input {
 leaf-list incident-id {
 type string;
 description
 "the identifier of an incident instance.";
 }
 }
 output {
 list incident {
 key incident-id;
 description "The entry of returned incidents.";
 leaf incident-id {
 type string;
 description
 "the identifier of an incident instance.";
 }
 choice result {
 description "result information.";
 case success {
 uses incident-info;
 leaf time {
 type yang:date-and-time;
 description
 "The update time of an incident.";
 }
 }
 case failure {
 leaf error-code {
 type string;
 description "error code";
 }
 leaf error-message {
 type string;
 description "error message";
 }
 }
 }
 }
 }
 }

 rpc incident-resolve {
 description "This rpc can be used to resolve the specified
 incidents. It also can be used to set the

Feng, et al. Expires 14 September 2023 [Page 30]

Internet-Draft Incident Management March 2023

 incident instances are resolved if these incident
 instances are resolved by external system.";
 input {
 list incident {
 key incident-id;
 min-elements 1;
 description "incident instances.";
 leaf incident-id {
 type leafref {
 path "/inc:incidents/inc:incident/inc:incident-id";
 }
 description
 "the identifier of an incident instance.";
 }
 leaf resolved {
 type empty;
 description "indicate the incident instance has
 been resolved.";
 }

 }
 }
 output {
 list incident {
 key incident-id;
 description "incident instances";
 leaf incident-id {
 type string;
 description "the identifier of incident instance";
 }
 choice result {
 description "result information";
 case success {
 leaf success {
 type empty;
 description "reslove incident instance
 successfully";
 }
 leaf time {
 type yang:date-and-time;
 description "The resolved time of an incident.";
 }
 }
 case failure {
 leaf error-code {
 type string;
 description "error code";
 }

Feng, et al. Expires 14 September 2023 [Page 31]

Internet-Draft Incident Management March 2023

 leaf error-message {
 type string;
 description "error message.";
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

9. IANA Considerations

9.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-incident
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

9.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020].

 name: ietf-incident
 prefix: inc
 namespace: urn:ietf:params:xml:ns:yang:ietf-incident
 RFC: XXXX
 // RFC Ed.: replace XXXX and remove this comment

10. Security Considerations

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocol such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

Feng, et al. Expires 14 September 2023 [Page 32]

Internet-Draft Incident Management March 2023

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

11. Contributors

 Aihua Guo
 Futurewei Technologies
 Email: aihuaguo.ietf@gmail.com

12. Acknowledgments

 The authors would like to thank Mohamed Boucadair, Zhidong Yin,
 Guoxiang Liu, Haomian Zheng, YuanYao for their valuable comments and
 great input to this work.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

Feng, et al. Expires 14 September 2023 [Page 33]

Internet-Draft Incident Management March 2023

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8632] Vallin, S. and M. Bjorklund, "A YANG Data Model for Alarm
 Management", RFC 8632, DOI 10.17487/RFC8632, September
 2019, <https://www.rfc-editor.org/info/rfc8632>.

13.2. Informative References

 [I-D.ietf-opsawg-yang-vpn-service-pm]
 Wu, B., Wu, Q., Boucadair, M., de Dios, O. G., and B. Wen,
 "A YANG Model for Network and VPN Service Performance
 Monitoring", Work in Progress, Internet-Draft, draft-ietf-
 opsawg-yang-vpn-service-pm-15, 11 November 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
 yang-vpn-service-pm-15>.

 [I-D.wzwb-opsawg-network-inventory-management]
 Wu, B., Zhou, C., Wu, Q., and M. Boucadair, "An Inventory
 Management Model for Enterprise Networks", Work in
 Progress, Internet-Draft, draft-wzwb-opsawg-network-
 inventory-management-01, 10 February 2023,
 <https://datatracker.ietf.org/doc/html/draft-wzwb-opsawg-
 network-inventory-management-01>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
 L. Geng, "A Framework for Automating Service and Network
 Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
 January 2021, <https://www.rfc-editor.org/info/rfc8969>.

 [W3C-Trace-Context]
 W3C, "W3C Recommendation on Trace Context", 23 November
 2021, <https://www.w3.org/TR/2021/REC-trace-context-
 1-20211123/>.

Authors’ Addresses

Feng, et al. Expires 14 September 2023 [Page 34]

Internet-Draft Incident Management March 2023

 Chong Feng (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: frank.fengchong@huawei.com

 Tong Hu
 China Mobile (Hangzhou) Information Technology Co., Ltd
 Building A01, 1600 Yuhangtang Road, Wuchang Street, Yuhang District
 Hangzhou
 ZheJiang, 311121
 China
 Email: hutong@cmhi.chinamobile.com

 Luis Miguel Contreras Murillo
 Telefonica I+D
 Madrid
 Spain
 Email: luismiguel.contrerasmurillo@telefonica.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Chaode Yu
 Huawei
 Email: yuchaode@huawei.com

Feng, et al. Expires 14 September 2023 [Page 35]

netmod J. Haas
Internet-Draft Juniper Networks
Intended status: Standards Track 30 January 2023
Expires: 3 August 2023

 Representing Unknown YANG bits in Operational State
 draft-haas-netmod-unknown-bits-01

Abstract

 Protocols frequently have fields where the contents are a series of
 bits that have specific meaning. When modeling operational state for
 such protocols in YANG, the ’bits’ YANG built-in type is a natural
 method for modeling such fields. The YANG ’bits’ built-in type is
 best suited when the meaning of a bit assignment is clear.

 When bits that are currently RESERVED or otherwise unassigned by the
 protocol are received, being able to model them is necessary in YANG
 operational models. This cannot be done using the YANG ’bits’ built-
 in type without assigning them a name. However, YANG versioning
 rules do not permit renaming of named bits.

 This draft proposes a methodology to represent unknown bits in YANG
 operational models and creates a YANG typedef to assist in uniformly
 naming such unknown bits.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 3 August 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Haas Expires 3 August 2023 [Page 1]

Internet-Draft YANG Unknown Bits January 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Requirements Language . 2
 2. Modeling Protocol Bit Vectors in YANG 2
 3. Modeling Unknown Bits . 3
 3.1. Example of Issue: Modeling BGP’s Graceful Restart
 Flags . 3
 3.2. Defining Unknown Bits 5
 3.3. Consistently Modeling Unknown Bits 7
 4. IETF YANG Unknown Bit Types Module 8
 5. IANA Considerations . 16
 5.1. URI Registration . 16
 5.2. YANG Module Name Registration 16
 6. Security Considerations 16
 7. References . 16
 7.1. Normative References 16
 7.2. Informative References 17
 Acknowledgements . 17
 Author’s Address . 18

1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Modeling Protocol Bit Vectors in YANG

 Protocols frequently will have bit vectors as fields. Not all bits
 in such bit vectors are assigned during the specification of the
 protocol. These unassigned bits are typically made RESERVED and are
 used at a later date to provide for new features.

Haas Expires 3 August 2023 [Page 2]

Internet-Draft YANG Unknown Bits January 2023

 The YANG ’bits’ built-in type (Section 9.7 of [RFC7950]) can be used
 to provide a "named bit" mapping to currently assigned bits in such
 fields. The representation format of ’bits’ is "a space-separated
 list of the names of the bits that are set". However, when no
 assignment has been made for a bit position, nothing will be
 rendered.

 There are operational needs for displaying received bits that may not
 be part of known assignments in the protocol. One such example is
 debugging behavior when unexpected bits have been sent in the
 protocol. This may occur when interacting with a version of the
 protocol that has assigned a previously unassigned bit.

 One way to model such a scenario is to have one YANG leaf that covers
 known bit assignments, and have a subsequent YANG leaf contain
 unknown bits.

3. Modeling Unknown Bits

3.1. Example of Issue: Modeling BGP’s Graceful Restart Flags

 BGP’s Graceful Restart Capability (Section 3 of [RFC4724]) contains a
 Restart Flags field that is four bits wide. Its definition is copied
 below:

 0 1 2 3
 +-+-+-+-+
 |R|Resv.|
 +-+-+-+-+

 Figure 1: BGP Graceful Restart Flags

 The ’R’ (Restart State) bit has been assigned in RFC 4724. One way
 to model this (taken from [I-D.ietf-idr-bgp-model]) is:

Haas Expires 3 August 2023 [Page 3]

Internet-Draft YANG Unknown Bits January 2023

 typedef graceful-restart-flags {
 type bits {
 bit restart {
 position 0;
 description
 "The most significant bit is defined as the Restart
 State (R) bit, [...]";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP,
 Section 3.";
 }
 }
 [...]
 }

 [...]

 leaf flags {
 type bt:graceful-restart-flags;
 description
 "Restart Flags advertised by the Graceful Restart
 Capability";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
 }

 Figure 2: BGP Graceful Restart Flags

 [RFC8538] later assigns bit position 1 to the ’N’ flag, updating the
 set of flags used in this field:

 0 1 2 3
 +-+-+-+-+
 |R|N| |
 +-+-+-+-+

 Figure 3: BGP Graceful Restart Flags, Revised by RFC 8538

 YANG module versioning rules would require the graceful-restart-flags
 typedef to be updated. For protocol well-known fields, this
 encourages such typedefs to be IANA-maintained for ease of update. A
 revised typedef may resemble:

Haas Expires 3 August 2023 [Page 4]

Internet-Draft YANG Unknown Bits January 2023

 typedef graceful-restart-flags {
 type bits {
 bit restart {
 position 0;
 description
 "The most significant bit is defined as the Restart
 State (R) bit, [...]";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP,
 Section 3.";
 }
 bit notification {
 position 1;
 description
 "The second most significant bit is defined in [RFC 8538]
 as the Graceful Notification (’N’) bit. [...]";
 reference
 "RFC 8538: Notification Message Support for BGP Graceful
 Restart, Section 2.";
 }
 }
 }

 Figure 4: Revised BGP Graceful Restart Flags Typedef

 Consider a router supporting the old typedef receiving a BGP Graceful
 Restart Capability containing both the ’R’ and ’N’ bits in the BGP
 protocol. In that typedef, the "flags" leaf could only represent
 position 0, the "restart" named bit. The implementation couldn’t
 represent that the ’N’ bit was sent in the protocol.

 <flags>restart</flags>

 Figure 5: Flags for ’R’ and ’N’ bits with original leaves and typedef

3.2. Defining Unknown Bits

 One solution to modeling unknown bits is to have a subsequent leaf
 whose purposes is only to model unknown bit mappings. When the
 protocol does not send the unassigned bits, this leaf would be absent
 in the output of the operational state.

 Using the example where only the ’R’ bit was defined, one way to
 model this would be:

Haas Expires 3 August 2023 [Page 5]

Internet-Draft YANG Unknown Bits January 2023

 typedef unknown-flags {
 type bits {
 bit unknown-1 {
 position 1;
 description
 "Bit 1 was received but is currently RESERVED.";
 }
 bit unknown-2 {
 position 2;
 description
 "Bit 2 was received but is currently RESERVED.";
 }
 bit unknown-3 {
 position 3;
 description
 "Bit 3 was received but is currently RESERVED.";
 }
 }
 description
 "When a bit is exchanged in the Graceful Restart Flags
 field that is unknown to this module, their bit position
 is rendered using the associated unknown bit.";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
 }
 leaf unknown-flags {
 type unknown-flags;
 description
 "Restart Flags advertised by the Graceful Restart
 Capability";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
 }

 Figure 6: BGP Graceful Restart Specific Unknown Bits

 If the router using the above modeling received a BGP Graceful
 Restart Capability containing both the ’R’ and the ’N’ bits, it would
 now be rendered:

 <flags>restart</flags>
 <unknown-flags>unknown-1</unknown-flags>

 Figure 7: Flags for ’R’ and ’N’ bits with new leaves and typedefs

Haas Expires 3 August 2023 [Page 6]

Internet-Draft YANG Unknown Bits January 2023

 Deleting bit assignments in later versions of the model is not
 permitted by current YANG versioning rules. The only purpose of such
 unknown named bits is to represent fields that may later be assigned
 during maintenance of the protocol.

 For example, when position 1, "bit notification" is assigned, the
 same example scenario would then render as:

 <flags>restart unknown</flags>

 Figure 8: Flags for ’R’ and ’N’ bits with new leaves and updated
 typedef

3.3. Consistently Modeling Unknown Bits

 Each YANG module requiring this pattern to represent unknown bits
 could define its own protocol-specific typedefs for the appropriate
 number of unknown bits for their fields. However, there is
 operational benefit to use a consistent pattern for such unknown
 bits. A common typedef for this purpose, "unknown-bits", is defined
 in the next section.

 The unknown-bits typedef defines 64 bits of unknown bits.
 Considering the example for the BGP Graceful Restart Flags bits where
 only 4 bits are present in the field, 64 bits for the typedef are not
 a problem. Only the bits received in the protocol that aren’t
 recognized would be represented in the protocol-specific "unknown-
 flags" leaf, or similar.

 Here’s an example usage of this typedef using the prior "unknown-
 flags" leaf:

 include ietf-yang-unknown-bit-types {
 prefix yang-ubt;
 }
 leaf unknown-flags {
 type ubt:unknown-bits;
 description
 "When a bit is exchanged in the Graceful Restart Flags
 field that is unknown to this module, their bit position
 is rendered using the associated unknown bit.";
 reference
 "RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
 }

 Figure 9: BGP Graceful Restart Specific Unknown Bits with Typedef

Haas Expires 3 August 2023 [Page 7]

Internet-Draft YANG Unknown Bits January 2023

4. IETF YANG Unknown Bit Types Module

 module ietf-yang-unknown-bit-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types";
 prefix yang-ubt;

 // meta

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Jeffrey Haas
 <mailto:jhaas@juniper.net>";

 description
 "This module contains data definitions for modeling operational
 state that would normally be represented using the YANG ’bits’
 type, but currently no known mapping for that bit position is
 registered.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2023-01-25 {
 description
 "Initial Version";

Haas Expires 3 August 2023 [Page 8]

Internet-Draft YANG Unknown Bits January 2023

 reference
 "RFC XXXX: YANG module for unknown bit types.";
 }

 /*
 * Typedefs
 */

 typedef unknown-bits {
 type bits {
 bit unknown-0 {
 position 0;
 description
 "Bit 0 is unknown.";
 }
 bit unknown-1 {
 position 1;
 description
 "Bit 1 is unknown.";
 }
 bit unknown-2 {
 position 2;
 description
 "Bit 2 is unknown.";
 }
 bit unknown-3 {
 position 3;
 description
 "Bit 3 is unknown.";
 }
 bit unknown-4 {
 position 4;
 description
 "Bit 4 is unknown.";
 }
 bit unknown-5 {
 position 5;
 description
 "Bit 5 is unknown.";
 }
 bit unknown-6 {
 position 6;
 description
 "Bit 6 is unknown.";
 }
 bit unknown-7 {
 position 7;
 description

Haas Expires 3 August 2023 [Page 9]

Internet-Draft YANG Unknown Bits January 2023

 "Bit 7 is unknown.";
 }
 bit unknown-8 {
 position 8;
 description
 "Bit 8 is unknown.";
 }
 bit unknown-9 {
 position 9;
 description
 "Bit 9 is unknown.";
 }
 bit unknown-10 {
 position 10;
 description
 "Bit 10 is unknown.";
 }
 bit unknown-11 {
 position 11;
 description
 "Bit 11 is unknown.";
 }
 bit unknown-12 {
 position 12;
 description
 "Bit 12 is unknown.";
 }
 bit unknown-13 {
 position 13;
 description
 "Bit 13 is unknown.";
 }
 bit unknown-14 {
 position 14;
 description
 "Bit 14 is unknown.";
 }
 bit unknown-15 {
 position 15;
 description
 "Bit 15 is unknown.";
 }
 bit unknown-16 {
 position 16;
 description
 "Bit 16 is unknown.";
 }
 bit unknown-17 {

Haas Expires 3 August 2023 [Page 10]

Internet-Draft YANG Unknown Bits January 2023

 position 17;
 description
 "Bit 17 is unknown.";
 }
 bit unknown-18 {
 position 18;
 description
 "Bit 18 is unknown.";
 }
 bit unknown-19 {
 position 19;
 description
 "Bit 19 is unknown.";
 }
 bit unknown-20 {
 position 20;
 description
 "Bit 20 is unknown.";
 }
 bit unknown-21 {
 position 21;
 description
 "Bit 21 is unknown.";
 }
 bit unknown-22 {
 position 22;
 description
 "Bit 22 is unknown.";
 }
 bit unknown-23 {
 position 23;
 description
 "Bit 23 is unknown.";
 }
 bit unknown-24 {
 position 24;
 description
 "Bit 24 is unknown.";
 }
 bit unknown-25 {
 position 25;
 description
 "Bit 25 is unknown.";
 }
 bit unknown-26 {
 position 26;
 description
 "Bit 26 is unknown.";

Haas Expires 3 August 2023 [Page 11]

Internet-Draft YANG Unknown Bits January 2023

 }
 bit unknown-27 {
 position 27;
 description
 "Bit 27 is unknown.";
 }
 bit unknown-28 {
 position 28;
 description
 "Bit 28 is unknown.";
 }
 bit unknown-29 {
 position 29;
 description
 "Bit 29 is unknown.";
 }
 bit unknown-30 {
 position 30;
 description
 "Bit 30 is unknown.";
 }
 bit unknown-31 {
 position 31;
 description
 "Bit 31 is unknown.";
 }
 bit unknown-32 {
 position 32;
 description
 "Bit 32 is unknown.";
 }
 bit unknown-33 {
 position 33;
 description
 "Bit 33 is unknown.";
 }
 bit unknown-34 {
 position 34;
 description
 "Bit 34 is unknown.";
 }
 bit unknown-35 {
 position 35;
 description
 "Bit 35 is unknown.";
 }
 bit unknown-36 {
 position 36;

Haas Expires 3 August 2023 [Page 12]

Internet-Draft YANG Unknown Bits January 2023

 description
 "Bit 36 is unknown.";
 }
 bit unknown-37 {
 position 37;
 description
 "Bit 37 is unknown.";
 }
 bit unknown-38 {
 position 38;
 description
 "Bit 38 is unknown.";
 }
 bit unknown-39 {
 position 39;
 description
 "Bit 39 is unknown.";
 }
 bit unknown-40 {
 position 40;
 description
 "Bit 40 is unknown.";
 }
 bit unknown-41 {
 position 41;
 description
 "Bit 41 is unknown.";
 }
 bit unknown-42 {
 position 42;
 description
 "Bit 42 is unknown.";
 }
 bit unknown-43 {
 position 43;
 description
 "Bit 43 is unknown.";
 }
 bit unknown-44 {
 position 44;
 description
 "Bit 44 is unknown.";
 }
 bit unknown-45 {
 position 45;
 description
 "Bit 45 is unknown.";
 }

Haas Expires 3 August 2023 [Page 13]

Internet-Draft YANG Unknown Bits January 2023

 bit unknown-46 {
 position 46;
 description
 "Bit 46 is unknown.";
 }
 bit unknown-47 {
 position 47;
 description
 "Bit 47 is unknown.";
 }
 bit unknown-48 {
 position 48;
 description
 "Bit 48 is unknown.";
 }
 bit unknown-49 {
 position 49;
 description
 "Bit 49 is unknown.";
 }
 bit unknown-50 {
 position 50;
 description
 "Bit 50 is unknown.";
 }
 bit unknown-51 {
 position 51;
 description
 "Bit 51 is unknown.";
 }
 bit unknown-52 {
 position 52;
 description
 "Bit 52 is unknown.";
 }
 bit unknown-53 {
 position 53;
 description
 "Bit 53 is unknown.";
 }
 bit unknown-54 {
 position 54;
 description
 "Bit 54 is unknown.";
 }
 bit unknown-55 {
 position 55;
 description

Haas Expires 3 August 2023 [Page 14]

Internet-Draft YANG Unknown Bits January 2023

 "Bit 55 is unknown.";
 }
 bit unknown-56 {
 position 56;
 description
 "Bit 56 is unknown.";
 }
 bit unknown-57 {
 position 57;
 description
 "Bit 57 is unknown.";
 }
 bit unknown-58 {
 position 58;
 description
 "Bit 58 is unknown.";
 }
 bit unknown-59 {
 position 59;
 description
 "Bit 59 is unknown.";
 }
 bit unknown-60 {
 position 60;
 description
 "Bit 60 is unknown.";
 }
 bit unknown-61 {
 position 61;
 description
 "Bit 61 is unknown.";
 }
 bit unknown-62 {
 position 62;
 description
 "Bit 62 is unknown.";
 }
 bit unknown-63 {
 position 63;
 description
 "Bit 63 is unknown.";
 }
 }
 description
 "Typedef describing 64 bits worth of unknown bits. This can be
 used to model operational state that would normally be modeled
 using the YANG ’bits’ type, but no registered bit has been
 created.";

Haas Expires 3 August 2023 [Page 15]

Internet-Draft YANG Unknown Bits January 2023

 }
 }

 Figure 10

5. IANA Considerations

 This document registers one URI and one YANG module.

5.1. URI Registration

 Following the format in the IETF XML registry [RFC3688] [RFC3688],
 the following registration is requested to be made:

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types

 Figure 11

 Registrant Contact: The IESG. XML: N/A, the requested URI is an XML
 namespace.

5.2. YANG Module Name Registration

 This document registers one YANG module in the YANG Module Names
 registry YANG [RFC6020].

 name: ietf-yang-unknown-bit-types
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types
 prefix: yang-ubt
 reference: RFC XXXX

 Figure 12

6. Security Considerations

 Lack of operational visibility for protocol state can make
 troubleshooting protocol issues more difficult. The mechanism
 defined in this document may help reduce the scope of such issues and
 potentially remove the security considerations such lack of
 operational visibility may cause.

7. References

7.1. Normative References

Haas Expires 3 August 2023 [Page 16]

Internet-Draft YANG Unknown Bits January 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

7.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4724] Sangli, S., Chen, E., Fernando, R., Scudder, J., and Y.
 Rekhter, "Graceful Restart Mechanism for BGP", RFC 4724,
 DOI 10.17487/RFC4724, January 2007,
 <https://www.rfc-editor.org/info/rfc4724>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8538] Patel, K., Fernando, R., Scudder, J., and J. Haas,
 "Notification Message Support for BGP Graceful Restart",
 RFC 8538, DOI 10.17487/RFC8538, March 2019,
 <https://www.rfc-editor.org/info/rfc8538>.

 [I-D.ietf-idr-bgp-model]
 Jethanandani, M., Patel, K., Hares, S., and J. Haas, "BGP
 YANG Model for Service Provider Networks", Work in
 Progress, Internet-Draft, draft-ietf-idr-bgp-model-15, 13
 October 2022, <https://www.ietf.org/archive/id/draft-ietf-
 idr-bgp-model-15.txt>.

Acknowledgements

 Martin Bjorklund provided a review on an early version of this
 document.

 Thanks to Jurgen Schonwalder and the IETF netmod Working Group for
 their feedback.

Haas Expires 3 August 2023 [Page 17]

Internet-Draft YANG Unknown Bits January 2023

Author’s Address

 Jeffrey Haas
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 United States of America
 Email: jhaas@pfrc.org

Haas Expires 3 August 2023 [Page 18]

ANIMA Working Group K. Watsen
Internet-Draft Watsen Networks
Intended status: Standards Track M. Richardson
Expires: 11 August 2023 Sandelman Software
 M. Pritikin
 Cisco Systems
 T. Eckert
 Q. Ma
 Huawei
 7 February 2023

 A Voucher Artifact for Bootstrapping Protocols
 draft-ietf-anima-rfc8366bis-07

Abstract

 This document defines a strategy to securely assign a pledge to an
 owner using an artifact signed, directly or indirectly, by the
 pledge’s manufacturer. This artifact is known as a "voucher".

 This document defines an artifact format as a YANG-defined JSON or
 CBOR document that has been signed using a variety of cryptographic
 systems.

 The voucher artifact is normally generated by the pledge’s
 manufacturer (i.e., the Manufacturer Authorized Signing Authority
 (MASA)).

 This document updates RFC8366, merging a number of extensions into
 the YANG. The RFC8995 voucher request is also merged into this
 document.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-anima-rfc8366bis/.

 Discussion of this document takes place on the anima Working Group
 mailing list (mailto:anima@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/anima/. Subscribe at
 https://www.ietf.org/mailman/listinfo/anima/.

 Source for this draft and an issue tracker can be found at
 https://github.com/anima-wg/voucher.

Watsen, et al. Expires 11 August 2023 [Page 1]

Internet-Draft Voucher Artifact February 2023

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 August 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Requirements Language . 5
 4. Survey of Voucher Types 5
 5. Changes since RFC8366 . 7
 6. Voucher Artifact . 8
 6.1. Tree Diagram . 9
 6.2. Examples . 9
 6.3. YANG Module . 10
 6.4. ietf-voucher SID values 17
 6.5. CMS Format Voucher Artifact 18
 7. Voucher Request Artifact 19
 7.1. Tree Diagram . 19
 7.2. "ietf-voucher-request" Module 20
 7.3. ietf-voucher-request SID values 26

Watsen, et al. Expires 11 August 2023 [Page 2]

Internet-Draft Voucher Artifact February 2023

 8. Design Considerations . 26
 8.1. Renewals Instead of Revocations 26
 8.2. Voucher Per Pledge 27
 9. Security Considerations 27
 9.1. Clock Sensitivity . 28
 9.2. Protect Voucher PKI in HSM 28
 9.3. Test Domain Certificate Validity When Signing 28
 9.4. YANG Module Security Considerations 28
 10. IANA Considerations . 29
 10.1. The IETF XML Registry 29
 10.2. The YANG Module Names Registry 29
 10.3. The Media Types Registry 30
 10.4. The SMI Security for S/MIME CMS Content Type Registry . 31
 11. References . 31
 11.1. Normative References 31
 11.2. Informative References 33
 Acknowledgements . 35
 Authors’ Addresses . 35

1. Introduction

 This document defines a strategy to securely assign a candidate
 device (pledge) to an owner using an artifact signed, directly or
 indirectly, by the pledge’s manufacturer, i.e., the Manufacturer
 Authorized Signing Authority (MASA). This artifact is known as the
 "voucher".

 The voucher artifact is a JSON [RFC8259] document that conforms with
 a data model described by YANG [RFC7950]. It may also be serialized
 to CBOR [CBOR]. It is encoded using the rules defined in [RFC8259],
 and is signed using (by default) a CMS structure [RFC5652].

 The primary purpose of a voucher is to securely convey a certificate,
 the "pinned-domain-cert" (and constrained variations), that a pledge
 can use to authenticate subsequent interactions. A voucher may be
 useful in several contexts, but the driving motivation herein is to
 support secure onboarding mechanisms. Assigning ownership is
 important to device onboarding mechanisms so that the pledge can
 authenticate the network that is trying to take control of it.

 The lifetimes of vouchers may vary. In some onboarding protocols,
 the vouchers may include a nonce restricting them to a single use,
 whereas the vouchers in other onboarding protocols may have an
 indicated lifetime. In order to support long lifetimes, this
 document recommends using short lifetimes with programmatic renewal,
 see Section 8.1.

Watsen, et al. Expires 11 August 2023 [Page 3]

Internet-Draft Voucher Artifact February 2023

 This document only defines the voucher artifact, leaving it to other
 documents to describe specialized protocols for accessing it. Some
 onboarding protocols using the voucher artifact defined in this
 document include: [ZERO-TOUCH], [SECUREJOIN], and [BRSKI].

2. Terminology

 This document uses the following terms:

 Artifact: Used throughout to represent the voucher as instantiated
 in the form of a signed structure.

 Bootstrapping: See Onboarding.

 Domain: The set of entities or infrastructure under common
 administrative control. The goal of the onboarding protocol is to
 enable a pledge to discover and join a domain.

 Imprint: The process where a device obtains the cryptographic key
 material to identify and trust future interactions with a network.
 This term is taken from Konrad Lorenz’s work in biology with new
 ducklings: "during a critical period, the duckling would assume
 that anything that looks like a mother duck is in fact their
 mother" [Stajano99theresurrecting]. An equivalent for a device is
 to obtain the fingerprint of the network’s root certification
 authority certificate. A device that imprints on an attacker
 suffers a similar fate to a duckling that imprints on a hungry
 wolf. Imprinting is a term from psychology and ethology, as
 described in [imprinting].

 Join Registrar (and Coordinator): A representative of the domain
 that is configured, perhaps autonomically, to decide whether a new
 device is allowed to join the domain. The administrator of the
 domain interfaces with a join registrar (and Coordinator) to
 control this process. Typically, a join registrar is "inside" its
 domain. For simplicity, this document often refers to this as
 just "registrar".

 MASA (Manufacturer Authorized Signing Authority): The entity that,
 for the purpose of this document, signs the vouchers for a
 manufacturer’s pledges. In some onboarding protocols, the MASA
 may have an Internet presence and be integral to the onboarding
 process, whereas in other protocols the MASA may be an offline
 service that has no active role in the onboarding process.

 Onboarding: In previous documents the term "bootstrapping" has been

Watsen, et al. Expires 11 August 2023 [Page 4]

Internet-Draft Voucher Artifact February 2023

 used to describe mechanisms such as [BRSKI]. The industry has
 however, converged upon the term "onboarding", and this document
 uses that term throughout.

 Owner: The entity that controls the private key of the "pinned-
 domain-cert" certificate conveyed by the voucher.

 Pledge: The prospective device attempting to find and securely join
 a domain. When shipped, it only trusts authorized representatives
 of the manufacturer.

 Registrar: See join registrar.

 TOFU (Trust on First Use): Where a pledge device makes no security
 decisions but rather simply trusts the first domain entity it is
 contacted by. Used similarly to [RFC7435]. This is also known as
 the "resurrecting duckling" model.

 Voucher: A signed statement from the MASA service that indicates to
 a pledge the cryptographic identity of the domain it should trust.

3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Survey of Voucher Types

 A voucher is a cryptographically protected statement to the pledge
 device authorizing a zero-touch "imprint" on the join registrar of
 the domain. The specific information a voucher provides is
 influenced by the onboarding use case.

 The voucher can impart the following information to the join
 registrar and pledge:

 Assertion Basis: Indicates the method that protects the imprint
 (this is distinct from the voucher signature that protects the
 voucher itself). This might include manufacturer-asserted
 ownership verification, assured logging operations, or reliance on
 pledge endpoint behavior such as secure root of trust of
 measurement. The join registrar might use this information. Only
 some methods are normatively defined in this document. Other
 methods are left for future work.

Watsen, et al. Expires 11 August 2023 [Page 5]

Internet-Draft Voucher Artifact February 2023

 Authentication of Join Registrar: Indicates how the pledge can
 authenticate the join registrar. This document defines a
 mechanism to pin the domain certificate. Pinning a symmetric key,
 a raw key, or "CN-ID" or "DNS-ID" information (as defined in
 [RFC6125]) is left for future work.

 Anti-Replay Protections: Time- or nonce-based information to
 constrain the voucher to time periods or bootstrap attempts.

 A number of onboarding scenarios can be met using differing
 combinations of this information. All scenarios address the primary
 threat of a Man-in-The-Middle (MiTM) registrar gaining control over
 the pledge device. The following combinations are "types" of
 vouchers:

 +============+=========+========+=========+========+========+=====+
 | |Assertion| |Registrar| |Validity| |
 | | | | ID| | | |
 +============+=========+========+=========+========+========+=====+
 |Voucher Type| Logged|Verified| Trust|CN-ID or| RTC|Nonce|
 | | | | Anchor| DNS-ID| | |
 +------------+---------+--------+---------+--------+--------+-----+
 |Audit | X| | X| | | X|
 +------------+---------+--------+---------+--------+--------+-----+
 |Nonceless | X| | X| | X| |
 |Audit | | | | | | |
 +------------+---------+--------+---------+--------+--------+-----+
 |Owner Audit | X| X| X| | X| X|
 +------------+---------+--------+---------+--------+--------+-----+
 |Owner ID | | X| X| X| X| |
 +------------+---------+--------+---------+--------+--------+-----+
 |Bearer out- | X| | wildcard|wildcard|optional| opt|
 |of-scope | | | | | | |
 +------------+---------+--------+---------+--------+--------+-----+

 Table 1

 NOTE: All voucher types include a ’pledge ID serial-number’ (not
 shown here for space reasons).

 Audit Voucher: An Audit Voucher is named after the logging assertion
 mechanisms that the registrar then "audits" to enforce local
 policy. The registrar mitigates a MiTM registrar by auditing that
 an unknown MiTM registrar does not appear in the log entries.
 This does not directly prevent the MiTM but provides a response
 mechanism that ensures the MiTM is unsuccessful. The advantage is
 that actual ownership knowledge is not required on the MASA
 service.

Watsen, et al. Expires 11 August 2023 [Page 6]

Internet-Draft Voucher Artifact February 2023

 Nonceless Audit Voucher: An Audit Voucher without a validity period
 statement. Fundamentally, it is the same as an Audit Voucher
 except that it can be issued in advance to support network
 partitions or to provide a permanent voucher for remote
 deployments.

 Ownership Audit Voucher: An Audit Voucher where the MASA service has
 verified the registrar as the authorized owner. The MASA service
 mitigates a MiTM registrar by refusing to generate Audit Vouchers
 for unauthorized registrars. The registrar uses audit techniques
 to supplement the MASA. This provides an ideal sharing of policy
 decisions and enforcement between the vendor and the owner.

 Ownership ID Voucher: Named after inclusion of the pledge’s CN-ID or
 DNS-ID within the voucher. The MASA service mitigates a MiTM
 registrar by identifying the specific registrar (via WebPKI)
 authorized to own the pledge.

 Bearer Voucher: A Bearer Voucher is named after the inclusion of a
 registrar ID wildcard. Because the registrar identity is not
 indicated, this voucher type must be treated as a secret and
 protected from exposure as any ’bearer’ of the voucher can claim
 the pledge device. Publishing a nonceless bearer voucher
 effectively turns the specified pledge into a "TOFU" device with
 minimal mitigation against MiTM registrars. Bearer vouchers are
 out of scope.

5. Changes since RFC8366

 [RFC8366] was published in 2018 during the development of [BRSKI],
 [ZERO-TOUCH] and other work-in-progress efforts. Since then the
 industry has matured significantly, and the in-the-field activity
 which this document supports has become known as _onboarding_ rather
 than _bootstrapping_.

 The focus of [BRSKI] was onboarding of ISP and Enterprise owned wired
 routing and switching equipment, with IoT devices being a less
 important aspect. [ZERO-TOUCH] has focused upon onboarding of CPE
 equipment like cable modems and other larger IoT devices, again with
 smaller IoT devices being of less import.

 Since [BRSKI] was published there is now a mature effort to do
 application-level onboarding of constrained IoT devices defined by
 The Thread and Fairhair (now OCF) consortia. The [cBRSKI] document
 has defined a version of [BRSKI] that is useable over constrained
 802.15.4 networks using CoAP and DTLS, while
 [I-D.selander-ace-ake-authz] provides for using CoAP and EDHOC on
 even more constrained devices with very constrained networks.

Watsen, et al. Expires 11 August 2023 [Page 7]

Internet-Draft Voucher Artifact February 2023

 [PRM] has created a new methodology for onboarding that does not
 depend upon a synchronous connection between the Pledge and the
 Registrar. This mechanism uses a mobile Registrar Agent that works
 to collect and transfer signed artifacts via physical travel from one
 network to another.

 Both [cBRSKI] and [PRM] require extensions to the Voucher Request and
 the resulting Voucher. The new attribtes are required to carry the
 additional attributes and describe the extended semantics. In
 addition [cBRSKI] uses the serialization mechanism described in
 [YANGCBOR] to produce significantly more compact artifacts.

 When the process to define [cBRSKI] and [PRM] was started, there was
 a belief that the appropriate process was to use the [RFC8040]
 augment mechanism to further extend both the voucher request
 [BRSKI] and voucher [RFC8366] artifacts. However, [PRM] needs to
 extend an enumerated type with additional values and _augment_ can
 not do this, so that was initially the impetus for this document.

 An attempt was then made to determine what would happen if one wanted
 to have a constrained version of the [PRM] voucher artifact. The
 result was invalid YANG, with multiple definitions of the core
 attributes from the [RFC8366] voucher artifact. After some
 discussion, it was determined that the _augment_ mechanism did not
 work, nor did it work better when [RFC8040] yang-data was replaced
 with the [RFC8971] structure mechanisms.

 After significant discussion the decision was made to simply roll all
 of the needed extensions up into this document as "RFC8366bis".

 This document therefore represents a merge of YANG definitions from
 [RFC8366], the voucher-request from [BRSKI], and then extensions to
 each of these from [cBRSKI], [CLOUD] and [PRM]. There are some
 difficulties with this approach: this document does not attempt to
 establish rigorous semantic definitions for how some attributes are
 to be used, referring normatively instead to the other relevant
 documents.

6. Voucher Artifact

 The voucher’s primary purpose is to securely assign a pledge to an
 owner. The voucher informs the pledge which entity it should
 consider to be its owner.

Watsen, et al. Expires 11 August 2023 [Page 8]

Internet-Draft Voucher Artifact February 2023

 This document defines a voucher that is a JSON-encoded or CBOR-
 encoded instance of the YANG module defined in Section 6.3 that has
 been, by default, CMS signed. [cBRSKI] definies how to encode with
 CBOR and sign the voucher with [COSE], while [jBRSKI] explains how to
 use [JWS] to do JSON signatures.

 This format is described here as a practical basis for some uses
 (such as in NETCONF), but more to clearly indicate what vouchers look
 like in practice. This description also serves to validate the YANG
 data model.

 [RFC8366] defined a media type and a filename extension for the CMS-
 encoded JSON type. Which type of voucher is expected is signaled
 (where possible) in the form of a MIME Content-Type, an HTTP Accept:
 header, or more mundane methods like use of a filename extension when
 a voucher is transferred on a USB key.

6.1. Tree Diagram

 The following tree diagram illustrates a high-level view of a voucher
 document. The notation used in this diagram is described in
 [RFC8340]. Each node in the diagram is fully described by the YANG
 module in Section 6.3. Please review the YANG module for a detailed
 description of the voucher format.

 module: ietf-voucher

 structure voucher:
 +-- voucher
 +-- created-on? yang:date-and-time
 +-- expires-on? yang:date-and-time
 +-- assertion? enumeration
 +-- serial-number string
 +-- idevid-issuer? binary
 +-- pinned-domain-cert? binary
 +-- domain-cert-revocation-checks? boolean
 +-- nonce? binary
 +-- pinned-domain-pubk? binary
 +-- pinned-domain-pubk-sha256? binary
 +-- last-renewal-date? yang:date-and-time
 +-- est-domain? ietf:uri
 +-- additional-configuration? ietf:uri

6.2. Examples

 This section provides voucher examples for illustration purposes.
 These examples conform to the encoding rules defined in [RFC8259].

Watsen, et al. Expires 11 August 2023 [Page 9]

Internet-Draft Voucher Artifact February 2023

 The following example illustrates an ephemeral voucher (uses a
 nonce). The MASA generated this voucher using the ’logged’ assertion
 type, knowing that it would be suitable for the pledge making the
 request.

 {
 "ietf-voucher:voucher": {
 "created-on": "2016-10-07T19:31:42Z",
 "assertion": "logged",
 "serial-number": "JADA123456789",
 "idevid-issuer": "base64encodedvalue==",
 "pinned-domain-cert": "base64encodedvalue==",
 "nonce": "base64encodedvalue=="
 }
 }

 The following example illustrates a non-ephemeral voucher (no nonce).
 While the voucher itself expires after two weeks, it presumably can
 be renewed for up to a year. The MASA generated this voucher using
 the ’verified’ assertion type, which should satisfy all pledges.

 {
 "ietf-voucher:voucher": {
 "created-on": "2016-10-07T19:31:42Z",
 "expires-on": "2016-10-21T19:31:42Z",
 "assertion": "verified",
 "serial-number": "JADA123456789",
 "idevid-issuer": "base64encodedvalue==",
 "pinned-domain-cert": "base64encodedvalue==",
 "domain-cert-revocation-checks": "true",
 "last-renewal-date": "2017-10-07T19:31:42Z"
 }
 }

6.3. YANG Module

 <CODE BEGINS>
 module ietf-voucher {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-voucher";
 prefix vch;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-inet-types {

Watsen, et al. Expires 11 August 2023 [Page 10]

Internet-Draft Voucher Artifact February 2023

 prefix ietf;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-yang-structure-ext {
 prefix sx;
 }

 organization
 "IETF ANIMA Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Toerless Eckert
 <mailto:tte+ietf@cs.fau.de>";
 description
 "This module defines the format for a voucher, which is
 produced by a pledge’s manufacturer or delegate (MASA)
 to securely assign a pledge to an ’owner’, so that the
 pledge may establish a secure connection to the owner’s
 network infrastructure.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8366; see the
 RFC itself for full legal notices.";

 revision 2023-01-10 {

Watsen, et al. Expires 11 August 2023 [Page 11]

Internet-Draft Voucher Artifact February 2023

 description
 "updated to support new assertion enumerated type";
 reference
 "RFC ZZZZ Voucher Profile for Bootstrapping Protocols";
 }

 // Top-level statement
 sx:structure voucher {
 uses voucher-artifact-grouping;
 }

 // Grouping defined for future augmentations

 grouping voucher-artifact-grouping {
 description
 "Grouping to allow reuse/extensions in future work.";
 container voucher {
 description
 "A voucher assigns a pledge to an owner using
 the (pinned-domain-cert) value.";
 leaf created-on {
 type yang:date-and-time;
 mandatory false;
 description
 "A value indicating the date this voucher was created.
 This node is primarily for human consumption and auditing.
 Future work MAY create verification requirements based on
 this node.";
 }
 leaf expires-on {
 type yang:date-and-time;
 must ’not(../nonce)’;
 description
 "A value indicating when this voucher expires. The node is
 optional as not all pledges support expirations, such as
 pledges lacking a reliable clock.

 If this field exists, then the pledges MUST ensure that
 the expires-on time has not yet passed. A pledge without
 an accurate clock cannot meet this requirement.

 The expires-on value MUST NOT exceed the expiration date
 of any of the listed ’pinned-domain-cert’ certificates.";
 }
 leaf assertion {
 type enumeration {
 enum verified {
 value 0;

Watsen, et al. Expires 11 August 2023 [Page 12]

Internet-Draft Voucher Artifact February 2023

 description
 "Indicates that the ownership has been positively
 verified by the MASA (e.g., through sales channel
 integration).";
 }
 enum logged {
 value 1;
 description
 "Indicates that the voucher has been issued after
 minimal verification of ownership or control. The
 issuance has been logged for detection of
 potential security issues (e.g., recipients of
 vouchers might verify for themselves that unexpected
 vouchers are not in the log). This is similar to
 unsecured trust-on-first-use principles but with the
 logging providing a basis for detecting unexpected
 events.";
 }
 enum proximity {
 value 2;
 description
 "Indicates that the voucher has been issued after
 the MASA verified a proximity proof provided by the
 device and target domain. The issuance has been
 logged for detection of potential security issues.
 This is stronger than just logging, because it
 requires some verification that the pledge and owner
 are in communication but is still dependent on
 analysis of the logs to detect unexpected events.";
 }
 enum agent-proximity {
 value 3;
 description
 "Indicates that the voucher has been issued
 after the MASA has verified a statement that
 a registrar agent has made contact with the device.
 This type of voucher is weaker than straight
 proximity, but stronger than logged.";
 }
 }
 }
 leaf serial-number {
 type string;
 mandatory true;
 description
 "The serial-number of the hardware. When processing a
 voucher, a pledge MUST ensure that its serial-number
 matches this value. If no match occurs, then the

Watsen, et al. Expires 11 August 2023 [Page 13]

Internet-Draft Voucher Artifact February 2023

 pledge MUST NOT process this voucher.";
 }
 leaf idevid-issuer {
 type binary;
 description
 "The Authority Key Identifier OCTET STRING (as defined in
 Section 4.2.1.1 of RFC 5280) from the pledge’s IDevID
 certificate. Optional since some serial-numbers are
 already unique within the scope of a MASA.
 Inclusion of the statistically unique key identifier
 ensures statistically unique identification of the
 hardware.
 When processing a voucher, a pledge MUST ensure that its
 IDevID Authority Key Identifier matches this value. If no
 match occurs, then the pledge MUST NOT process this
 voucher.
 When issuing a voucher, the MASA MUST ensure that this
 field is populated for serial-numbers that are not
 otherwise unique within the scope of the MASA.";
 }
 leaf pinned-domain-cert {
 type binary;
 mandatory false;
 description
 "An X.509 v3 certificate structure, as specified by
 RFC 5280, using Distinguished Encoding Rules (DER)
 encoding, as defined in ITU-T X.690.

 This certificate is used by a pledge to trust a Public Key
 Infrastructure in order to verify a domain certificate
 supplied to the pledge separately by the bootstrapping
 protocol. The domain certificate MUST have this
 certificate somewhere in its chain of certificates.
 This certificate MAY be an end-entity certificate,
 including a self-signed entity.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 leaf domain-cert-revocation-checks {
 type boolean;
 description

Watsen, et al. Expires 11 August 2023 [Page 14]

Internet-Draft Voucher Artifact February 2023

 "A processing instruction to the pledge that it MUST (true)
 or MUST NOT (false) verify the revocation status for the
 pinned domain certificate. If this field is not set, then
 normal PKIX behavior applies to validation of the domain
 certificate.";
 }
 leaf nonce {
 type binary {
 length "8..32";
 }
 must ’not(../expires-on)’;
 description
 "A value that can be used by a pledge in some bootstrapping
 protocols to enable anti-replay protection. This node is
 optional because it is not used by all bootstrapping
 protocols.

 When present, the pledge MUST compare the provided nonce
 value with another value that the pledge randomly
 generated and sent to a bootstrap server in an earlier
 bootstrapping message. If the value is present, but
 the values do not match, then the pledge MUST NOT process
 this voucher.";
 }
 leaf pinned-domain-pubk {
 type binary;
 description
 "The pinned-domain-pubk may replace the
 pinned-domain-cert in constrained uses of
 the voucher. The pinned-domain-pubk
 is the Raw Public Key of the Registrar.
 This field is encoded as a Subject Public Key Info block
 as specified in RFC7250, in section 3.
 The ECDSA algorithm MUST be supported.
 The EdDSA algorithm as specified in
 draft-ietf-tls-rfc4492bis-17 SHOULD be supported.
 Support for the DSA algorithm is not recommended.
 Support for the RSA algorithm is a MAY.";
 }
 leaf pinned-domain-pubk-sha256 {
 type binary;
 description
 "The pinned-domain-pubk-sha256 is a second
 alternative to pinned-domain-cert. In many cases the
 public key of the domain has already been transmitted
 during the key agreement process, and it is wasteful
 to transmit the public key another two times.
 The use of a hash of public key info, at 32-bytes for

Watsen, et al. Expires 11 August 2023 [Page 15]

Internet-Draft Voucher Artifact February 2023

 sha256 is a significant savings compared to an RSA
 public key, but is only a minor savings compared to
 a 256-bit ECDSA public-key.
 Algorithm agility is provided by extensions to this
 specification which can define a new leaf for another
 hash type.";
 }
 leaf last-renewal-date {
 type yang:date-and-time;
 must ’../expires-on’;
 description
 "The date that the MASA projects to be the last date it
 will renew a voucher on. This field is merely
 informative; it is not processed by pledges.

 Circumstances may occur after a voucher is generated that
 may alter a voucher’s validity period. For instance,
 a vendor may associate validity periods with support
 contracts, which may be terminated or extended
 over time.";
 }
 // from BRSKI-CLOUD
 leaf est-domain {
 type ietf:uri;
 description
 "The est-domain is a URL to which the Pledge should
 continue doing enrollment rather than with the
 Cloud Registrar.
 The pinned-domain-cert contains a trust-anchor
 which is to be used to authenticate the server
 found at this URI.
 ";
 }
 leaf additional-configuration {
 type ietf:uri;
 description
 "The additional-configuration attribute contains a
 URL to which the Pledge can retrieve additional
 configuration information.
 The contents of this URL are vendor specific.
 This is intended to do things like configure
 a VoIP phone to point to the correct hosted
 PBX, for example.";
 }
 } // end voucher
 } // end voucher-grouping

 }

Watsen, et al. Expires 11 August 2023 [Page 16]

Internet-Draft Voucher Artifact February 2023

 <CODE ENDS>

6.4. ietf-voucher SID values

 [RFC9148] explains how to serialize YANG into CBOR, and for this a
 series of SID values are required. While [I-D.ietf-core-sid] defines
 the management process for these values, due to the immaturity of the
 tooling around this YANG-SID mechanisms, the following values are
 considered normative. It is believed, however, that they will not
 change.

 SID Assigned to
 --------- --
 2451 data /ietf-voucher:voucher/voucher
 2452 data /ietf-voucher:voucher/voucher/assertion
 2453 data /ietf-voucher:voucher/voucher/created-on
 2454 data .../domain-cert-revocation-checks
 2455 data /ietf-voucher:voucher/voucher/expires-on
 2456 data /ietf-voucher:voucher/voucher/idevid-issuer
 2457 data /ietf-voucher:voucher/voucher/last-renewal-date
 2458 data /ietf-voucher:voucher/voucher/nonce
 2459 data /ietf-voucher:voucher/voucher/pinned-domain-cert
 2460 data /ietf-voucher:voucher/voucher/pinned-domain-pubk
 2461 data .../pinned-domain-pubk-sha256
 2462 data /ietf-voucher:voucher/voucher/serial-number

 WARNING, obsolete definitions

 The "assertion" attribute is an enumerated type [RFC8366], and the
 current PYANG tooling does not document the valid values for this
 attribute. In the JSON serialization, the literal strings from the
 enumerated types are used so there is no ambiguity. In the CBOR
 serialization, a small integer is used. This following values are
 documented here, but the YANG module should be considered
 authoritative. No IANA registry is provided or necessary because the
 YANG module provides for extensions.

Watsen, et al. Expires 11 August 2023 [Page 17]

Internet-Draft Voucher Artifact February 2023

 +=========+=================+
 | Integer | Assertion Type |
 +=========+=================+
 | 0 | verified |
 +---------+-----------------+
 | 1 | logged |
 +---------+-----------------+
 | 2 | proximity |
 +---------+-----------------+
 | 3 | agent-proximity |
 +---------+-----------------+

 Table 2: CBOR integers
 for the "assertion"
 attribute enum

6.5. CMS Format Voucher Artifact

 The IETF evolution of PKCS#7 is CMS [RFC5652]. A CMS-signed voucher,
 the default type, contains a ContentInfo structure with the voucher
 content. An eContentType of 40 indicates that the content is a JSON-
 encoded voucher.

 The signing structure is a CMS SignedData structure, as specified by
 Section 5.1 of [RFC5652], encoded using ASN.1 Distinguished Encoding
 Rules (DER), as specified in ITU-T X.690 [ITU-T.X690.2015].

 To facilitate interoperability, Section 10.3 in this document
 registers the media type "application/voucher-cms+json" and the
 filename extension ".vcj".

 The CMS structure MUST contain a ’signerInfo’ structure, as described
 in Section 5.1 of [RFC5652], containing the signature generated over
 the content using a private key trusted by the recipient. Normally,
 the recipient is the pledge and the signer is the MASA. Another
 possible use could be as a "signed voucher request" format
 originating from the pledge or registrar toward the MASA. Within
 this document, the signer is assumed to be the MASA.

 Note that Section 5.1 of [RFC5652] includes a discussion about how to
 validate a CMS object, which is really a PKCS7 object (cmsVersion=1).
 Intermediate systems (such the Bootstrapping Remote Secure Key
 Infrastructures [BRSKI] registrar) that might need to evaluate the
 voucher in flight MUST be prepared for such an older format. No
 signaling is necessary, as the manufacturer knows the capabilities of
 the pledge and will use an appropriate format voucher for each
 pledge.

Watsen, et al. Expires 11 August 2023 [Page 18]

Internet-Draft Voucher Artifact February 2023

 The CMS structure SHOULD also contain all of the certificates leading
 up to and including the signer’s trust anchor certificate known to
 the recipient. The inclusion of the trust anchor is unusual in many
 applications, but third parties cannot accurately audit the
 transaction without it.

 The CMS structure MAY also contain revocation objects for any
 intermediate certificate authorities (CAs) between the voucher issuer
 and the trust anchor known to the recipient. However, the use of
 CRLs and other validity mechanisms is discouraged, as the pledge is
 unlikely to be able to perform online checks and is unlikely to have
 a trusted clock source. As described below, the use of short-lived
 vouchers and/or a pledge-provided nonce provides a freshness
 guarantee.

7. Voucher Request Artifact

 [BRSKI], Section 3 defined a Voucher-Request Artifact as an augmented
 artifact from the Voucher Artifact originally defined in [RFC8366].
 That definition has been moved to this document, and translated from
 YANG-DATA [RFC8040] to the SX:STRUCTURE extension [RFC8971].

7.1. Tree Diagram

 The following tree diagram illustrates a high-level view of a voucher
 request document. The notation used in this diagram is described in
 [RFC8340]. Each node in the diagram is fully described by the YANG
 module in Section 7.2.

Watsen, et al. Expires 11 August 2023 [Page 19]

Internet-Draft Voucher Artifact February 2023

 module: ietf-voucher-request

 structure voucher:
 +-- voucher
 +-- created-on?
 | yang:date-and-time
 +-- expires-on?
 | yang:date-and-time
 +-- assertion? enumeration
 +-- serial-number string
 +-- idevid-issuer? binary
 +-- pinned-domain-cert? binary
 +-- domain-cert-revocation-checks? boolean
 +-- nonce? binary
 +-- pinned-domain-pubk? binary
 +-- pinned-domain-pubk-sha256? binary
 +-- last-renewal-date?
 | yang:date-and-time
 +-- est-domain? ietf:uri
 +-- additional-configuration? ietf:uri
 +-- prior-signed-voucher-request? binary
 +-- proximity-registrar-cert? binary
 +-- proximity-registrar-pubk? binary
 +-- proximity-registrar-pubk-sha256? binary
 +-- agent-signed-data? binary
 +-- agent-provided-proximity-registrar-cert? binary
 +-- agent-sign-cert? binary

7.2. "ietf-voucher-request" Module

 The ietf-voucher-request YANG module is derived from the ietf-voucher
 module.

 <CODE BEGINS>
 module ietf-voucher-request {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
 prefix vcr;

 import ietf-yang-structure-ext {
 prefix sx;
 }
 import ietf-voucher {
 prefix vch;
 description
 "This module defines the format for a voucher,
 which is produced by a pledge’s manufacturer or
 delegate (MASA) to securely assign a pledge to

Watsen, et al. Expires 11 August 2023 [Page 20]

Internet-Draft Voucher Artifact February 2023

 an ’owner’, so that the pledge may establish a secure
 connection to the owner’s network infrastructure";
 reference
 "RFC 8366: Voucher Artifact for
 Bootstrapping Protocols";
 }

 organization
 "IETF ANIMA Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Kent Watsen
 <mailto:kent+ietf@watsen.net>
 Author: Michael H. Behringer
 <mailto:Michael.H.Behringer@gmail.com>
 Author: Toerless Eckert
 <mailto:tte+ietf@cs.fau.de>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>";
 description
 "This module defines the format for a voucher request.
 It is a superset of the voucher itself.
 It provides content to the MASA for consideration
 during a voucher request.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2023-01-10 {

Watsen, et al. Expires 11 August 2023 [Page 21]

Internet-Draft Voucher Artifact February 2023

 description
 "Initial version";
 reference
 "RFC XXXX: Bootstrapping Remote Secure Key Infrastructure";
 }

 // Top-level statement
 sx:structure voucher {
 uses voucher-request-grouping;
 }

 // Grouping defined for future usage

 grouping voucher-request-grouping {
 description
 "Grouping to allow reuse/extensions in future work.";
 uses vch:voucher-artifact-grouping {
 refine "voucher/created-on" {
 mandatory false;
 }
 refine "voucher/pinned-domain-cert" {
 mandatory false;
 description
 "A pinned-domain-cert field
 is not valid in a voucher request, and
 any occurrence MUST be ignored";
 }
 refine "voucher/last-renewal-date" {
 description
 "A last-renewal-date field
 is not valid in a voucher request, and
 any occurrence MUST be ignored";
 }
 refine "voucher/domain-cert-revocation-checks" {
 description
 "The domain-cert-revocation-checks field
 is not valid in a voucher request, and
 any occurrence MUST be ignored";
 }
 refine "voucher/assertion" {
 mandatory false;
 description
 "Any assertion included in registrar voucher
 requests SHOULD be ignored by the MASA.";
 }
 augment "voucher" {
 description
 "Adds leaf nodes appropriate for requesting vouchers.";

Watsen, et al. Expires 11 August 2023 [Page 22]

Internet-Draft Voucher Artifact February 2023

 leaf prior-signed-voucher-request {
 type binary;
 description
 "If it is necessary to change a voucher, or re-sign and
 forward a voucher that was previously provided along a
 protocol path, then the previously signed voucher SHOULD
 be included in this field.

 For example, a pledge might sign a voucher request
 with a proximity-registrar-cert, and the registrar
 then includes it as the prior-signed-voucher-request
 field. This is a simple mechanism for a chain of
 trusted parties to change a voucher request, while
 maintaining the prior signature information.

 The Registrar and MASA MAY examine the prior signed
 voucher information for the
 purposes of policy decisions. For example this
 information could be useful to a MASA to determine
 that both pledge and registrar agree on proximity
 assertions. The MASA SHOULD remove all
 prior-signed-voucher-request information when
 signing a voucher for imprinting so as to minimize
 the final voucher size.";
 }
 leaf proximity-registrar-cert {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by
 RFC 5280, Section 4 encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in [ITU.X690.1994].

 The first certificate in the Registrar TLS server
 certificate_list sequence (the end-entity TLS
 certificate, see [RFC8446]) presented by the Registrar
 to the Pledge.
 This MUST be populated in a Pledge’s voucher request
 when a proximity assertion is requested.";
 }
 leaf proximity-registrar-pubk {
 type binary;
 description
 "The proximity-registrar-pubk replaces
 the proximity-registrar-cert in constrained uses of
 the voucher-request.
 The proximity-registrar-pubk is the
 Raw Public Key of the Registrar. This field is encoded

Watsen, et al. Expires 11 August 2023 [Page 23]

Internet-Draft Voucher Artifact February 2023

 as specified in RFC7250, section 3.
 The ECDSA algorithm MUST be supported.
 The EdDSA algorithm as specified in
 draft-ietf-tls-rfc4492bis-17 SHOULD be supported.
 Support for the DSA algorithm is not recommended.
 Support for the RSA algorithm is a MAY, but due to
 size is discouraged.";
 }
 leaf proximity-registrar-pubk-sha256 {
 type binary;
 description
 "The proximity-registrar-pubk-sha256
 is an alternative to both
 proximity-registrar-pubk and pinned-domain-cert.
 In many cases the public key of the domain has already
 been transmitted during the key agreement protocol,
 and it is wasteful to transmit the public key another
 two times.
 The use of a hash of public key info, at 32-bytes for
 sha256 is a significant savings compared to an RSA
 public key, but is only a minor savings compared to
 a 256-bit ECDSA public-key.
 Algorithm agility is provided by extensions to this
 specification which may define a new leaf for another
 hash type.";
 }
 leaf agent-signed-data {
 type binary;
 description
 "The agent-signed-data field contains a JOSE [RFC7515]
 object provided by the Registrar-Agent to the Pledge.

 This artifact is signed by the Registrar-Agent
 and contains a copy of the pledge’s serial-number.";
 }
 leaf agent-provided-proximity-registrar-cert {
 type binary;
 description
 "An X.509 v3 certificate structure, as specified by
 RFC 5280, Section 4, encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU X.690.
 The first certificate in the registrar TLS server
 certificate_list sequence (the end-entity TLS
 certificate; see RFC 8446) presented by the
 registrar to the registrar-agent and provided to
 the pledge.
 This MUST be populated in a pledge’s voucher-request

Watsen, et al. Expires 11 August 2023 [Page 24]

Internet-Draft Voucher Artifact February 2023

 when an agent-proximity assertion is requested.";
 reference
 "ITU X.690: Information Technology - ASN.1 encoding
 rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)
 RFC 5280: Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile
 RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 leaf agent-sign-cert {
 type binary;
 description
 "An X.509 v3 certificate structure, as specified by
 RFC 5280, Section 4, encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU X.690.
 This certificate can be used by the pledge,
 the registrar, and the MASA to verify the signature
 of agent-signed-data. It is an optional component
 for the pledge-voucher request.
 This MUST be populated in a registrar’s
 voucher-request when an agent-proximity assertion
 is requested.";
 reference
 "ITU X.690: Information Technology - ASN.1 encoding
 rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)
 RFC 5280: Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile";
 }
 }
 }
 }
 }
 <CODE ENDS>

Watsen, et al. Expires 11 August 2023 [Page 25]

Internet-Draft Voucher Artifact February 2023

7.3. ietf-voucher-request SID values

 [RFC9148] explains how to serialize YANG into CBOR, and for this a
 series of SID values are required. While [I-D.ietf-core-sid] defines
 the management process for these values, due to the immaturity of the
 tooling around this YANG-SID mechanisms, the following values are
 considered normative. It is believed, however, that they will not
 change.

 SID Assigned to
 --------- --
 2501 data /ietf-voucher-request:voucher/voucher
 2515 data .../agent-provided-proximity-registrar-cert
 2516 data .../agent-sign-cert
 2517 data .../agent-signed-data
 2502 data /ietf-voucher-request:voucher/voucher/assertion
 2503 data /ietf-voucher-request:voucher/voucher/created-on
 2504 data .../domain-cert-revocation-checks
 2505 data /ietf-voucher-request:voucher/voucher/expires-on
 2506 data .../idevid-issuer
 2507 data .../last-renewal-date
 2508 data /ietf-voucher-request:voucher/voucher/nonce
 2509 data .../pinned-domain-cert
 2518 data .../pinned-domain-pubk
 2519 data .../pinned-domain-pubk-sha256
 2510 data .../prior-signed-voucher-request
 2511 data .../proximity-registrar-cert
 2513 data .../proximity-registrar-pubk
 2512 data .../proximity-registrar-pubk-sha256
 2514 data .../serial-number

 WARNING, obsolete definitions

 The "assertion" attribute is an enumerated type, and has values as
 defined above in Table 2.

8. Design Considerations

8.1. Renewals Instead of Revocations

 The lifetimes of vouchers may vary. In some onboarding protocols,
 the vouchers may be created and consumed immediately, whereas in
 other onboarding solutions, there may be a significant time delay
 between when a voucher is created and when it is consumed. In cases
 when there is a time delay, there is a need for the pledge to ensure
 that the assertions made when the voucher was created are still
 valid.

Watsen, et al. Expires 11 August 2023 [Page 26]

Internet-Draft Voucher Artifact February 2023

 A revocation artifact is generally used to verify the continued
 validity of an assertion such as a PKIX certificate, web token, or a
 "voucher". With this approach, a potentially long-lived assertion is
 paired with a reasonably fresh revocation status check to ensure that
 the assertion is still valid. However, this approach increases
 solution complexity, as it introduces the need for additional
 protocols and code paths to distribute and process the revocations.

 Addressing the shortcomings of revocations, this document recommends
 instead the use of lightweight renewals of short-lived non-revocable
 vouchers. That is, rather than issue a long-lived voucher, where the
 ’expires-on’ leaf is set to some distant date, the expectation is for
 the MASA to instead issue a short-lived voucher, where the ’expires-
 on’ leaf is set to a relatively near date, along with a promise
 (reflected in the ’last-renewal-date’ field) to reissue the voucher
 again when needed. Importantly, while issuing the initial voucher
 may incur heavyweight verification checks ("Are you who you say you
 are?" "Does the pledge actually belong to you?"), reissuing the
 voucher should be a lightweight process, as it ostensibly only
 updates the voucher’s validity period. With this approach, there is
 only the one artifact, and only one code path is needed to process
 it; there is no possibility of a pledge choosing to skip the
 revocation status check because, for instance, the OCSP Responder is
 not reachable.

 While this document recommends issuing short-lived vouchers, the
 voucher artifact does not restrict the ability to create long-lived
 voucher, if required; however, no revocation method is described.

 Note that a voucher may be signed by a chain of intermediate CAs
 leading up to the trust anchor certificate known by the pledge. Even
 though the voucher itself is not revocable, it may still be revoked,
 per se, if one of the intermediate CA certificates is revoked.

8.2. Voucher Per Pledge

 The solution described herein originally enabled a single voucher to
 apply to many pledges, using lists of regular expressions to
 represent ranges of serial-numbers. However, it was determined that
 blocking the renewal of a voucher that applied to many devices would
 be excessive when only the ownership for a single pledge needed to be
 blocked. Thus, the voucher format now only supports a single serial-
 number to be listed.

9. Security Considerations

Watsen, et al. Expires 11 August 2023 [Page 27]

Internet-Draft Voucher Artifact February 2023

9.1. Clock Sensitivity

 An attacker could use an expired voucher to gain control over a
 device that has no understanding of time. The device cannot trust
 NTP as a time reference, as an attacker could control the NTP stream.

 There are three things to defend against this: 1) devices are
 required to verify that the expires-on field has not yet passed, 2)
 devices without access to time can use nonces to get ephemeral
 vouchers, and 3) vouchers without expiration times may be used, which
 will appear in the audit log, informing the security decision.

 This document defines a voucher format that contains time values for
 expirations, which require an accurate clock in order to be processed
 correctly. Vendors planning on issuing vouchers with expiration
 values must ensure that devices have an accurate clock when shipped
 from manufacturing facilities and take steps to prevent clock
 tampering. If it is not possible to ensure clock accuracy, then
 vouchers with expirations should not be issued.

9.2. Protect Voucher PKI in HSM

 Pursuant the recommendation made in Section 6.1 for the MASA to be
 deployed as an online voucher signing service, it is RECOMMENDED that
 the MASA’s private key used for signing vouchers is protected by a
 hardware security module (HSM).

9.3. Test Domain Certificate Validity When Signing

 If a domain certificate is compromised, then any outstanding vouchers
 for that domain could be used by the attacker. The domain
 administrator is clearly expected to initiate revocation of any
 domain identity certificates (as is normal in PKI solutions).

 Similarly, they are expected to contact the MASA to indicate that an
 outstanding (presumably short lifetime) voucher should be blocked
 from automated renewal. Protocols for voucher distribution are
 RECOMMENDED to check for revocation of domain identity certificates
 before the signing of vouchers.

9.4. YANG Module Security Considerations

 The YANG module specified in this document defines the schema for
 data that is subsequently encapsulated by a CMS signed-data content
 type, as described in Section 5 of [RFC5652]. As such, all of the
 YANG modeled data is protected from modification.

Watsen, et al. Expires 11 August 2023 [Page 28]

Internet-Draft Voucher Artifact February 2023

 Implementations should be aware that the signed data is only
 protected from external modification; the data is still visible.
 This potential disclosure of information doesn’t affect security so
 much as privacy. In particular, adversaries can glean information
 such as which devices belong to which organizations and which CRL
 Distribution Point and/or OCSP Responder URLs are accessed to
 validate the vouchers. When privacy is important, the CMS signed-
 data content type SHOULD be encrypted, either by conveying it via a
 mutually authenticated secure transport protocol (e.g., TLS
 [RFC5246]) or by encapsulating the signed-data content type with an
 enveloped-data content type (Section 6 of [RFC5652]), though details
 for how to do this are outside the scope of this document.

 The use of YANG to define data structures, via the ’yang-data’
 statement, is relatively new and distinct from the traditional use of
 YANG to define an API accessed by network management protocols such
 as NETCONF [RFC6241] and RESTCONF [RFC8040]. For this reason, these
 guidelines do not follow template described by Section 3.7 of
 [YANG-GUIDE].

10. IANA Considerations

10.1. The IETF XML Registry

 This document registers two URIs in the "IETF XML Registry"
 [RFC3688].

 IANA has registered the following:

 URI: urn:ietf:params:xml:ns:yang:ietf-voucher
 Registrant Contact: The ANIMA WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

10.2. The YANG Module Names Registry

 This document registers two YANG module in the "YANG Module Names"
 registry [RFC6020].

 IANA is asked to registrar the following:

 name: ietf-voucher
 namespace: urn:ietf:params:xml:ns:yang:ietf-voucher
 prefix: vch

 reference: :RFC 8366

 IANA is asked to register a second YANG module as follows:

Watsen, et al. Expires 11 August 2023 [Page 29]

Internet-Draft Voucher Artifact February 2023

 name: iana-voucher-assertion-type
 namespace: urn:ietf:params:xml:ns:yang:iana-voucher-assertion-
 type
 prefix: ianavat
 reference: RFC XXXX

10.3. The Media Types Registry

 This document requests IANA to update the following "Media Types"
 entry to point to the RFC number that will be assigned to this
 document:

 Type name: application

 Subtype name: voucher-cms+json

 Required parameters: none

 Optional parameters: none

 Encoding considerations: CMS-signed JSON vouchers are ASN.1/DER
 encoded.

 Security considerations: See Section 9

 Interoperability considerations: The format is designed to be
 broadly interoperable.

 Published specification: RFC 8366

 Applications that use this media type: ANIMA, 6tisch, and NETCONF
 zero-touch imprinting systems.

 Fragment identifier considerations: none

 Additional information: Deprecated alias names for this type: none

 Magic number(s): None

 File extension(s): .vcj

 Macintosh file type code(s): none

 Person and email address to contact for further information: IETF AN
 IMA WG

 Intended usage: LIMITED

Watsen, et al. Expires 11 August 2023 [Page 30]

Internet-Draft Voucher Artifact February 2023

 Restrictions on usage: NONE

 Author: ANIMA WG

 Change controller: IETF

 Provisional registration? (standards tree only): NO

10.4. The SMI Security for S/MIME CMS Content Type Registry

 This document requests IANA to update this registered OID in the "SMI
 Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1)"
 registry to point to the RFC number to be assigned to this document:

 +=========+========================+============+
 | Decimal | Description | References |
 +=========+========================+============+
 | 40 | id-ct-animaJSONVoucher | RFC 8366 |
 +---------+------------------------+------------+

 Table 3

11. References

11.1. Normative References

 [BRSKI] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,
 May 2021, <https://www.rfc-editor.org/rfc/rfc8995>.

 [cBRSKI] Richardson, M., Van der Stok, P., Kampanakis, P., and E.
 Dijk, "Constrained Bootstrapping Remote Secure Key
 Infrastructure (BRSKI)", Work in Progress, Internet-Draft,
 draft-ietf-anima-constrained-voucher-19, 2 January 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-anima-
 constrained-voucher-19>.

 [CLOUD] Friel, O., Shekh-Yusef, R., and M. Richardson, "BRSKI
 Cloud Registrar", Work in Progress, Internet-Draft, draft-
 ietf-anima-brski-cloud-05, 13 November 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-anima-
 brski-cloud-05>.

Watsen, et al. Expires 11 August 2023 [Page 31]

Internet-Draft Voucher Artifact February 2023

 [I-D.ietf-core-sid]
 Veillette, M., Pelov, A., Petrov, I., Bormann, C., and M.
 Richardson, "YANG Schema Item iDentifier (YANG SID)", Work
 in Progress, Internet-Draft, draft-ietf-core-sid-19, 26
 July 2022, <https://datatracker.ietf.org/doc/html/draft-
 ietf-core-sid-19>.

 [ITU-T.X690.2015]
 International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.690/>.

 [jBRSKI] Werner, T. and M. Richardson, "JWS signed Voucher
 Artifacts for Bootstrapping Protocols", Work in Progress,
 Internet-Draft, draft-ietf-anima-jws-voucher-05, 24
 October 2022, <https://datatracker.ietf.org/doc/html/
 draft-ietf-anima-jws-voucher-05>.

 [PRM] Fries, S., Werner, T., Lear, E., and M. Richardson, "BRSKI
 with Pledge in Responder Mode (BRSKI-PRM)", Work in
 Progress, Internet-Draft, draft-ietf-anima-brski-prm-06,
 11 January 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-anima-brski-prm-06>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/rfc/rfc5652>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Watsen, et al. Expires 11 August 2023 [Page 32]

Internet-Draft Voucher Artifact February 2023

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [RFC8971] Pallagatti, S., Ed., Mirsky, G., Ed., Paragiri, S.,
 Govindan, V., and M. Mudigonda, "Bidirectional Forwarding
 Detection (BFD) for Virtual eXtensible Local Area Network
 (VXLAN)", RFC 8971, DOI 10.17487/RFC8971, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8971>.

 [RFC9148] van der Stok, P., Kampanakis, P., Richardson, M., and S.
 Raza, "EST-coaps: Enrollment over Secure Transport with
 the Secure Constrained Application Protocol", RFC 9148,
 DOI 10.17487/RFC9148, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9148>.

 [ZERO-TOUCH]
 Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
 Touch Provisioning (SZTP)", RFC 8572,
 DOI 10.17487/RFC8572, April 2019,
 <https://www.rfc-editor.org/rfc/rfc8572>.

11.2. Informative References

 [CBOR] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949, December 2020.

 <https://www.rfc-editor.org/info/std94>

 [COSE] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052, August 2022.

 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Countersignatures", STD 96, RFC 9338, December 2022.

 <https://www.rfc-editor.org/info/std96>

 [I-D.selander-ace-ake-authz]
 Selander, G., Mattsson, J. P., Vuini, M., Richardson,
 M., and A. Schellenbaum, "Lightweight Authorization for
 Authenticated Key Exchange.", Work in Progress, Internet-
 Draft, draft-selander-ace-ake-authz-05, 18 April 2022,
 <https://datatracker.ietf.org/doc/html/draft-selander-ace-
 ake-authz-05>.

Watsen, et al. Expires 11 August 2023 [Page 33]

Internet-Draft Voucher Artifact February 2023

 [imprinting]
 Wikipedia, "Wikipedia article: Imprinting", February 2018,
 <https://en.wikipedia.org/w/
 index.php?title=Imprinting_(psychology)&oldid=825757556>.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/rfc/rfc7515>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5246>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/rfc/rfc6125>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6838>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/rfc/rfc7435>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8340>.

Watsen, et al. Expires 11 August 2023 [Page 34]

Internet-Draft Voucher Artifact February 2023

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/rfc/rfc8366>.

 [SECUREJOIN]
 Richardson, M., "6tisch Secure Join protocol", Work in
 Progress, Internet-Draft, draft-ietf-6tisch-dtsecurity-
 secure-join-01, 25 February 2017,
 <https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-
 dtsecurity-secure-join-01>.

 [Stajano99theresurrecting]
 Stajano, F. and R. Anderson, "The Resurrecting Duckling:
 Security Issues for Ad-Hoc Wireless Networks", 1999, <http
 s://www.cl.cam.ac.uk/research/dtg/www/files/publications/
 public/files/tr.1999.2.pdf>.

 [YANG-GUIDE]
 Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/rfc/rfc8407>.

 [YANGCBOR] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
 C., and M. Richardson, "Encoding of Data Modeled with YANG
 in the Concise Binary Object Representation (CBOR)",
 RFC 9254, DOI 10.17487/RFC9254, July 2022,
 <https://www.rfc-editor.org/rfc/rfc9254>.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): William Atwood,
 Toerless Eckert, and Sheng Jiang.

 Russ Housley provided the upgrade from PKCS7 to CMS (RFC 5652) along
 with the detailed CMS structure diagram.

Authors’ Addresses

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

 Michael C. Richardson
 Sandelman Software

Watsen, et al. Expires 11 August 2023 [Page 35]

Internet-Draft Voucher Artifact February 2023

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Max Pritikin
 Cisco Systems
 Email: pritikin@cisco.com

 Toerless Eckert
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara, 95050
 United States of America
 Email: tte+ietf@cs.fau.de

 Qiufang Ma
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 210012
 China
 Email: maqiufang1@huawei.com

Watsen, et al. Expires 11 August 2023 [Page 36]

Internet Engineering Task Force R.G. Wilton
Internet-Draft Cisco Systems
Intended status: Standards Track S. Mansfield
Expires: 7 September 2023 Ericsson
 6 March 2023

 Common Interface Extension YANG Data Models
 draft-ietf-netmod-intf-ext-yang-11

Abstract

 This document defines two YANG modules that augment the Interfaces
 data model defined in the "YANG Data Model for Interface Management"
 with additional configuration and operational data nodes to support
 common lower layer interface properties, such as interface MTU.

 The YANG modules in this document conform to the Network Management
 Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wilton & Mansfield Expires 7 September 2023 [Page 1]

Internet-Draft Interface Extensions YANG March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Tree Diagrams . 4
 2. Interface Extensions Module 4
 2.1. Link Flap Suppression 5
 2.2. Dampening . 6
 2.2.1. Suppress Threshold 7
 2.2.2. Half-Life Period 7
 2.2.3. Reuse Threshold 7
 2.2.4. Maximum Suppress Time 7
 2.3. Encapsulation . 7
 2.4. Loopback . 8
 2.5. Maximum frame size 8
 2.6. Sub-interface . 8
 2.7. Forwarding Mode . 9
 3. Interfaces Ethernet-Like Module 9
 4. Interface Extensions YANG Module 10
 5. Interfaces Ethernet-Like YANG Module 21
 6. Examples . 25
 6.1. Carrier delay configuration 25
 6.2. Dampening configuration 26
 6.3. MAC address configuration 27
 7. Acknowledgements . 29
 8. IANA Considerations . 29
 8.1. YANG Module Registrations 29
 9. Security Considerations 30
 9.1. ietf-if-extensions.yang 30
 9.2. ietf-if-ethernet-like.yang 31
 10. References . 31
 10.1. Normative References 31
 10.2. Informative References 32
 Authors’ Addresses . 33

Wilton & Mansfield Expires 7 September 2023 [Page 2]

Internet-Draft Interface Extensions YANG March 2023

1. Introduction

 This document defines two NMDA compatible [RFC8342] YANG 1.1
 [RFC7950] modules for the management of network interfaces. It
 defines various augmentations to the generic interfaces data model
 [RFC8343] to support configuration of lower layer interface
 properties that are common across many types of network interface.

 One of the aims of this document is to provide a standard definition
 for these configuration items regardless of the underlying interface
 type. For example, a definition for configuring or reading the MAC
 address associated with an interface is provided that can be used for
 any interface type that uses Ethernet framing.

 Several of the augmentations defined here are not backed by any
 formal standard specification. Instead, they are for features that
 are commonly implemented in equivalent ways by multiple independent
 network equipment vendors. The aim of this document is to define
 common paths and leaves for the configuration of these equivalent
 features in a uniform way, making it easier for users of the YANG
 model to access these features in a vendor independent way. Where
 necessary, a description of the expected behavior is also provided
 with the aim of ensuring vendors implementations are consistent with
 the specified behavior.

 Given that the modules contain a collection of discrete features with
 the common theme that they generically apply to interfaces, it is
 plausible that not all implementers of the YANG module will decide to
 support all features. Hence, separate feature keywords are defined
 for each logically discrete feature to allow implementers the
 flexibility to choose which specific parts of the model they support.

 The augmentations are split into two separate YANG modules that each
 focus on a particular area of functionality. The two YANG modules
 defined in this document are:

 ietf-if-extensions.yang - Defines extensions to the IETF interface
 data model to support common configuration data nodes.

 ietf-if-ethernet-like.yang - Defines a module for any
 configuration and operational data nodes that are common across
 interfaces that use Ethernet framing.

Wilton & Mansfield Expires 7 September 2023 [Page 3]

Internet-Draft Interface Extensions YANG March 2023

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Interface Extensions Module

 The Interfaces Extensions YANG module provides some basic extensions
 to the IETF interfaces YANG module.

 The module provides:

 * A link flap suppression feature used to provide control over
 short-lived link state flaps.

 * An interface link state dampening feature that is used to provide
 control over longer lived link state flaps.

 * An encapsulation container and extensible choice statement for use
 by any interface types that allow for configurable L2
 encapsulations.

 * A loopback configuration leaf that is primarily aimed at loopback
 at the physical layer.

 * MTU configuration leaves applicable to all packet/frame based
 interfaces.

 * A forwarding mode leaf to indicate the OSI layer at which the
 interface handles traffic.

 * A generic "sub-interface" identity that an interface identity
 definition can derive from if it defines a sub-interface.

 * A parent interface leaf useable for all types of sub-interface
 that are children of parent interfaces.

 The "ietf-if-extensions" YANG module has the following structure:

Wilton & Mansfield Expires 7 September 2023 [Page 4]

Internet-Draft Interface Extensions YANG March 2023

 module: ietf-if-extensions
 augment /if:interfaces/if:interface:
 +--rw link-flap-suppression {link-flap-suppression}?
 | +--rw down? uint32
 | +--rw up? uint32
 | +--ro carrier-transitions? yang:counter64
 | +--ro timer-running? enumeration
 +--rw dampening! {dampening}?
 | +--rw half-life? uint32
 | +--rw reuse? uint32
 | +--rw suppress? uint32
 | +--rw max-suppress-time? uint32
 | +--ro penalty? uint32
 | +--ro suppressed? boolean
 | +--ro time-remaining? uint32
 +--rw encapsulation
 | +--rw (encaps-type)?
 +--rw loopback? identityref {loopback}?
 +--rw max-frame-size? uint32 {max-frame-size}?
 +--ro forwarding-mode? identityref
 augment /if:interfaces/if:interface:
 +--rw parent-interface if:interface-ref {sub-interfaces}?
 augment /if:interfaces/if:interface/if:statistics:
 +--ro in-discard-unknown-encaps? yang:counter64
 {sub-interfaces}?

2.1. Link Flap Suppression

 The link flap suppression feature augments the IETF interfaces data
 model with configuration for a simple algorithm that is used,
 generally on physical interfaces, to suppress short transient changes
 in the interface link state. It can be used in conjunction with the
 dampening feature described in Section 2.2 to provide effective
 control of unstable links and unwanted state transitions.

 The principle of the link flap suppression feature is to use a short
 per interface timer to ensure that any interface link state
 transition that occurs and reverts back within the specified time
 interval is entirely suppressed without providing any signalling to
 any upper layer protocols that the state transition has occurred.
 E.g. in the case that the link state transition is suppressed then
 there is no change of the /if:interfaces/if:interface/oper-status or
 /if:interfaces/if:interfaces/last-change leaves for the interface
 that the feature is operating on. One obvious side effect of using
 this feature that is that any state transition will always be delayed
 by the specified time interval.

Wilton & Mansfield Expires 7 September 2023 [Page 5]

Internet-Draft Interface Extensions YANG March 2023

 The configuration allows for separate timer values to be used in the
 suppression of down->up->down link transitions vs up->down->up link
 transitions.

 The link flap suppression down timer leaf specifies the amount of
 time that an interface that is currently in link up state must be
 continuously down before the down state change is reported to higher
 level protocols. Use of this timer can cause traffic to be black
 holed for the configured value and delay reconvergence after link
 failures, therefore its use is normally restricted to cases where it
 is necessary to allow enough time for another protection mechanism
 (such as an optical layer automatic protection system) to take
 effect.

 The link flap suppression up timer leaf specifies the amount of time
 that an interface that is currently in link down state must be
 continuously up before the down->up link state transition is reported
 to higher level protocols. This timer is generally useful as a
 debounce mechanism to ensure that a link is relatively stable before
 being brought into service. It can also be used effectively to limit
 the frequency at which link state transition events may occur. The
 default value for this leaf is determined by the underlying network
 device.

2.2. Dampening

 The dampening feature introduces a configurable exponential decay
 mechanism to suppress the effects of excessive interface link state
 flapping. This feature allows the network operator to configure a
 device to automatically identify and selectively dampen a local
 interface which is flapping. Dampening an interface keeps the
 interface operationally down until the interface stops flapping and
 becomes stable. Configuring the dampening feature can improve
 convergence times and stability throughout the network by isolating
 failures so that disturbances are not propagated, which reduces the
 utilization of system processing resources by other devices in the
 network and improves overall network stability.

 The basic algorithm uses a counter that is increased by 1000 units
 every time the underlying interface link state changes from up to
 down. If the counter increases above the suppress threshold then the
 interface is kept down (and out of service) until either the maximum
 suppression time is reached, or the counter has reduced below the
 reuse threshold. The half-life period determines that rate at which
 the counter is periodically reduced by half.

Wilton & Mansfield Expires 7 September 2023 [Page 6]

Internet-Draft Interface Extensions YANG March 2023

2.2.1. Suppress Threshold

 The suppress threshold is the value of the accumulated penalty that
 triggers the device to dampen a flapping interface. The flapping
 interface is identified by the device and assigned a penalty for each
 up to down link state change, but the interface is not automatically
 dampened. The device tracks the penalties that a flapping interface
 accumulates. When the accumulated penalty reaches or exceeds the
 suppress threshold, the interface is placed in a suppressed state.

2.2.2. Half-Life Period

 The half-life period determines how fast the accumulated penalties
 can decay exponentially. The accumulated penalty decays at a rate
 that causes its value to be reduced by half after each half-life
 period.

2.2.3. Reuse Threshold

 If, after one or more half-life periods, the accumulated penalty
 decreases below the reuse threshold and the underlying interface link
 state is up then the interface is taken out of suppressed state and
 is allowed to go up.

2.2.4. Maximum Suppress Time

 The maximum suppress time represents the maximum amount of time an
 interface can remain dampened when a new penalty is assigned to an
 interface. The default of the maximum suppress timer is four times
 the half-life period. The maximum value of the accumulated penalty
 is calculated using the maximum suppress time, reuse threshold and
 half-life period.

2.3. Encapsulation

 The encapsulation container holds a choice node that is to be
 augmented with datalink layer specific encapsulations, such as HDLC,
 PPP, or sub-interface 802.1Q tag match encapsulations. The use of a
 choice statement ensures that an interface can only have a single
 datalink layer protocol configured.

 The different encapsulations themselves are defined in separate YANG
 modules defined in other documents that augment the encapsulation
 choice statement. For example the Ethernet specific basic ’dot1q-
 vlan’ encapsulation is defined in ietf-if-l3-vlan.yang and the
 ’flexible’ encapsulation is defined in ietf-flexible-
 encapsulation.yang, both modules from
 [I-D.ietf-netmod-sub-intf-vlan-model].

Wilton & Mansfield Expires 7 September 2023 [Page 7]

Internet-Draft Interface Extensions YANG March 2023

2.4. Loopback

 The loopback configuration leaf allows any physical interface to be
 configured to be in one of the possible following physical loopback
 modes, i.e. internal loopback, line loopback, or use of an external
 loopback connector. The use of YANG identities allows for the model
 to be extended with other modes of loopback if required.

 The following loopback modes are defined:

 * Internal loopback - All egress traffic on the interface is
 internally looped back within the interface to be received on the
 ingress path.

 * Line loopback - All ingress traffic received on the interface is
 internally looped back within the interface to the egress path.

 * Loopback Connector - The interface has a physical loopback
 connector attached that loops all egress traffic back into the
 interface’s ingress path, with equivalent semantics to internal
 loopback.

2.5. Maximum frame size

 A maximum frame size configuration leaf (max-frame-size) is provided
 to specify the maximum size of a layer 2 frame that may be
 transmitted or received on an interface. The value includes the
 overhead of any layer 2 header, the maximum length of the payload,
 and any frame check sequence (FCS) bytes. If configured, the max-
 frame-size leaf on an interface also restricts the max-frame-size of
 any child sub-interfaces, and the available MTU for protocols.

2.6. Sub-interface

 The sub-interface feature specifies the minimal leaves required to
 define a child interface that is parented to another interface.

 A sub-interface is a logical interface that handles a subset of the
 traffic on the parent interface. Separate configuration leaves are
 used to classify the subset of ingress traffic received on the parent
 interface to be processed in the context of a given sub-interface.
 All egress traffic processed on a sub-interface is given to the
 parent interface for transmission. Otherwise, a sub-interface is
 like any other interface in /if:interfaces and supports the standard
 interface features and configuration.

Wilton & Mansfield Expires 7 September 2023 [Page 8]

Internet-Draft Interface Extensions YANG March 2023

 For some vendor specific interface naming conventions the name of the
 child interface is sufficient to determine the parent interface,
 which implies that the child interface can never be reparented to a
 different parent interface after it has been created without deleting
 the existing sub-interface and recreating a new sub-interface. Even
 in this case it is useful to have a well-defined leaf to cleanly
 identify the parent interface.

 The model also allows for arbitrarily named sub-interfaces by having
 an explicit parent-interface leaf define the child -> parent
 relationship. In this naming scenario it is also possible for
 implementations to allow for logical interfaces to be reparented to
 new parent interfaces without needing the sub-interface to be
 destroyed and recreated.

2.7. Forwarding Mode

 The forwarding mode leaf provides additional information as to what
 mode or layer an interface is logically operating and forwarding
 traffic at. The implication of this leaf is that for traffic
 forwarded at a given layer that any headers for lower layers are
 stripped off before the packet is forwarded at the given layer.
 Conversely, on egress any lower layer headers must be added to the
 packet before it is transmitted out of the interface.

 The following forwarding modes are defined:

 * Physical - Traffic is being forwarded at the physical layer. This
 includes DWDM or OTN based switching.

 * Data-link - Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.

 * Network - Network layer based forwarding, such as IP, MPLS, or
 L3VPNs.

3. Interfaces Ethernet-Like Module

 The Interfaces Ethernet-Like Module is a small module that contains
 all configuration and operational data that is common across
 interface types that use Ethernet framing as their datalink layer
 encapsulation.

 This module currently contains leaves for the configuration and
 reporting of the operational MAC address and the burnt-in MAC address
 (BIA) associated with any interface using Ethernet framing.

 The "ietf-if-ethernet-like" YANG module has the following structure:

Wilton & Mansfield Expires 7 September 2023 [Page 9]

Internet-Draft Interface Extensions YANG March 2023

 module: ietf-if-ethernet-like
 augment /if:interfaces/if:interface:
 +--rw ethernet-like
 +--rw mac-address? yang:mac-address
 | {configurable-mac-address}?
 +--ro bia-mac-address? yang:mac-address
 augment /if:interfaces/if:interface/if:statistics:
 +--ro in-drop-unknown-dest-mac-pkts? yang:counter64
 +--ro in-discard-overflows? yang:counter64

4. Interface Extensions YANG Module

 This YANG module augments the interface container defined in
 [RFC8343]. It also contains references to [RFC6991] and [RFC7224].

 <CODE BEGINS> file "ietf-if-extensions@2023-01-26.yang"
 module ietf-if-extensions {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-if-extensions";

 prefix if-ext;

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton

Wilton & Mansfield Expires 7 September 2023 [Page 10]

Internet-Draft Interface Extensions YANG March 2023

 <mailto:rwilton@cisco.com>";

 description
 "This module contains common definitions for extending the IETF
 interface YANG model (RFC 8343) with common configurable layer 2
 properties.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2023-01-26 {
 description
 "Initial revision.";

 reference
 "RFC XXXX, Common Interface Extension YANG Data Models";
 }

 feature link-flap-suppression {
 description
 "This feature indicates that configurable interface link
 delay is supported, which is a feature is used to limit the
 propagation of very short interface link state flaps.";
 reference "RFC XXXX, Section 2.1 Link Flap Suppression";
 }

 feature dampening {
 description
 "This feature indicates that the device supports interface
 dampening, which is a feature that is used to limit the
 propagation of interface link state flaps over longer

Wilton & Mansfield Expires 7 September 2023 [Page 11]

Internet-Draft Interface Extensions YANG March 2023

 periods.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 feature loopback {
 description
 "This feature indicates that configurable interface loopback is
 supported.";
 reference "RFC XXXX, Section 2.4 Loopback";
 }

 feature max-frame-size {
 description
 "This feature indicates that the device supports configuring or
 reporting the maximum frame size on interfaces.";
 reference "RFC XXXX, Section 2.5 Maximum Frame Size";
 }

 feature sub-interfaces {
 description
 "This feature indicates that the device supports the
 instantiation of sub-interfaces. Sub-interfaces are defined
 as logical child interfaces that allow features and forwarding
 decisions to be applied to a subset of the traffic processed
 on the specified parent interface.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }

 /*
 * Define common identities to help allow interface types to be
 * assigned properties.
 */
 identity sub-interface {
 description
 "Base type for generic sub-interfaces.

 New or custom interface types can derive from this type to
 inherit generic sub-interface configuration.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }

 identity ethSubInterface{
 base ianaift:l2vlan;
 base sub-interface;

 description
 "This identity represents the child sub-interface of any
 interface types that uses Ethernet framing (with or without

Wilton & Mansfield Expires 7 September 2023 [Page 12]

Internet-Draft Interface Extensions YANG March 2023

 802.1Q tagging).";
 }

 identity loopback {
 description "Base identity for interface loopback options";
 reference "RFC XXXX, Section 2.4";
 }
 identity internal {
 base loopback;
 description
 "All egress traffic on the interface is internally looped back
 within the interface to be received on the ingress path.";
 reference "RFC XXXX, Section 2.4";
 }
 identity line {
 base loopback;
 description
 "All ingress traffic received on the interface is internally
 looped back within the interface to the egress path.";
 reference "RFC XXXX, Section 2.4";
 }
 identity connector {
 base loopback;
 description
 "The interface has a physical loopback connector attached that
 loops all egress traffic back into the interface’s ingress
 path, with equivalent semantics to loopback internal.";
 reference "RFC XXXX, Section 2.4";
 }

 identity forwarding-mode {
 description "Base identity for forwarding-mode options.";
 reference "RFC XXXX, Section 2.7";
 }
 identity physical {
 base forwarding-mode;
 description
 "Physical layer forwarding. This includes DWDM or OTN based
 optical switching.";
 reference "RFC XXXX, Section 2.7";
 }
 identity data-link {
 base forwarding-mode;
 description
 "Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.";
 reference "RFC XXXX, Section 2.7";

Wilton & Mansfield Expires 7 September 2023 [Page 13]

Internet-Draft Interface Extensions YANG March 2023

 }
 identity network {
 base forwarding-mode;
 description
 "Network layer based forwarding, such as IP, MPLS, or L3VPNs.";
 reference "RFC XXXX, Section 2.7";
 }

 /*
 * Augments the IETF interfaces model with leaves to configure
 * and monitor link-flap-suppression on an interface.
 */
 augment "/if:interfaces/if:interface" {
 description
 "Augments the IETF interface model with optional common
 interface level commands that are not formally covered by any
 specific standard.";

 /*
 * Defines standard YANG for the Link Flap Suppression feature.
 */
 container link-flap-suppression {
 if-feature "link-flap-suppression";
 description
 "Holds link flap related feature configuration.";
 leaf down {
 type uint32;
 units milliseconds;
 description
 "Delays the propagation of a ’loss of carrier signal’ event
 that would cause the interface state to go down, i.e. the
 command allows short link flaps to be suppressed. The
 configured value indicates the minimum time interval (in
 milliseconds) that the link signal must be continuously
 down before the interface state is brought down. If not
 configured, the behavior on loss of link signal is
 vendor/interface specific, but with the general
 expectation that there should be little or no delay.";
 }
 leaf up {
 type uint32;
 units milliseconds;
 description
 "Defines the minimum time interval (in milliseconds) that
 the link signal must be continuously present and error
 free before the interface state is allowed to transition
 from down to up. If not configured, the behavior is

Wilton & Mansfield Expires 7 September 2023 [Page 14]

Internet-Draft Interface Extensions YANG March 2023

 vendor/interface specific, but with the general
 expectation that sufficient default delay should be used
 to ensure that the interface is stable when enabled before
 being reported as being up. Configured values that are
 too low for the hardware capabilties may be rejected.";
 }
 leaf carrier-transitions {
 type yang:counter64;
 units transitions;
 config false;
 description
 "Defines the number of times the underlying link state
 has changed to, or from, state up. This counter should be
 incremented even if the high layer interface state changes
 are being suppressed by a running link flap suppression
 timer.";
 }
 leaf timer-running {
 type enumeration {
 enum none {
 description
 "No link flap suppression timer is running.";
 }
 enum up {
 description
 "link-flap-suppression up timer is running. The
 underlying link state is up, but interface state is
 not reported as up.";
 }
 enum down {
 description
 "link-flap-suppression down timer is running.
 Interface state is reported as up, but the underlying
 link state is actually down.";
 }
 }
 config false;
 description
 "Reports whether a link flap suppression timer is actively
 running, in which case the interface state does not match
 the underlying link state.";
 }

 reference "RFC XXXX, Section 2.1 Link Flap Suppression";
 }

 /*
 * Augments the IETF interfaces model with a container to hold

Wilton & Mansfield Expires 7 September 2023 [Page 15]

Internet-Draft Interface Extensions YANG March 2023

 * generic interface dampening
 */
 container dampening {
 if-feature "dampening";
 presence
 "Enable interface link flap dampening with default settings
 (that are vendor/device specific).";
 description
 "Interface dampening limits the propagation of interface link
 state flaps over longer periods.";
 reference "RFC XXXX, Section 2.2 Dampening";

 leaf half-life {
 type uint32;
 units seconds;
 description
 "The time (in seconds) after which a penalty would be half
 its original value. Once the interface has been assigned
 a penalty, the penalty is decreased at a decay rate
 equivalent to the half-life. For some devices, the
 allowed values may be restricted to particular multiples
 of seconds. The default value is vendor/device
 specific.";
 reference "RFC XXXX, Section 2.3.2 Half-Life Period";
 }

 leaf reuse {
 type uint32;
 description
 "Penalty value below which a stable interface is
 unsuppressed (i.e. brought up) (no units). The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXXX, Section 2.2.3 Reuse Threshold";
 }

 leaf suppress {
 type uint32;
 description
 "Limit at which an interface is suppressed (i.e. held down)
 when its penalty exceeds that limit (no units). The value
 must be greater than the reuse threshold. The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXXX, Section 2.2.1 Suppress Threshold";
 }

 leaf max-suppress-time {

Wilton & Mansfield Expires 7 September 2023 [Page 16]

Internet-Draft Interface Extensions YANG March 2023

 type uint32;
 units seconds;
 description
 "Maximum time (in seconds) that an interface can be
 suppressed before being unsuppressed if no further link
 up->down state change penalties have been applied. This
 value effectively acts as a ceiling that the penalty value
 cannot exceed. The default value is vendor/device
 specific.";
 reference "RFC XXXX, Section 2.2.4 Maximum Suppress Time";
 }

 leaf penalty {
 type uint32;
 config false;
 description
 "The current penalty value for this interface. When the
 penalty value exceeds the ’suppress’ leaf then the
 interface is suppressed (i.e. held down).";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 leaf suppressed {
 type boolean;
 config false;
 description
 "Represents whether the interface is suppressed (i.e. held
 down) because the ’penalty’ leaf value exceeds the
 ’suppress’ leaf.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 leaf time-remaining {
 when ’../suppressed = "true"’ {
 description
 "Only suppressed interfaces have a time remaining.";
 }
 type uint32;
 units seconds;
 config false;
 description
 "For a suppressed interface, this leaf represents how long
 (in seconds) that the interface will remain suppressed
 before it is allowed to go back up again.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }
 }

Wilton & Mansfield Expires 7 September 2023 [Page 17]

Internet-Draft Interface Extensions YANG March 2023

 /*
 * Various types of interfaces support a configurable layer 2
 * encapsulation, any that are supported by YANG should be
 * listed here.
 *
 * Different encapsulations can hook into the common encaps-type
 * choice statement.
 */
 container encapsulation {
 when
 "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:pos’) or
 derived-from-or-self(../if:type,
 ’ianaift:atmSubInterface’) or
 derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(../if:type, ’ethSubInterface’)" {

 description
 "All interface types that can have a configurable L2
 encapsulation.";
 }

 description
 "Holds the OSI layer 2 encapsulation associated with an
 interface.";
 choice encaps-type {
 description
 "Extensible choice of layer 2 encapsulations";
 reference "RFC XXXX, Section 2.3 Encapsulation";
 }
 }

 /*
 * Various types of interfaces support loopback configuration,
 * any that are supported by YANG should be listed here.
 */
 leaf loopback {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type, ’ianaift:sonet’) or
 derived-from-or-self(../if:type, ’ianaift:atm’) or
 derived-from-or-self(../if:type, ’ianaift:otnOtu’)" {
 description
 "All interface types that support loopback configuration.";
 }

Wilton & Mansfield Expires 7 September 2023 [Page 18]

Internet-Draft Interface Extensions YANG March 2023

 if-feature "loopback";
 type identityref {
 base loopback;
 }
 description "Enables traffic loopback.";
 reference "RFC XXXX, Section 2.4 Loopback";
 }

 /*
 * Allows the maximum frame size to be configured or reported.
 */
 leaf max-frame-size {
 if-feature "max-frame-size";
 type uint32 {
 range "64 .. max";
 }
 description
 "The maximum size of layer 2 frames that may be transmitted
 or received on the interface (including any frame header,
 maximum frame payload size, and frame checksum sequence).

 If configured, the max-frame-size also limits the maximum
 frame size of any child sub-interfaces. The MTU available
 to higher layer protocols is restricted to the maximum frame
 payload size, and MAY be further restricted by explicit
 layer 3 or protocol specific MTU configuration.";

 reference "RFC XXXX, Section 2.5 Maximum Frame Size";
 }

 /*
 * Augments the IETF interfaces model with a leaf that indicates
 * which mode, or layer, is being used to forward the traffic.
 */
 leaf forwarding-mode {
 type identityref {
 base forwarding-mode;
 }
 config false;

 description
 "The forwarding mode that the interface is operating in.";
 reference "RFC XXXX, Section 2.7 Forwarding Mode";
 }
 }

 /*
 * Add generic support for sub-interfaces.

Wilton & Mansfield Expires 7 September 2023 [Page 19]

Internet-Draft Interface Extensions YANG March 2023

 *
 * This should be extended to cover all interface types that are
 * child interfaces of other interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from(if:type, ’sub-interface’) or
 derived-from-or-self(if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(if:type, ’ianaift:atmSubInterface’) or
 derived-from-or-self(if:type, ’ianaift:frameRelay’)" {
 description
 "Any ianaift:types that explicitly represent sub-interfaces
 or any types that derive from the sub-interface identity.";
 }
 if-feature "sub-interfaces";

 description
 "Adds a parent interface field to interfaces that model
 sub-interfaces.";
 leaf parent-interface {

 type if:interface-ref;

 mandatory true;
 description
 "This is the reference to the parent interface of this
 sub-interface.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }
 }

 /*
 * Add discard counter for unknown sub-interface encapsulation
 */
 augment "/if:interfaces/if:interface/if:statistics" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
 description
 "Applies to interfaces that can demultiplex ingress frames to
 sub-interfaces.";
 }
 if-feature "sub-interfaces";

 description
 "Augment the interface model statistics with a sub-interface
 demux discard counter.";

Wilton & Mansfield Expires 7 September 2023 [Page 20]

Internet-Draft Interface Extensions YANG March 2023

 leaf in-discard-unknown-encaps {
 type yang:counter64;
 units frames;
 description
 "A count of the number of frames that were well formed, but
 otherwise discarded because their encapsulation does not
 classify the frame to the interface or any child
 sub-interface. E.g., a frame might be discarded because the
 it has an unknown VLAN Id, or does not have a VLAN Id when
 one is expected.

 For consistency, frames counted against this counter are
 also counted against the IETF interfaces statistics. In
 particular, they are included in in-octets and in-discards,
 but are not included in in-unicast-pkts, in-multicast-pkts
 or in-broadcast-pkts, because they are not delivered to a
 higher layer.

 Discontinuities in the values of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of the ’discontinuity-time’
 leaf defined in the ietf-interfaces YANG module
 (RFC 8343).";
 }
 }
 }
 <CODE ENDS>

5. Interfaces Ethernet-Like YANG Module

 This YANG module augments the interface container defined in RFC 8343
 [RFC8343] for Ethernet-like interfaces. This includes Ethernet
 interfaces, 802.3 LAG (802.1AX) interfaces, Switch Virtual
 interfaces, and Pseudo-Wire Head-End interfaces. It also contains
 references to [RFC6991], [RFC7224], and [IEEE_802.3.2_2019].

 <CODE BEGINS> file "ietf-if-ethernet-like@2023-01-26.yang"
 module ietf-if-ethernet-like {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like";

 prefix ethlike;

 import ietf-interfaces {
 prefix if;
 reference

Wilton & Mansfield Expires 7 September 2023 [Page 21]

Internet-Draft Interface Extensions YANG March 2023

 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module contains YANG definitions for configuration for
 ’Ethernet-like’ interfaces. It is applicable to all interface
 types that use Ethernet framing and expose an Ethernet MAC
 layer, and includes such interfaces as physical Ethernet
 interfaces, Ethernet LAG interfaces and VLAN sub-interfaces.

 Additional interface configuration and counters for physical
 Ethernet interfaces are defined in
 ieee802-ethernet-interface.yang, as part of IEEE Std
 802.3.2-2019.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

Wilton & Mansfield Expires 7 September 2023 [Page 22]

Internet-Draft Interface Extensions YANG March 2023

 revision 2023-01-26 {
 description "Initial revision.";

 reference
 "RFC XXXX, Common Interface Extension YANG Data Models";
 }

 feature configurable-mac-address {
 description
 "This feature indicates that MAC addresses on Ethernet-like
 interfaces can be configured.";
 reference
 "RFC XXXX, Section 3, Interfaces Ethernet-Like Module";
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type, ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(if:type, ’ianaift:ieee8023adLag’) or
 derived-from-or-self(if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model with parameters for all
 Ethernet-like interfaces.";

 container ethernet-like {
 description
 "Contains parameters for interfaces that use Ethernet framing
 and expose an Ethernet MAC layer.";

 leaf mac-address {
 if-feature "configurable-mac-address";
 type yang:mac-address;
 description
 "The MAC address of the interface. The operational value
 matches the /if:interfaces/if:interface/if:phys-address
 leaf defined in ietf-interface.yang.";
 }

 leaf bia-mac-address {
 type yang:mac-address;
 config false;
 description
 "The ’burnt-in’ MAC address. I.e the default MAC address

Wilton & Mansfield Expires 7 September 2023 [Page 23]

Internet-Draft Interface Extensions YANG March 2023

 assigned to the interface if no MAC address has been
 explicitly configured on it.";
 }
 }
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface/if:statistics" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model statistics with additional
 counters related to Ethernet-like interfaces.";

 leaf in-discard-unknown-dest-mac-pkts {
 type yang:counter64;
 units frames;
 description
 "A count of the number of frames that were well formed, but
 otherwise discarded because the destination MAC address did
 not pass any ingress destination MAC address filter.

 For consistency, frames counted against this counter are
 also counted against the IETF interfaces statistics. In
 particular, they are included in in-octets and in-discards,
 but are not included in in-unicast-pkts, in-multicast-pkts
 or in-broadcast-pkts, because they are not delivered to a
 higher layer.

 Discontinuities in the values of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of the ’discontinuity-time’
 leaf defined in the ietf-interfaces YANG module
 (RFC 8343).";
 }

 leaf in-discard-overflows {
 type yang:counter64;
 units frames;
 description

Wilton & Mansfield Expires 7 September 2023 [Page 24]

Internet-Draft Interface Extensions YANG March 2023

 "A count of the number of frames discarded because of
 overflows.";
 }
 }
 }
 <CODE ENDS>

6. Examples

 The following sections give some examples of how different parts of
 the YANG modules could be used. Examples are not given for the more
 trivial configuration, or for sub-interfaces, for which examples are
 contained in [I-D.ietf-netmod-sub-intf-vlan-model].

6.1. Carrier delay configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without any link flap suppression
 configuration. The down leaf value of 0 indicates that link down
 events as always propagated to high layers immediately, but an up
 leaf value of 50 indicates that the interface must be up and stable
 for at least 50 msecs before the interface is reported as being up to
 the high layers.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:link-flap-suppression>
 <if-ext:down>0</if-ext:down>
 <if-ext:up>50</if-ext:up>
 </if-ext:link-flap-suppression>
 </interface>
 </interfaces>

Wilton & Mansfield Expires 7 September 2023 [Page 25]

Internet-Draft Interface Extensions YANG March 2023

 The following example shows explicit link flap suppression delay up
 and down values have been configured. A 50 msec down leaf value has
 been used to potentially allow optical protection to recover the link
 before the higher layer protocol state is flapped. A 1 second (1000
 milliseconds) up leaf value has been used to ensure that the link is
 always reasonably stable before allowing traffic to be carried over
 it. This also has the benefit of greatly reducing the rate at which
 higher layer protocol state flaps could occur.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:link-flap-suppression>
 <if-ext:down>50</if-ext:down>
 <if-ext:up>1000</if-ext:up>
 </if-ext:link-flap-suppression>
 </interface>
 </interfaces>
 </config>

6.2. Dampening configuration

 The following example shows what the operational state datastore may
 look like for an interface configured with interface dampening. The
 ’suppressed’ leaf indicates that the interface is currently
 suppressed (i.e. down) because the ’penalty’ is greater than the
 ’suppress’ leaf threshold. The ’time-remaining’ leaf indicates that
 the interface will remain suppressed for another 103 seconds before
 the ’penalty’ is below the ’reuse’ leaf value and the interface is
 allowed to go back up again.

Wilton & Mansfield Expires 7 September 2023 [Page 26]

Internet-Draft Interface Extensions YANG March 2023

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <oper-status>down</oper-status>
 <dampening
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <half-life>60</half-life>
 <reuse>750</reuse>
 <suppress>2000</suppress>
 <max-suppress-time>240</max-suppress-time>
 <penalty>2480</penalty>
 <suppressed>true</suppressed>
 <time-remaining>103</time-remaining>
 </dampening>
 </interface>
 </interfaces>

6.3. MAC address configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without an explicit MAC address
 configured. The mac-address leaf always reports the actual
 operational MAC address that is in use. The bia-mac-address leaf
 always reports the default MAC address assigned to the hardware.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:30</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:30</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton & Mansfield Expires 7 September 2023 [Page 27]

Internet-Draft Interface Extensions YANG March 2023

 The following example shows the intended configuration for interface
 eth0 with an explicit MAC address configured.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 </ethernet-like>
 </interface>
 </interfaces>
 </config>

 After the MAC address configuration has been successfully applied,
 the operational state datastore reporting the interface MAC address
 properties would contain the following, with the mac-address leaf
 updated to match the configured value, but the bia-mac-address leaf
 retaining the same value - which should never change.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:35</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton & Mansfield Expires 7 September 2023 [Page 28]

Internet-Draft Interface Extensions YANG March 2023

7. Acknowledgements

 The authors wish to thank Eric Gray, Ing-Wher Chen, Jon Culver,
 Juergen Schoenwaelder, Ladislav Lhotka, Lou Berger, Mahesh
 Jethanandani, Martin Bjorklund, Michael Zitao, Neil Ketley, Qin Wu,
 William Lupton, Xufeng Liu, Andy Bierman, and Vladimir Vassilev for
 their helpful comments contributing to this document.

8. IANA Considerations

8.1. YANG Module Registrations

 The following YANG modules are requested to be registered in the IANA
 "YANG Module Names" [RFC6020] registry:

 The ietf-if-extensions module:

 Name: ietf-if-extensions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-extensions

 Prefix: if-ext

 Reference: [RFCXXXX]

 The ietf-if-ethernet-like module:

 Name: ietf-if-ethernet-like

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

 Prefix: ethlike

 Reference: [RFCXXXX]

 This document registers two URIs in the "IETF XML Registry"
 [RFC3688]. Following the format in RFC 3688, the following
 registrations have been made.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-extensions

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

 Registrant Contact: The IESG.

Wilton & Mansfield Expires 7 September 2023 [Page 29]

Internet-Draft Interface Extensions YANG March 2023

 XML: N/A, the requested URI is an XML namespace.

9. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol RFC 6241 [RFC6241]. The lowest NETCONF layer is
 the secure transport layer and the mandatory to implement secure
 transport is SSH RFC 6242 [RFC6242]. The NETCONF access control
 model RFC 8341 [RFC8341] provides the means to restrict access for
 particular NETCONF users to a pre-configured subset of all available
 NETCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

9.1. ietf-if-extensions.yang

 The ietf-if-extensions YANG module contains various configuration
 leaves that affect the behavior of interfaces. Modifying these
 leaves can cause an interface to go down, or become unreliable, or to
 drop traffic forwarded over it. More specific details of the
 possible failure modes are given below.

 The following leaf could cause the interface to go down and stop
 processing any ingress or egress traffic on the interface. It could
 also cause broadcast traffic storms.

 * /if:interfaces/if:interface/loopback

 The following leaves could cause instabilities at the interface link
 layer, and cause unwanted higher layer routing path changes if the
 leaves are modified, although they would generally only affect a
 device that had some underlying link stability issues:

 * /if:interfaces/if:interface/link-flap-suppression/down

 * /if:interfaces/if:interface/link-flap-suppression/up

 * /if:interfaces/if:interface/dampening/half-life

 * /if:interfaces/if:interface/dampening/reuse

 * /if:interfaces/if:interface/dampening/suppress

Wilton & Mansfield Expires 7 September 2023 [Page 30]

Internet-Draft Interface Extensions YANG March 2023

 * /if:interfaces/if:interface/dampening/max-suppress-time

 The following leaves could cause traffic loss on the interface
 because the received or transmitted frames do not comply with the
 frame matching criteria on the interface and hence would be dropped:

 * /if:interfaces/if:interface/encapsulation

 * /if:interfaces/if:interface/max-frame-size

 * /if:interfaces/if:interface/forwarding-mode

 Changing the parent-interface leaf could cause all traffic on the
 affected interface to be dropped. The affected leaf is:

 * /if:interfaces/if:interface/parent-interface

9.2. ietf-if-ethernet-like.yang

 Generally, the configuration nodes in the ietf-if-ethernet-like YANG
 module are concerned with configuration that is common across all
 types of Ethernet-like interfaces. The module currently only
 contains a node for configuring the operational MAC address to use on
 an interface. Adding/modifying/deleting this leaf has the potential
 risk of causing protocol instability, excessive protocol traffic, and
 general traffic loss, particularly if the configuration change caused
 a duplicate MAC address to be present on the local network. The
 following leaf is affected:

 * interfaces/interface/ethernet-like/mac-address

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

Wilton & Mansfield Expires 7 September 2023 [Page 31]

Internet-Draft Interface Extensions YANG March 2023

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

10.2. Informative References

 [I-D.ietf-netmod-sub-intf-vlan-model]
 Wilton, R. and S. Mansfield, "Sub-interface VLAN YANG Data
 Models", Work in Progress, Internet-Draft, draft-ietf-
 netmod-sub-intf-vlan-model-08, 26 January 2023,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-sub-
 intf-vlan-model-08.txt>.

 [IEEE_802.3.2_2019]
 IEEE, "IEEE Standard for Ethernet - YANG Data Model
 Definitions", IEEE 802-3,
 DOI 10.1109/IEEESTD.2019.8737019, 14 June 2019,
 <https://ieeexplore.ieee.org/document/8737019>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/info/rfc7224>.

Wilton & Mansfield Expires 7 September 2023 [Page 32]

Internet-Draft Interface Extensions YANG March 2023

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

Authors’ Addresses

 Robert Wilton
 Cisco Systems
 Email: rwilton@cisco.com

 Scott Mansfield
 Ericsson
 Email: scott.mansfield@ericsson.com

Wilton & Mansfield Expires 7 September 2023 [Page 33]

Internet Engineering Task Force R.G. Wilton, Ed.
Internet-Draft Cisco Systems
Intended status: Standards Track S. Mansfield, Ed.
Expires: 31 July 2023 Ericsson
 27 January 2023

 Sub-interface VLAN YANG Data Models
 draft-ietf-netmod-sub-intf-vlan-model-08

Abstract

 This document defines YANG modules to add support for classifying
 traffic received on interfaces as Ethernet/VLAN framed packets to
 sub-interfaces based on the fields available in the Ethernet/VLAN
 frame headers. These modules allow configuration of Layer 3 and
 Layer 2 sub-interfaces (e.g. L2VPN attachment circuits) that can
 interoperate with IETF based forwarding protocols; such as IP and
 L3VPN services; or L2VPN services like VPWS, VPLS, and EVPN. The
 sub-interfaces also interoperate with VLAN tagged traffic orignating
 from an IEEE 802.1Q compliant bridge.

 The model differs from an IEEE 802.1Q bridge model in that the
 configuration is interface/sub-interface based as opposed to being
 based on membership of an 802.1Q VLAN bridge.

 The YANG data models in this document conforms to the Network
 Management Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 31 July 2023.

Wilton & Mansfield Expires 31 July 2023 [Page 1]

Internet-Draft Sub-interface VLAN YANG January 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 1.2. Tree Diagrams . 4
 2. Objectives . 4
 2.1. Interoperability with IEEE 802.1Q compliant bridges . . . 4
 3. Interface VLAN Encapsulation Model 4
 4. Interface Flexible Encapsulation Model 5
 5. VLAN Encapsulation YANG Module 7
 6. Flexible Encapsulation YANG Module 11
 7. Examples . 21
 7.1. Layer 3 sub-interfaces with IPv6 21
 7.2. Layer 2 sub-interfaces with L2VPN 23
 8. Acknowledgements . 26
 9. IANA Considerations . 26
 9.1. YANG Module Registrations 26
 10. Security Considerations 27
 10.1. ietf-if-vlan-encapsulation.yang 27
 10.2. ietf-if-flexible-encapsulation.yang 28
 11. References . 29
 11.1. Normative References 29
 11.2. Informative References 30
 Appendix A. Comparison with the IEEE 802.1Q Configuration
 Model . 32
 A.1. Sub-interface based configuration model overview 32
 A.2. IEEE 802.1Q Bridge Configuration Model Overview 33
 A.3. Possible Overlap Between the Two Models 33
 Authors’ Addresses . 34

Wilton & Mansfield Expires 31 July 2023 [Page 2]

Internet-Draft Sub-interface VLAN YANG January 2023

1. Introduction

 This document defines two YANG [RFC7950] modules that augment the
 encapsulation choice YANG element defined in Interface Extensions
 YANG [I-D.ietf-netmod-intf-ext-yang] and the generic interfaces data
 model defined in [RFC8343]. The two modules provide configuration
 nodes to support classification of Ethernet/VLAN traffic to sub-
 interfaces, that can have interface based feature and service
 configuration applied to them.

 The purpose of these models is to allow IETF defined forwarding
 protocols, for example, IPv6 [RFC8200], Ethernet Pseudo Wires
 [RFC4448] and VPLS [RFC4761] [RFC4762], when configured via
 appropriate YANG data models [RFC8344] [I-D.ietf-bess-l2vpn-yang], to
 interoperate with VLAN tagged traffic received from an IEEE 802.1Q
 compliant bridge.

 In the case of layer 2 Ethernet services, the flexible encapsulation
 module also supports flexible rewriting of the VLAN tags contained in
 the frame header.

 For reference, a comparison between the sub-interface based YANG
 model documented in this draft and an IEEE 802.1Q bridge model is
 described in Appendix A.

 In summary, the YANG modules defined in this internet draft are:

 ietf-if-vlan-encapsulation.yang - Defines the model for basic
 classification of VLAN tagged traffic, normally to L3 packet
 forwarding services

 ietf-if-flexible-encapsulation.yang - Defines the model for
 flexible classification of Ethernet/VLAN traffic, normally to L2
 frame forwarding services

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The term ’sub-interface’ is defined in section 2.6 of Interface
 Extensions YANG [I-D.ietf-netmod-intf-ext-yang].

Wilton & Mansfield Expires 31 July 2023 [Page 3]

Internet-Draft Sub-interface VLAN YANG January 2023

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Objectives

 The primary aim of the YANG modules contained in this draft is to
 provide the core model that is required to implement VLAN transport
 services on router based devices that is fully compatible with IEEE
 802.1Q compliant bridges.

 A secondary aim is for the modules to be structured in such a way
 that they can be cleanly extended in future.

2.1. Interoperability with IEEE 802.1Q compliant bridges

 The modules defined in this document are designed to fully
 interoperate with IEEE 802.1Q compliant bridges. In particular, the
 models are restricted to only matching, adding, or rewriting the
 802.1Q VLAN tags in frames in ways that are compatible with IEEE
 802.1Q compliant bridges.

3. Interface VLAN Encapsulation Model

 The Interface VLAN encapsulation model provides appropriate leaves
 for termination of an 802.1Q VLAN tagged segment to a sub-interface
 (or interface) based L3 service, such as IP. It allows for
 termination of traffic with one or two 802.1Q VLAN tags.

 The L3 service must be configured via a separate YANG data model,
 e.g., [RFC8344]. A short example of configuring 802.1Q VLAN sub-
 interfaces with IP using YANG is provided in Section 7.1.

 The "ietf-if-vlan-encapsulation" YANG module has the following
 structure:

Wilton & Mansfield Expires 31 July 2023 [Page 4]

Internet-Draft Sub-interface VLAN YANG January 2023

 module: ietf-if-vlan-encapsulation
 augment /if:interfaces/if:interface/if-ext:encapsulation
 /if-ext:encaps-type:
 +--:(dot1q-vlan)
 +--rw dot1q-vlan
 +--rw outer-tag
 | +--rw tag-type dot1q-tag-type
 | +--rw vlan-id vlanid
 +--rw second-tag!
 +--rw tag-type dot1q-tag-type
 +--rw vlan-id vlanid

4. Interface Flexible Encapsulation Model

 The Interface Flexible Encapsulation model is designed to allow for
 the flexible provisioning of layer 2 services. It provides the
 capability to classify and demultiplex Ethernet/VLAN frames received
 on an Ethernet trunk interface to sub-interfaces based on the fields
 available in the layer 2 headers. Once classified to sub-interfaces,
 it provides the capability to selectively modify fields within the
 layer 2 frame header before the frame is handed off to the
 appropriate forwarding code for further handling. The forwarding
 instance, e.g., L2VPN, VPLS, etc., is configured using a separate
 YANG configuration model defined elsewhere, e.g.,
 [I-D.ietf-bess-l2vpn-yang].

 The model supports a common core set of layer 2 header matches based
 on the 802.1Q tag type and VLAN Ids contained within the header up to
 a tag stack depth of two tags.

 The model supports flexible rewrites of the layer 2 frame header for
 data frames as they are processed on the interface. It defines a set
 of standard tag manipulations that allow for the insertion, removal,
 or rewrite of one or two 802.1Q VLAN tags. The expectation is that
 manipulations are generally implemented in a symmetrical fashion,
 i.e. if a manipulation is performed on ingress traffic on an
 interface then the reverse manipulation is always performed on egress
 traffic out of the same interface. However, the model also allows
 for asymmetrical rewrites, which may be required to implement some
 forwarding models (such as E-Tree).

 The model also allows a flexible encapsulation and rewrite to be
 configured directly on an Ethernet or LAG interface without
 configuring separate child sub-interfaces. Ingress frames that do
 not match the encapsulation are dropped. Egress frames MUST conform
 to the encapsulation.

Wilton & Mansfield Expires 31 July 2023 [Page 5]

Internet-Draft Sub-interface VLAN YANG January 2023

 The final aim for the model design is for it to be cleanly extensible
 to add in additional match and rewrite criteria of the layer 2
 header, such as matching on the source or destination MAC address,
 PCP or DEI fields in the 802.1Q tags, or the EtherType of the frame
 payload. Rewrites can also be extended to allow for modification of
 other fields within the layer 2 frame header.

 A short example of configuring 802.1Q VLAN sub-interfaces with L2VPN
 using YANG is provided in Section 7.2.

 The "ietf-if-flexible-encapsulation" YANG module has the following
 structure:

 module: ietf-if-flexible-encapsulation
 augment /if:interfaces/if:interface/if-ext:encapsulation
 /if-ext:encaps-type:
 +--:(flexible)
 +--rw flexible
 +--rw match
 | +--rw (match-type)
 | +--:(default)
 | | +--rw default? empty
 | +--:(untagged)
 | | +--rw untagged? empty
 | +--:(dot1q-priority-tagged)
 | | +--rw dot1q-priority-tagged
 | | +--rw tag-type dot1q-types:dot1q-tag-type
 | +--:(dot1q-vlan-tagged)
 | +--rw dot1q-vlan-tagged
 | +--rw outer-tag
 | | +--rw tag-type dot1q-tag-type
 | | +--rw vlan-id union
 | +--rw second-tag!
 | | +--rw tag-type dot1q-tag-type
 | | +--rw vlan-id union
 | +--rw match-exact-tags? empty
 +--rw rewrite {flexible-rewrites}?
 | +--rw (direction)?
 | +--:(symmetrical)
 | | +--rw symmetrical
 | | +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
 | | +--rw pop-tags? uint8
 | | +--rw push-tags!
 | | +--rw outer-tag
 | | | +--rw tag-type dot1q-tag-type
 | | | +--rw vlan-id vlanid
 | | +--rw second-tag!

Wilton & Mansfield Expires 31 July 2023 [Page 6]

Internet-Draft Sub-interface VLAN YANG January 2023

 | | +--rw tag-type dot1q-tag-type
 | | +--rw vlan-id vlanid
 | +--:(asymmetrical) {asymmetric-rewrites}?
 | +--rw ingress
 | | +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
 | | +--rw pop-tags? uint8
 | | +--rw push-tags!
 | | +--rw outer-tag
 | | | +--rw tag-type dot1q-tag-type
 | | | +--rw vlan-id vlanid
 | | +--rw second-tag!
 | | +--rw tag-type dot1q-tag-type
 | | +--rw vlan-id vlanid
 | +--rw egress
 | +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
 | +--rw pop-tags? uint8
 | +--rw push-tags!
 | +--rw outer-tag
 | | +--rw tag-type dot1q-tag-type
 | | +--rw vlan-id vlanid
 | +--rw second-tag!
 | +--rw tag-type dot1q-tag-type
 | +--rw vlan-id vlanid
 +--rw local-traffic-default-encaps!
 +--rw outer-tag
 | +--rw tag-type dot1q-tag-type
 | +--rw vlan-id vlanid
 +--rw second-tag!
 +--rw tag-type dot1q-tag-type
 +--rw vlan-id vlanid

5. VLAN Encapsulation YANG Module

 This YANG module augments the ’encapsulation’ container defined in
 ietf-if-extensions.yang [I-D.ietf-netmod-intf-ext-yang]. It also
 contains references to [RFC8343], [RFC7224], and [IEEE_802.1Q_2022].

 <CODE BEGINS> file "ietf-if-vlan-encapsulation@2023-01-26.yang"
 module ietf-if-vlan-encapsulation {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation";
 prefix if-vlan;

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";

Wilton & Mansfield Expires 31 July 2023 [Page 7]

Internet-Draft Sub-interface VLAN YANG January 2023

 }

 import iana-if-type {
 prefix ianaift;
 reference
 "RFC 7224: IANA Interface Type YANG Module";
 }

 import ieee802-dot1q-types {
 prefix dot1q-types;
 revision-date 2022-01-19;
 reference
 "IEEE Std 802.1Q-2022: IEEE Standard for Local and
 metropolitan area networks -- Bridges and Bridged Networks";
 }

 import ietf-if-extensions {
 prefix if-ext;
 reference
 "RFC XXXX: Common Interface Extension YANG Data Models";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This YANG module models configuration to classify IEEE 802.1Q
 VLAN tagged Ethernet traffic by exactly matching the tag type
 and VLAN identifier of one or two 802.1Q VLAN tags in the frame.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

Wilton & Mansfield Expires 31 July 2023 [Page 8]

Internet-Draft Sub-interface VLAN YANG January 2023

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2023-01-26 {
 description
 "Latest draft revision";
 reference
 "RFC XXXX: Sub-interface VLAN YANG Data Models";
 }

 augment "/if:interfaces/if:interface/if-ext:encapsulation/"
 + "if-ext:encaps-type" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(../if:type,
 ’if-ext:ethSubInterface’)" {
 description
 "Applies only to Ethernet-like interfaces and
 sub-interfaces.";
 }

 description
 "Augment the generic interface encapsulation with basic 802.1Q
 VLAN tag classifications";

 case dot1q-vlan {
 container dot1q-vlan {

 description
 "Classifies 802.1Q VLAN tagged Ethernet frames to a
 sub-interface (or interface) by exactly matching the
 number of tags, tag type(s) and VLAN identifier(s).

 Only frames matching the classification configured on a
 sub-interface/interface are processed on that
 sub-interface/interface.

 Frames that do not match any sub-interface are processed
 directly on the parent interface, if it is associated with

Wilton & Mansfield Expires 31 July 2023 [Page 9]

Internet-Draft Sub-interface VLAN YANG January 2023

 a forwarding instance, otherwise they are dropped.";

 container outer-tag {
 must ’tag-type = "dot1q-types:s-vlan" or ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "Only C-VLAN and S-VLAN tags can be matched.";

 description
 "For IEEE 802.1Q interoperability, only C-VLAN and
 S-VLAN tags are matched.";
 }

 description
 "Specifies the VLAN tag values to match against the
 outermost (first) 802.1Q VLAN tag in the frame.";

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }

 container second-tag {
 must ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "When matching two 802.1Q VLAN tags, the outermost
 (first) tag in the frame MUST be specified and be of
 S-VLAN type and the second tag in the frame must be of
 C-VLAN tag type.";

 description
 "For IEEE 802.1Q interoperability, when matching two
 802.1Q VLAN tags, it is REQUIRED that the outermost
 tag exists and is an S-VLAN, and the second tag is a
 C-VLAN.";
 }

 presence "Classify frames that have two 802.1Q VLAN tags.";

 description
 "Specifies the VLAN tag values to match against the
 second outermost 802.1Q VLAN tag in the frame.";

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }
 }
 }

Wilton & Mansfield Expires 31 July 2023 [Page 10]

Internet-Draft Sub-interface VLAN YANG January 2023

 }
 }
 <CODE ENDS>

6. Flexible Encapsulation YANG Module

 This YANG module augments the ’encapsulation’ container defined in
 ietf-if-extensions.yang [I-D.ietf-netmod-intf-ext-yang]. This YANG
 module also augments the ’interface’ list entry defined in [RFC8343].
 It also contains references to [RFC7224], and [IEEE_802.1Q_2022].

 <CODE BEGINS> file "ietf-if-flexible-encapsulation@2023-01-26.yang"
 module ietf-if-flexible-encapsulation {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation";
 prefix if-flex;

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import iana-if-type {
 prefix ianaift;
 reference
 "RFC 7224: IANA Interface Type YANG Module";
 }

 import ieee802-dot1q-types {
 prefix dot1q-types;
 revision-date 2022-01-19;
 reference
 "IEEE Std 802.1Q-2022: IEEE Standard for Local and
 metropolitan area networks -- Bridges and Bridged Networks";
 }

 import ietf-if-extensions {
 prefix if-ext;
 reference
 "RFC XXXX: Common Interface Extension YANG Data Models";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact

Wilton & Mansfield Expires 31 July 2023 [Page 11]

Internet-Draft Sub-interface VLAN YANG January 2023

 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This YANG module describes interface configuration for flexible
 classification and rewrites of IEEE 802.1Q VLAN tagged Ethernet
 traffic.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2023-01-26 {
 description
 "Latest draft revision";
 reference
 "RFC XXXX: Sub-interface VLAN YANG Data Models";
 }

 feature flexible-rewrites {
 description
 "This feature indicates that the network element supports
 specifying flexible rewrite operations.";
 }

 feature asymmetric-rewrites {
 description
 "This feature indicates that the network element supports
 specifying different rewrite operations for the ingress

Wilton & Mansfield Expires 31 July 2023 [Page 12]

Internet-Draft Sub-interface VLAN YANG January 2023

 rewrite operation and egress rewrite operation.";
 }

 feature dot1q-tag-rewrites {
 description
 "This feature indicates that the network element supports the
 flexible rewrite functionality specifying 802.1Q tag
 rewrites.";
 }

 grouping flexible-match {
 description
 "Represents a flexible frame classification:

 The rules for a flexible match are:
 1. Match-type: default, untagged, priority tag, or tag
 stack.
 2. Each tag in the stack of tags matches:
 a. tag type (802.1Q or 802.1ad) +
 b. tag value:
 i. single tag
 ii. set of tag ranges/values.
 iii. ’any’ keyword";

 choice match-type {
 mandatory true;

 description
 "Provides a choice of how the frames may be
 matched";

 case default {
 description
 "Default match";

 leaf default {
 type empty;

 description
 "Default match. Matches all traffic not matched to any
 other peer sub-interface by a more specific
 encapsulation.";
 }
 }

 case untagged {
 description
 "Match untagged Ethernet frames only";

Wilton & Mansfield Expires 31 July 2023 [Page 13]

Internet-Draft Sub-interface VLAN YANG January 2023

 leaf untagged {
 type empty;

 description
 "Untagged match. Matches all untagged traffic.";
 }
 }

 case dot1q-priority-tagged {
 description
 "Match 802.1Q priority tagged Ethernet frames only";

 container dot1q-priority-tagged {
 description
 "802.1Q priority tag match";

 leaf tag-type {
 type dot1q-types:dot1q-tag-type;
 mandatory true;

 description
 "The 802.1Q tag type of matched priority
 tagged packets";
 }
 }
 }

 case dot1q-vlan-tagged {
 container dot1q-vlan-tagged {
 description
 "Matches VLAN tagged frames";

 container outer-tag {
 must ’tag-type = "dot1q-types:s-vlan" or ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "Only C-VLAN and S-VLAN tags can be matched.";

 description
 "For IEEE 802.1Q interoperability, only C-VLAN and
 S-VLAN tags can be matched.";
 }

 description
 "Classifies traffic using the outermost (first) VLAN
 tag on the frame.";

Wilton & Mansfield Expires 31 July 2023 [Page 14]

Internet-Draft Sub-interface VLAN YANG January 2023

 uses "dot1q-types:"
 + "dot1q-tag-ranges-or-any-classifier-grouping";
 }

 container second-tag {
 must
 ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "When matching two tags, the outermost (first) tag
 must be specified and of S-VLAN type and the second
 outermost tag must be of C-VLAN tag type.";

 description
 "For IEEE 802.1Q interoperability, when matching two
 tags, it is required that the outermost (first) tag
 exists and is an S-VLAN, and the second outermost
 tag is a C-VLAN.";
 }

 presence "Also classify on the second VLAN tag.";

 description
 "Classifies traffic using the second outermost VLAN tag
 on the frame.";

 uses "dot1q-types:"
 + "dot1q-tag-ranges-or-any-classifier-grouping";
 }

 leaf match-exact-tags {
 type empty;
 description
 "If set, indicates that all 802.1Q VLAN tags in the
 Ethernet frame header must be explicitly matched, i.e.
 the EtherType following the matched tags must not be a
 802.1Q tag EtherType. If unset then extra 802.1Q VLAN
 tags are allowed.";
 }
 }
 }
 }
 }

 grouping dot1q-tag-rewrite {
 description
 "Flexible rewrite grouping. Can be either be expressed

Wilton & Mansfield Expires 31 July 2023 [Page 15]

Internet-Draft Sub-interface VLAN YANG January 2023

 symmetrically, or independently in the ingress and/or egress
 directions.";

 leaf pop-tags {
 type uint8 {
 range "1..2";
 }

 description
 "The number of 802.1Q VLAN tags to pop, or translate if used
 in conjunction with push-tags.

 Popped tags are the outermost tags on the frame.";
 }

 container push-tags {
 presence "802.1Q tags are pushed or translated";

 description
 "The 802.1Q tags to push on the front of the frame, or
 translate if configured in conjunction with pop-tags.";

 container outer-tag {
 must ’tag-type = "dot1q-types:s-vlan" or ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message "Only C-VLAN and S-VLAN tags can be pushed.";

 description
 "For IEEE 802.1Q interoperability, only C-VLAN and S-VLAN
 tags can be pushed.";
 }

 description
 "The outermost (first) VLAN tag to push onto the frame.";

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }

 container second-tag {
 must ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "When pushing/rewriting two tags, the outermost tag must
 be specified and of S-VLAN type and the second outermost
 tag must be of C-VLAN tag type.";

Wilton & Mansfield Expires 31 July 2023 [Page 16]

Internet-Draft Sub-interface VLAN YANG January 2023

 description
 "For IEEE 802.1Q interoperability, when pushing two tags,
 it is required that the outermost tag exists and is an
 S-VLAN, and the second outermost tag is a C-VLAN.";
 }

 presence
 "In addition to the first tag, also push/rewrite a second
 VLAN tag.";

 description
 "The second outermost VLAN tag to push onto the frame.";

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }
 }
 }

 grouping flexible-rewrite {
 description
 "Grouping for flexible rewrites of fields in the L2 header.

 Restricted to flexible 802.1Q VLAN tag rewrites, but could be
 extended to cover rewrites of other fields in the L2 header in
 future.";

 container dot1q-tag-rewrite {
 if-feature "dot1q-tag-rewrites";

 description
 "802.1Q VLAN tag rewrite.

 Translate operations are expressed as a combination of tag
 push and pop operations. E.g., translating the outer tag is
 expressed as popping a single tag, and pushing a single tag.
 802.1Q tags that are translated SHOULD preserve the PCP and
 DEI fields unless if a different QoS behavior has been
 specified.";
 uses dot1q-tag-rewrite;
 }
 }

 augment "/if:interfaces/if:interface/if-ext:encapsulation/"
 + "if-ext:encaps-type" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or

Wilton & Mansfield Expires 31 July 2023 [Page 17]

Internet-Draft Sub-interface VLAN YANG January 2023

 derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(../if:type,
 ’if-ext:ethSubInterface’)" {

 description
 "Applies only to Ethernet-like interfaces and
 sub-interfaces.";
 }

 description
 "Augment the generic interface encapsulation with flexible
 match and rewrite for VLAN sub-interfaces.";

 case flexible {
 description
 "Flexible encapsulation and rewrite";

 container flexible {
 description
 "Flexible encapsulation allows for the matching of ranges
 and sets of 802.1Q VLAN Tags and performing rewrite
 operations on the VLAN tags.

 The structure is also designed to be extended to allow for
 matching/rewriting other fields within the L2 frame header
 if required.";

 container match {
 description
 "Flexibly classifies Ethernet frames to a sub-interface
 (or interface) based on the L2 header fields.

 Only frames matching the classification configured on a
 sub-interface/interface are processed on that
 sub-interface/interface.

 Frames that do not match any sub-interface are processed
 directly on the parent interface, if it is associated
 with a forwarding instance, otherwise they are dropped.

 If a frame could be classified to multiple
 sub-interfaces then they get classified to the
 sub-interface with the most specific match. E.g.,
 matching two VLAN tags in the frame is more specific
 than matching the outermost VLAN tag, which is more
 specific than the catch all ’default’ match.";

 uses flexible-match;

Wilton & Mansfield Expires 31 July 2023 [Page 18]

Internet-Draft Sub-interface VLAN YANG January 2023

 }

 container rewrite {
 if-feature "flexible-rewrites";

 description
 "L2 frame rewrite operations.

 Rewrites allows for modifications to the L2 frame header
 as it transits the interface/sub-interface. Examples
 include adding a VLAN tag, removing a VLAN tag, or
 rewriting the VLAN Id carried in a VLAN tag.";

 choice direction {
 description
 "Whether the rewrite policy is symmetrical or
 asymmetrical.";

 case symmetrical {
 container symmetrical {
 uses flexible-rewrite;

 description
 "Symmetrical rewrite. Expressed in the ingress
 direction, but the reverse operation is applied to
 egress traffic.

 E.g., if a tag is pushed on ingress traffic, then
 the reverse operation is a ’pop 1’, that is
 performed on traffic egressing the interface, so
 a peer device sees a consistent L2 encapsulation
 for both ingress and egress traffic.";
 }
 }

 case asymmetrical {
 if-feature "asymmetric-rewrites";

 description
 "Asymmetrical rewrite.

 Rewrite operations may be specified in only a single
 direction, or different rewrite operations may be
 specified in each direction.";

 container ingress {
 uses flexible-rewrite;

Wilton & Mansfield Expires 31 July 2023 [Page 19]

Internet-Draft Sub-interface VLAN YANG January 2023

 description
 "A rewrite operation that only applies to ingress
 traffic.

 Ingress rewrite operations are performed before
 the frame is subsequently processed by the
 forwarding operation.";
 }

 container egress {
 uses flexible-rewrite;

 description
 "A rewrite operation that only applies to egress
 traffic.";
 }
 }
 }
 }

 container local-traffic-default-encaps {
 presence "A local traffic default encapsulation has been
 specified.";

 description
 "Specifies the 802.1Q VLAN tags to use by default for
 locally sourced traffic from the interface.

 Used for encapsulations that match a range of VLANs (or
 ’any’), where the source VLAN Ids are otherwise
 ambiguous.";

 container outer-tag {
 must ’tag-type = "dot1q-types:s-vlan" or ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "Only C-VLAN and S-VLAN tags can be matched.";

 description
 "For IEEE 802.1Q interoperability, only C-VLAN and
 S-VLAN tags can be matched.";
 }

 description
 "The outermost (first) VLAN tag for locally sourced
 traffic.";

Wilton & Mansfield Expires 31 July 2023 [Page 20]

Internet-Draft Sub-interface VLAN YANG January 2023

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }

 container second-tag {
 must
 ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
 + ’tag-type = "dot1q-types:c-vlan"’ {

 error-message
 "When specifying two tags, the outermost (first) tag
 must be specified and of S-VLAN type and the second
 outermost tag must be of C-VLAN tag type.";

 description
 "For IEEE 802.1Q interoperability, when specifying
 two tags, it is required that the outermost (first)
 tag exists and is an S-VLAN, and the second
 outermost tag is a C-VLAN.";
 }

 presence
 "Indicates existence of a second outermost VLAN tag.";

 description
 "The second outermost VLAN tag for locally sourced
 traffic.";

 uses dot1q-types:dot1q-tag-classifier-grouping;
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

7. Examples

 The following sections give examples of configuring a sub-interface
 supporting L3 forwarding, and a sub-interface being used in
 conjunction with the IETF L2VPN YANG model
 [I-D.ietf-bess-l2vpn-yang].

7.1. Layer 3 sub-interfaces with IPv6

 This example illustrates two layer sub-interfaces, ’eth0.1’ and
 ’eth0.2’, both are child interfaces of the Ethernet interface ’eth0’.

Wilton & Mansfield Expires 31 July 2023 [Page 21]

Internet-Draft Sub-interface VLAN YANG January 2023

 ’eth0.1’ is configured to match traffic with two VLAN tags: an outer
 S-VLAN of 10 and an inner C-VLAN of 20.

 ’eth0.2’ is configured to match traffic with a single S-VLAN tag,
 with VLAN Id 11.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:dot1q-types="urn:ieee:std:802.1Q:yang:ieee802-dot1q-types"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 </interface>
 <interface>
 <name>eth0.1</name>
 <type>ianaift:l2vlan</type>
 <if-ext:parent-interface>eth0</if-ext:parent-interface>
 <if-ext:encapsulation>
 <dot1q-vlan
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation">
 <outer-tag>
 <tag-type>dot1q-types:s-vlan</tag-type>
 <vlan-id>10</vlan-id>
 </outer-tag>
 <second-tag>
 <tag-type>dot1q-types:c-vlan</tag-type>
 <vlan-id>20</vlan-id>
 </second-tag>
 </dot1q-vlan>
 </if-ext:encapsulation>
 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <forwarding>true</forwarding>
 <address>
 <ip>2001:db8:10::1</ip>
 <prefix-length>48</prefix-length>
 </address>
 </ipv6>
 </interface>
 <interface>
 <name>eth0.2</name>
 <type>ianaift:l2vlan</type>
 <if-ext:parent-interface>eth0</if-ext:parent-interface>

Wilton & Mansfield Expires 31 July 2023 [Page 22]

Internet-Draft Sub-interface VLAN YANG January 2023

 <if-ext:encapsulation>
 <dot1q-vlan
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation">
 <outer-tag>
 <tag-type>dot1q-types:s-vlan</tag-type>
 <vlan-id>11</vlan-id>
 </outer-tag>
 </dot1q-vlan>
 </if-ext:encapsulation>
 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <forwarding>true</forwarding>
 <address>
 <ip>2001:db8:11::1</ip>
 <prefix-length>48</prefix-length>
 </address>
 </ipv6>
 </interface>
 </interfaces>
 </config>

7.2. Layer 2 sub-interfaces with L2VPN

 This example illustrates a layer 2 sub-interface ’eth0.3’ configured
 to match traffic with a S-VLAN tag of 10, and C-VLAN tag of 21; and
 remov the outer tag (S-VLAN 10) before the traffic is passed off to
 the L2VPN service.

 It also illustrates another sub-interface ’eth1.0’ under a separate
 physical interface configured to match traffic with a C-VLAN of 50,
 with the tag removed before traffic is given to any service. Sub-
 interface ’eth1.0’ is not currently bound to any service and hence
 traffic classified to that sub-interface is dropped.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:dot1q-types="urn:ieee:std:802.1Q:yang:ieee802-dot1q-types"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 </interface>
 <interface>

Wilton & Mansfield Expires 31 July 2023 [Page 23]

Internet-Draft Sub-interface VLAN YANG January 2023

 <name>eth0.3</name>
 <type>ianaift:l2vlan</type>
 <if-ext:parent-interface>eth0</if-ext:parent-interface>
 <if-ext:encapsulation>
 <flexible xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation">
 <match>
 <dot1q-vlan-tagged>
 <outer-tag>
 <tag-type>dot1q-types:s-vlan</tag-type>
 <vlan-id>10</vlan-id>
 </outer-tag>
 <second-tag>
 <tag-type>dot1q-types:c-vlan</tag-type>
 <vlan-id>21</vlan-id>
 </second-tag>
 </dot1q-vlan-tagged>
 </match>
 <rewrite>
 <symmetrical>
 <dot1q-tag-rewrite>
 <pop-tags>1</pop-tags>
 </dot1q-tag-rewrite>
 </symmetrical>
 </rewrite>
 </flexible>
 </if-ext:encapsulation>
 </interface>
 <interface>
 <name>eth1</name>
 <type>ianaift:ethernetCsmacd</type>
 </interface>
 <interface>
 <name>eth1.0</name>
 <type>ianaift:l2vlan</type>
 <if-ext:parent-interface>eth0</if-ext:parent-interface>
 <if-ext:encapsulation>
 <flexible xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation">
 <match>
 <dot1q-vlan-tagged>
 <outer-tag>
 <tag-type>dot1q-types:c-vlan</tag-type>
 <vlan-id>50</vlan-id>
 </outer-tag>
 </dot1q-vlan-tagged>
 </match>
 <rewrite>

Wilton & Mansfield Expires 31 July 2023 [Page 24]

Internet-Draft Sub-interface VLAN YANG January 2023

 <symmetrical>
 <dot1q-tag-rewrite>
 <pop-tags>1</pop-tags>
 </dot1q-tag-rewrite>
 </symmetrical>
 </rewrite>
 </flexible>
 </if-ext:encapsulation>
 </interface>
 </interfaces>
 <network-instances
 xmlns="urn:ietf:params:xml:ns:yang:ietf-network-instance">
 <network-instance
 xmlns:l2vpn="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
 <name>p2p-l2-1</name>
 <description>Point to point L2 service</description>
 <l2vpn:type>l2vpn:vpws-instance-type</l2vpn:type>
 <l2vpn:signaling-type>
 l2vpn:ldp-signaling
 </l2vpn:signaling-type>
 <endpoint xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
 <name>local</name>
 <ac>
 <name>eth0.3</name>
 </ac>
 </endpoint>
 <endpoint xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
 <name>remote</name>
 <pw>
 <name>pw1</name>
 </pw>
 </endpoint>
 <vsi-root>
 <!-- Does not Validate -->
 </vsi-root>
 </network-instance>
 </network-instances>
 <pseudowires
 xmlns="urn:ietf:params:xml:ns:yang:ietf-pseudowires">
 <pseudowire>
 <name>pw1</name>
 <peer-ip>2001:db8::50></peer-ip>
 <pw-id>100</pw-id>
 </pseudowire>
 </pseudowires>
 </config>

Wilton & Mansfield Expires 31 July 2023 [Page 25]

Internet-Draft Sub-interface VLAN YANG January 2023

8. Acknowledgements

 The authors would particularly like to thank Benoit Claise, John
 Messenger, Glenn Parsons, and Dan Romascanu for their help
 progressing this draft.

 The authors would also like to thank Martin Bjorklund, Alex Campbell,
 Don Fedyk, Eric Gray, Giles Heron, Marc Holness, Iftekhar Hussain,
 Neil Ketley, William Lupton, John Messenger, Glenn Parsons, Ludwig
 Pauwels, Joseph White, Vladimir Vassilev, and members of the IEEE
 802.1 WG for their helpful reviews and feedback on this draft.

9. IANA Considerations

9.1. YANG Module Registrations

 The following YANG modules are requested to be registered in the IANA
 "YANG Module Names" [RFC6020] registry:

 The ietf-if-vlan-encapsulation module:

 Name: ietf-if-vlan-encapsulation

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-vlan-
 encapsulation

 Prefix: if-vlan

 Reference: [RFCXXXX]

 The ietf-if-flexible-encapsulation module:

 Name: ietf-if-flexible-encapsulation

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-flexible-
 encapsulation

 Prefix: if-flex

 Reference: [RFCXXXX]

 This document registers two URIs in the "IETF XML Registry"
 [RFC3688]. Following the format in RFC 3688, the following
 registrations have been made.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation

 Registrant Contact: The IESG.

Wilton & Mansfield Expires 31 July 2023 [Page 26]

Internet-Draft Sub-interface VLAN YANG January 2023

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

10. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory to implement secure
 transport is SSH [RFC6242] The NETCONF access control model [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a pre-configured subset of all available NETCONF protocol operations
 and content.

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

10.1. ietf-if-vlan-encapsulation.yang

 The nodes in the vlan encapsulation YANG module are concerned with
 matching particular frames received on the network device to connect
 them to a layer 3 forwarding instance, and as such adding/modifying/
 deleting these nodes has a high risk of causing traffic to be lost
 because it is not being classified correctly, or is being classified
 to a separate sub-interface. The nodes, all under the subtree
 /interfaces/interface/encapsulation/dot1q-vlan, that are sensitive to
 this are:

 * outer-tag/tag-type

 * outer-tag/vlan-id

 * second-tag/tag-type

 * second-tag/vlan-id

Wilton & Mansfield Expires 31 July 2023 [Page 27]

Internet-Draft Sub-interface VLAN YANG January 2023

10.2. ietf-if-flexible-encapsulation.yang

 There are many nodes in the flexible encapsulation YANG module that
 are concerned with matching particular frames received on the network
 device, and as such adding/modifying/deleting these nodes has a high
 risk of causing traffic to be lost because it is not being classified
 correctly, or is being classified to a separate sub-interface. The
 nodes, all under the subtree
 /interfaces/interface/encapsulation/flexible/match, that are
 sensitive to this are:

 * default

 * untagged

 * dot1q-priority-tagged

 * dot1q-priority-tagged/tag-type

 * dot1q-vlan-tagged/outer-tag/vlan-type

 * dot1q-vlan-tagged/outer-tag/vlan-id

 * dot1q-vlan-tagged/second-tag/vlan-type

 * dot1q-vlan-tagged/second-tag/vlan-id

 There are also many modes in the flexible encapsulation YANG module
 that are concerned with rewriting the fields in the L2 header for
 particular frames received on the network device, and as such
 adding/modifying/deleting these nodes has a high risk of causing
 traffic to be dropped or incorrectly processed on peer network
 devices, or it could cause layer 2 tunnels to go down due to a
 mismatch in negotiated MTU. The nodes, all under the subtree
 /interfaces/interface/encapsulation/flexible/rewrite, that are
 sensitive to this are:

 * symmetrical/dot1q-tag-rewrite/pop-tags

 * symmetrical/dot1q-tag-rewrite/push-tags/outer-tag/tag-type

 * symmetrical/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

 * symmetrical/dot1q-tag-rewrite/push-tags/second-tag/tag-type

 * symmetrical/dot1q-tag-rewrite/push-tags/second-tag/vlan-id

 * asymmetrical/ingress/dot1q-tag-rewrite/pop-tags

Wilton & Mansfield Expires 31 July 2023 [Page 28]

Internet-Draft Sub-interface VLAN YANG January 2023

 * asymmetrical/ingress/dot1q-tag-rewrite/push-tags/outer-tag/tag-
 type

 * asymmetrical/ingress/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

 * asymmetrical/ingress/dot1q-tag-rewrite/push-tags/second-tag/tag-
 type

 * asymmetrical/ingress/dot1q-tag-rewrite/push-tags/second-tag/vlan-
 id

 * asymmetrical/egress/dot1q-tag-rewrite/pop-tags

 * asymmetrical/egress/dot1q-tag-rewrite/push-tags/outer-tag/tag-type

 * asymmetrical/egress/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

 * asymmetrical/egress/dot1q-tag-rewrite/push-tags/second-tag/tag-
 type

 * asymmetrical/egress/dot1q-tag-rewrite/push-tags/second-tag/vlan-id

 Nodes in the flexible-encapsulation YANG module that are concerned
 with the VLAN tags to use for traffic sourced from the network
 element could cause protocol sessions (such as CFM) to fail if they
 are added, modified or deleted. The nodes, all under the subtree
 /interfaces/interface/flexible-encapsulation/local-traffic-default-
 encaps that are sensitive to this are:

 * outer-tag/vlan-type

 * outer-tag/vlan-id

 * second-tag/vlan-type

 * second-tag/vlan-id

11. References

11.1. Normative References

 [I-D.ietf-netmod-intf-ext-yang]
 Wilton, R. and S. Mansfield, "Common Interface Extension
 YANG Data Models", Work in Progress, Internet-Draft,
 draft-ietf-netmod-intf-ext-yang-11, 26 January 2023,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-intf-
 ext-yang-11.txt>.

Wilton & Mansfield Expires 31 July 2023 [Page 29]

Internet-Draft Sub-interface VLAN YANG January 2023

 [IEEE_802.1Q_2022]
 IEEE, "IEEE Standard for Local and Metropolitan Area
 Networks--Bridges and Bridged Networks", IEEE 802-1q-2022,
 IEEE 802-1q®-2022, DOI 10.1109/IEEESTD.2022.10004498, 30
 December 2022,
 <https://ieeexplore.ieee.org/document/10004498>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/info/rfc7224>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

11.2. Informative References

Wilton & Mansfield Expires 31 July 2023 [Page 30]

Internet-Draft Sub-interface VLAN YANG January 2023

 [I-D.ietf-bess-l2vpn-yang]
 Shah, H. C., Brissette, P., Chen, I., Hussain, I., Wen,
 B., and K. Tiruveedhula, "YANG Data Model for MPLS-based
 L2VPN", Work in Progress, Internet-Draft, draft-ietf-bess-
 l2vpn-yang-10, 2 July 2019,
 <https://www.ietf.org/archive/id/draft-ietf-bess-l2vpn-
 yang-10.txt>.

 [RFC4448] Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
 "Encapsulation Methods for Transport of Ethernet over MPLS
 Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
 <https://www.rfc-editor.org/info/rfc4448>.

 [RFC4761] Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
 LAN Service (VPLS) Using BGP for Auto-Discovery and
 Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
 <https://www.rfc-editor.org/info/rfc4761>.

 [RFC4762] Lasserre, M., Ed. and V. Kompella, Ed., "Virtual Private
 LAN Service (VPLS) Using Label Distribution Protocol (LDP)
 Signaling", RFC 4762, DOI 10.17487/RFC4762, January 2007,
 <https://www.rfc-editor.org/info/rfc4762>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

Wilton & Mansfield Expires 31 July 2023 [Page 31]

Internet-Draft Sub-interface VLAN YANG January 2023

Appendix A. Comparison with the IEEE 802.1Q Configuration Model

 In addition to the sub-interface based YANG model proposed here, the
 IEEE 802.1Q working group has developed a YANG model for the
 configuration of 802.1Q VLANs. This raises the valid question as to
 whether the models overlap and whether it is necessary or beneficial
 to have two different models for superficially similar constructs.
 This section aims to answer that question by summarizing and
 comparing the two models.

A.1. Sub-interface based configuration model overview

 The key features of the sub-interface based configuration model can
 be summarized as:

 * The model is primarily designed to enable layer 2 and layer 3
 services on Ethernet interfaces that can be defined in a very
 flexible way to meet the varied requirements of service providers.

 * Traffic is classified from an Ethernet-like interface to sub-
 interfaces based on fields in the layer 2 header. This is often
 based on VLAN Ids contained in the frame, but the model is
 extensible to other arbitrary fields in the frame header.

 * Sub-interfaces are just a type of if:interface and hence support
 any feature configuration YANG models that can be applied
 generally to interfaces. For example, QoS or ACL models that
 reference if:interface can be applied to the sub-interfaces, or
 the sub-interface can be used as an Access Circuit in L2VPN or
 L3VPN models that reference if:interface.

 * In the sub-interface based configuration model, the classification
 of traffic arriving on an interface to a given sub-interface,
 based on fields in the layer 2 header, is completely independent
 of how the traffic is forwarded. The sub-interface can be
 referenced (via references to if:interface) by other models that
 specify how traffic is forwarded; thus sub-interfaces can support
 multiple different forwarding paradigms, including but not limited
 to: layer 3 (IPv4/IPv6), layer 2 pseudowires (over MPLS or IP),
 VPLS instances, EVPN instance.

 * The model is flexible in the scope of the VLAN Identifier space.
 I.e. by default VLAN Ids can be scoped locally to a single
 Ethernet-like trunk interface, but the scope is determined by the
 forwarding paradigm that is used.

Wilton & Mansfield Expires 31 July 2023 [Page 32]

Internet-Draft Sub-interface VLAN YANG January 2023

A.2. IEEE 802.1Q Bridge Configuration Model Overview

 The key features of the IEEE 802.1Q bridge configuration model can be
 summarized as:

 * Each VLAN bridge component has a set of Ethernet interfaces that
 are members of that bridge. Sub-interfaces are not used, nor
 required in the 802.1Q bridge model.

 * Within a VLAN bridge component, the VLAN tag in the packet is
 used, along with the destination MAC address, to determine how to
 forward the packet. Other forwarding paradigms are not supported
 by the 802.1Q model.

 * Classification of traffic to a VLAN bridge component is based only
 on the Ethernet interface that it arrived on.

 * VLAN Identifiers are scoped to a VLAN bridge component. Often
 devices only support a single bridge component and hence VLANs are
 scoped globally within the device.

 * Feature configuration is specified in the context of the bridge,
 or particular VLANs on a bridge.

A.3. Possible Overlap Between the Two Models

 Both models can be used for configuring similar basic layer 2
 forwarding topologies. The 802.1Q bridge configuration model is
 optimised for configuring Virtual LANs that span across enterprises
 and data centers.

 The sub-interface model can also be used for configuring equivalent
 Virtual LAN networks that span across enterprises and data centers,
 but often requires more configuration to be able to configure the
 equivalent constructs to the 802.1Q bridge model.

 The sub-interface model really excels when implementing flexible L2
 and L3 services, where those services may be handled on the same
 physical interface, and where the VLAN Identifier is being solely
 used to identify the customer or service that is being provided
 rather than a Virtual LAN. The sub-interface model provides more
 flexibility as to how traffic can be classified, how features can be
 applied to traffic streams, and how the traffic is to be forwarded.

 Conversely, the 802.1Q bridge model can also be use to implement L2
 services in some scenarios, but only if the forwarding paradigm being
 used to implement the service is the native Ethernet forwarding
 specified in 802.1Q - other forwarding paradigms such as pseudowires

Wilton & Mansfield Expires 31 July 2023 [Page 33]

Internet-Draft Sub-interface VLAN YANG January 2023

 or VPLS are not supported. The 802.1Q bridge model does not
 implement L3 services at all, although this can be partly mitigated
 by using a virtual L3 interface construct that is a separate logical
 Ethernet-like interface which is a member of the bridge.

 In conclusion, it is valid for both of these models to exist since
 they have different deployment scenarios for which they are
 optimized. Devices may choose which of the models (or both) to
 implement depending on what functionality the device is being
 designed for.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems
 Email: rwilton@cisco.com

 Scott Mansfield (editor)
 Ericsson
 Email: scott.mansfield@ericsson.com

Wilton & Mansfield Expires 31 July 2023 [Page 34]

NETMOD Q. Ma, Ed.
Internet-Draft Q. Wu
Updates: RFC8342, RFC6241, RFC8526, RFC8040 (if C. Feng
 approved) Huawei
Intended status: Standards Track 4 January 2023
Expires: 8 July 2023

 System-defined Configuration
 draft-ietf-netmod-system-config-01

Abstract

 This document updates Network Management Datastore Architecture
 (NMDA) to define a read-only conventional configuration datastore
 called "system" to hold system-defined configurations. To avoid
 clients’ explicit copy/paste of referenced system-defined
 configuration into the target configuration datastore (e.g.,
 <running>), a "resolve-system" parameter is defined to allow the
 server acting as a "system client" to copy referenced system-defined
 nodes automatically. This solution enables clients manipulating the
 target configuration datastore (e.g., <running>) to reference nodes
 defined in <system>, override values of configurations defined in
 <system>, and configure descendant nodes of system-defined nodes.

 This document updates RFC 8342, RFC 6241, RFC 8526 and RFC 8040.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 July 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ma, et al. Expires 8 July 2023 [Page 1]

Internet-Draft System-defined Configuration January 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Requirements Language 5
 1.3. Updates to RFC 8342 5
 1.4. Updates to RFC 6241 and RFC 8526 5
 1.5. Updates to RFC 8040 6
 1.5.1. Query Parameter 6
 1.5.2. Query Parameter URI 6
 2. Kinds of System Configuration 7
 2.1. Immediately-Active 7
 2.2. Conditionally-Active 7
 2.3. Inactive-Until-Referenced 7
 3. The <system> Configuration Datastore 7
 4. Static Characteristics of the <system> Configuration
 Datastore . 9
 4.1. Read-only to Clients 9
 4.2. May Change via Software Upgrades 9
 4.3. No Impact to <operational> 9
 5. Dynamic Behavior . 9
 5.1. Conceptual Model of Datastores 9
 5.2. Explicit Declaration of System Configuration 11
 5.3. Servers Auto-configuring Referenced System
 Configuration . 11
 5.4. Modifying (overriding) System Configuration 12
 5.5. Examples . 13
 5.5.1. Server Configuring of <running> Automatically 13
 5.5.2. Declaring a System-defined Node in <running>
 Explicitly . 18
 5.5.3. Modifying a System-instantiated Leaf’s Value 21
 5.5.4. Configuring Descendant Nodes of a System-defined
 Node . 23
 6. The "ietf-system-datastore" Module 24
 6.1. Data Model Overview 25
 6.2. Example Usage . 25
 6.3. YANG Module . 26
 7. The "ietf-netconf-resolve-system" Module 27
 7.1. Data Model Overview 28

Ma, et al. Expires 8 July 2023 [Page 2]

Internet-Draft System-defined Configuration January 2023

 7.2. Example Usage . 29
 7.3. YANG Module . 32
 8. IANA Considerations . 34
 8.1. The "IETF XML" Registry 34
 8.2. The "YANG Module Names" Registry 35
 8.3. RESTCONF Capability URN Registry 35
 9. Security Considerations 35
 9.1. Regarding the "ietf-system-datastore" YANG Module 35
 9.2. Regarding the "ietf-netconf-resolve-system" YANG
 Module . 36
 10. Contributors . 36
 Acknowledgements . 37
 References . 37
 Normative References . 37
 Informative References . 38
 Appendix A. Key Use Cases 39
 A.1. Device Powers On . 39
 A.2. Client Commits Configuration 40
 A.3. Operator Installs Card into a Chassis 41
 Appendix B. Changes between Revisions 42
 Appendix C. Open Issues tracking 42
 Authors’ Addresses . 42

1. Introduction

 Network Management Datastore Architecture (NMDA) [RFC8342] defines
 system configuration as the configuration that is supplied by the
 device itself and appears in <operational> when it is in use
 (Figure 2 in [RFC8342]).

 However, there is a desire to enable a server to better structure and
 expose the system configuration. NETCONF/RESTCONF clients can
 benefit from a standard mechanism to retrieve what system
 configuration is available on a server.

 In some cases, the NETCONF/RESTCONF client references a system
 configuration which isn’t present in the target datastore (e.g.,
 <running>), thus the configuration is considered invalid. To
 facilitate manipulation of the client configuration, having to copy
 the entire contents of the system configuration into the target
 datastore should be avoided or reduced when possible while ensuring
 that all referential integrity constraints are satisfied.

Ma, et al. Expires 8 July 2023 [Page 3]

Internet-Draft System-defined Configuration January 2023

 In some other cases, configuration of descendant nodes of system-
 defined configuration needs to be supported. For example, the system
 configuration contains an almost empty physical interface, while the
 client needs to be able to add, modify, or remove a number of
 descendant nodes. Some descendant nodes may not be modifiable (e.g.,
 "name" and "type" set by the system).

 This document updates NMDA [RFC8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To avoid clients’ explicit copy/paste of
 referenced system-defined configuration into the target configuration
 datastore (e.g., <running>), a "resolve-system" parameter has been
 defined to allow the server acting as a "system client" to copy
 referenced system-defined nodes automatically. The solution enables
 clients manipulating the target configuration datastore (e.g.,
 <running>) to overlay and reference nodes defined in <system>,
 override values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes.

 Conformance to this document requires NMDA servers to implement the
 "ietf-system-datastore" YANG module (Section 6).

1.1. Terminology

 This document assumes that the reader is familiar with the contents
 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses
 terminologies from those documents.

 The following terms are defined in this document:

 System configuration: Configuration that is provided by the system
 itself. System configuration is present in <system> once it is
 created (regardless of being applied by the device), and appears
 in <intended> which is subject to validation. Applied system
 configuration also appears in <operational> with origin="system".

 System configuration datastore: A configuration datastore holding
 the complete configuration provided by the system itself. This
 datastore is referred to as "<system>".

 This document redefines the term "conventional configuration
 datastore" in Section 3 of [RFC8342] to add "system" to the list of
 conventional configuration datastores:

 Conventional configuration datastore: One of the following set of

Ma, et al. Expires 8 July 2023 [Page 4]

Internet-Draft System-defined Configuration January 2023

 configuration datastores: <running>, <startup>, <candidate>,
 <system>, and <intended>. These datastores share a common
 datastore schema, and protocol operations allow copying data
 between these datastores. The term "conventional" is chosen as a
 generic umbrella term for these datastores.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Updates to RFC 8342

 This document updates RFC 8342 to define a configuration datastore
 called "system" to hold system configuration, it also redefines the
 term "conventional configuration datastore" from RFC 8342 to add
 "system" to the list of conventional configuration datastores. The
 contents of <system> datastore are read-only to clients but may
 change dynamically. The <system> aware client may retrieve all three
 types of system configuration defined in Section 2, reference nodes
 defined in <system>, override values of configurations defined in
 <system>, and configure descendant nodes of system-defined nodes.

 The server will merge <running> and <system> to create <intended>.
 As always, system configuration will appear in <operational> with
 origin="system" when it is in use.

 The <system> datastore makes system configuration visible to clients
 in order for being referenced or configurable prior to present in
 <operational>.

1.4. Updates to RFC 6241 and RFC 8526

 This document augments <edit-config> and <edit-data> RPC operations
 defined in [RFC6241] and [RFC8526] respectively, with a new
 additional input parameter "resolve-system". The <copy-config> RPC
 operation defined in [RFC6241] is also augmented to support "resolve-
 system" parameter.

 The "resolve-system" parameter is optional and has no value. When it
 is provided and the server detects that there is a reference to a
 system-defined node during the validation, the server will
 automatically copy the referenced system configuration into the
 validated datastore to make the configuration valid without the

Ma, et al. Expires 8 July 2023 [Page 5]

Internet-Draft System-defined Configuration January 2023

 client doing so explicitly. Legacy clients interacting with servers
 that support this parameter don’t see any changes in <edit-
 config>/<edit-data> and <copy-config> behaviors.

 The server’s copy referenced nodes from <system> to the target
 datastore MUST be enforced at the end of the <edit-config>/<edit-
 data> or <copy-config> operations, regardless of which target
 datastore it is.

1.5. Updates to RFC 8040

 This document extends Sections 4.8 and 9.1.1 of [RFC8040] to add a
 new query parameter "resolve-system" and corresponding query
 parameter capability URI.

1.5.1. Query Parameter

 The "resolve-system" parameter controls whether to allow a server
 copy any referenced system-defined configuration automatically
 without the client doing so explicitly. This parameter is only
 allowed with no values carried. If this parameter has any unexpected
 value, then a "400 Bad Request" status-line is returned.

 +----------------+---------+---+
 | Name | Methods | Description |
 +----------------+---------+---+
resolve-system	POST,	resolve any references not resolved by
	PUT	the client and copy referenced
	PATCH	system configuration into <running>
		automatically. This parameter can be
		given in any order.
 +----------------+---------+---+

1.5.2. Query Parameter URI

 To enable a RESTCONF client to discover if the "resolve-system" query
 parameter is supported by the server, the following capability URI is
 defined, which is advertised by the server if supported, using the
 "ietf-restconf-monitoring" module defined in RFC 8040:

 urn:ietf:params:restconf:capability:resolve-system:1.0

 Comment: Should we define a similar capability identifier for NETCONF
 protocol?

Ma, et al. Expires 8 July 2023 [Page 6]

Internet-Draft System-defined Configuration January 2023

2. Kinds of System Configuration

 There are three types of system configurations defined in this
 document: immediately-active system configuration, conditionally-
 active system configuration, and inactive-until-referenced system
 configuration.

 Active system configuration refers to configuration that is in use by
 a device. As per definition of the operational state datastore in
 [RFC8342], if system configuration is inactive, it should not appear
 in <operational>. However, system configuration is present in
 <system> once it is generated, regardless of whether it is active or
 not.

2.1. Immediately-Active

 Immediately-active system configurations are those generated in
 <system> and applied immediately when the device is powered on (e.g.,
 a loopback interface), irrespective of physical resource present or
 not, a special functionality enabled or not.

2.2. Conditionally-Active

 System configurations which are generated in <system> and applied
 based on specific conditions being met in a system, e.g., if a
 physical resource is present (e.g., insert interface card), the
 system will automatically detect it and load pre-provisioned
 configuration; when the physical resource is not present(remove
 interface card), the system configuration will be automatically
 cleared. Another example is when a special functionality is enabled,
 e.g., when a QoS feature is enabled, related QoS policies are
 automatically created by the system.

2.3. Inactive-Until-Referenced

 There are some system configurations predefined (e.g., application
 ids, anti-x signatures, trust anchor certs, etc.) as a convenience
 for the clients, which must be referenced to be active. The clients
 can also define their own configurations for their unique
 requirements. Inactive-until-referenced system configurations are
 generated in <system> immediately when the device is powered on, but
 they are not applied and active until being referenced.

3. The <system> Configuration Datastore

 NMDA servers compliant with this document MUST implement a <system>
 configuration datastore, and they SHOULD also implement the
 <intended> datastore.

Ma, et al. Expires 8 July 2023 [Page 7]

Internet-Draft System-defined Configuration January 2023

 Following guidelines for defining datastores in the appendix A of
 [RFC8342], this document introduces a new datastore resource named
 ’system’ that represents the system configuration.

 * Name: "system"

 * YANG modules: all

 * YANG nodes: all "config true" data nodes up to the root of the
 tree, generated by the system

 * Management operations: The content of the datastore is set by the
 server in an implementation dependent manner. The content can not
 be changed by management operations via protocols such as NETCONF,
 RESTCONF, but may change itself by upgrades and/or when resource-
 conditions are met. The datastore can be read using the standard
 network management protocols such as NETCONF and RESCTCONF.

 * Origin: This document does not define any new origin identity when
 it interacts with <intended> datastore and flows into
 <operational>. The "system" origin Metadata Annotation [RFC7952]
 is used to indicate the origin of a data item is system.

 * Protocols: YANG-driven management protocols, such as NETCONF and
 RESTCONF.

 * Defining YANG module: "ietf-system-datastore".

 The datastore’s content is defined by the server and read-only to
 clients. Upon the content is created or changed, it will be merged
 into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY
 change dynamically, e.g., depending on factors like device upgrade or
 system-controlled resources change (e.g., HW available). The
 <system> datastore doesn’t persist across reboots; the contents of
 <system> will be lost upon reboot and recreated by the system with
 the same or changed contents. <factory-reset> RPC operation defined
 in [RFC8808] can reset it to its factory default configuration
 without including configuration generated due to the system update or
 client-enabled functionality.

 The <system> datastore is defined as a conventional configuration
 datastore and shares a common datastore schema with other
 conventional datastores. The <system> configuration datastore must
 always be valid, as defined in Section 8.1 of [RFC7950].

Ma, et al. Expires 8 July 2023 [Page 8]

Internet-Draft System-defined Configuration January 2023

4. Static Characteristics of the <system> Configuration Datastore

4.1. Read-only to Clients

 The <system> configuration datastore is a read-only configuration
 datastore (i.e., edits towards <system> directly MUST be denied),
 though the client may be allowed to override the value of a system-
 initialized data node (see Section 5.4).

4.2. May Change via Software Upgrades

 System configuration may change dynamically, e.g., depending on
 factors like device upgrade or if system-controlled resources (e.g.,
 HW available) change. In some implementations, when a QoS feature is
 enabled, QoS-related policies are created by the system. If the
 system configuration gets changed, YANG notifications (e.g., "push-
 change-update" notification) [RFC6470][RFC8639][RFC8641] can be used
 to notify the client. Any update of the contents in <system> will
 not cause the automatic update of <running>, even if some of the
 system configuration has already been copied into <running>
 explicitly or automatically before the update.

4.3. No Impact to <operational>

 This work intends to have no impact to <operational>. System
 configuration will appear in <operational> with "origin=system".
 This document enables a subset of those system generated nodes to be
 defined like configuration, i.e., made visible to clients in order
 for being referenced or configurable prior to present in
 <operational>. "Config false" nodes are out of scope, hence existing
 "config false" nodes are not impacted by this work.

5. Dynamic Behavior

5.1. Conceptual Model of Datastores

 This document introduces a datastore named "system" which is used to
 hold all three types of system configurations defined in Section 2.

 When the device is powered on, immediately-active system
 configuration will be generated in <system> and applied immediately
 but inactive-until-referenced system configuration only becomes
 active if it is referenced by client-defined configuration. While
 conditionally-active system configuration will be created and
 immediately applied if the condition on system resources is met when
 the device is powered on or running.

Ma, et al. Expires 8 July 2023 [Page 9]

Internet-Draft System-defined Configuration January 2023

 All above three types of system configurations will appear in
 <system>. Clients MAY reference nodes defined in <system>, override
 values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes, by copying or writing
 intended configurations into the target configuration datastore
 (e.g., <running>).

 The server will merge <running> and <system> to create <intended>, in
 which process, the data node appears in <running> takes precedence
 over the same node in <system> if the server allows the node to be
 modifiable; additional nodes to a list entry or new list/leaf-list
 entries appear in <running> extends the list entry or the whole list/
 leaf-list defined in <system> if the server allows the list/leaf-list
 to be updated. In addition, the <intended> configuration datastore
 represents the configuration after all configuration transformation
 to <system> are performed (e.g., system-defined template expansion,
 removal of inactive system configuration). If a server implements
 <intended>, <system> MUST be merged into <intended>.

 Servers MUST enforce that configuration references in <running> are
 resolved within the <running> datastore and ensure that <running>
 contains any referenced system configuration. Clients MUST either
 explicitly copy system-defined nodes into <running> or use the
 "resolve-system" parameter. The server MUST enforce that the
 referenced system nodes configured into <running> by the client is
 consistent with <system>. Note that <system> aware clients know how
 to discover what nodes exist in <system>. How clients unaware of the
 <system> datastore can find appropriate configurations is beyond the
 scope of this document.

 No matter how the referenced system configurations are copied into
 <running>, the nodes copied into <running> would always be returned
 after a read of <running>, regardless if the client is <system>
 aware.

 Configuration defined in <system> is present in <operational> if it
 is actively in use by the device, even if a client may delete the
 configuration copied from <system> into <running>. For example,
 system initializes a value for a particular leaf which is overridden
 by the client with a different value in <running>. The client may
 delete that node in <running>, in which case system-initialized value
 defined in <system> can be still in use and appear in <operational>.
 Any deletable system-provided configuration must be defined in
 <factory-default> [RFC8808], which is used to initialize <running>
 when the device is first-time powered on or reset to its factory
 default condition.

Ma, et al. Expires 8 July 2023 [Page 10]

Internet-Draft System-defined Configuration January 2023

5.2. Explicit Declaration of System Configuration

 It is possible for a client to explicitly declare system
 configuration nodes in the target datastore (e.g., <running>) with
 the same values as in <system>, by configuring a node (list/leaf-list
 entry, leaf, etc.) in the target datastore (e.g., <running>) that
 matches the same node and value in <system>.

 This explicit configuration of system-defined nodes in <running> can
 be useful, for example, when the client doesn’t want a "system
 client" to have a role or hasn’t implemented the "resolve-system"
 parameter. The client can explicitly declare (i.e., configure in
 <running>) the list entries (with at least the keys) for any system
 configuration list entries that are referenced elsewhere in
 <running>. The client does not necessarily need to declare all the
 contents of the list entry (i.e. the descendant nodes) , only the
 parts that are required to make the <running> appear valid.

5.3. Servers Auto-configuring Referenced System Configuration

 This document defines a new parameter "resolve-system" to the input
 for the <edit-config>, <edit-data>, and <copy-config> operations.
 Clients that are aware of the "resolve-system" parameter MAY use this
 parameter to avoid the requirement to provide a referentially
 complete configuration in <running>.

 Non-NMDA servers MAY implement this parameter without implementing
 the <system> configuration datastore, which would only eliminate the
 ability to expose the system configuration via protocol operations.
 If a server implements <system>, referenced system configuration is
 copied from <system> into the target datastore(e.g., <running>) when
 the "resolve-system" parameter is used; otherwise it is an
 implementation decision where to copy referenced system configuration
 into the target datastore(e.g., <running>).

 If the "resolve-system" is present, and the server supports this
 capability, the server MUST copy relevant referenced system-defined
 nodes into the target datastore (e.g., <running>) without the client
 doing the copy/paste explicitly, to resolve any references not
 resolved by the client. The server acting as a "system client" like
 any other remote clients copies the referenced system-defined nodes
 when triggered by the "resolve-system" parameter.

 If the "resolve-system" parameter is not given by the client, the
 server should not modify <running> in any way otherwise not specified
 by the client. Not using capitalized "SHOULD NOT" in the previous
 sentence is intentional. The intention is to bring awareness to the
 general need to not surprise clients with unexpected changes. It is

Ma, et al. Expires 8 July 2023 [Page 11]

Internet-Draft System-defined Configuration January 2023

 desirable for clients to always opt into using mechanisms having
 server-side changes. This document enables a client to opt into this
 behavior using the "resolve-system" parameter. RFC 7317 enables a
 client to opt into its behavior using a "0" prefix (see
 ianach:crypt-hash type defined in [RFC7317]).

 The server may automatically configure the list entries (with at
 least the keys) in the target datastore (e.g., <running>) for any
 system configuration list entries that are referenced elsewhere by
 the clients. Similarly, not all the contents of the list entry
 (i.e., the descendant nodes) are necessarily copied by the server -
 only the parts that are required to make the <running> valid. A read
 back of <running> (i.e., <get>, <get-config> or <get-data> operation)
 returns those automatically copied nodes.

5.4. Modifying (overriding) System Configuration

 In some cases, a server may allow some parts of system configuration
 to be modified. Modification of system configuration is achieved by
 the client writing configuration to <running> that overrides the
 system configuration. Configurations defined in <running> take
 precedence over system configuration nodes in <system> if the server
 allows the nodes to be modified.

 For instance, list keys in system configuration can’t be changed by a
 client, but other descendant nodes in a list entry may be modifiable
 or non-modifiable. Leafs and leaf-lists outside of lists may also be
 modifiable or non-modifiable. Even if some system configuration has
 been copied into <running> earlier, whether it is modifiable or not
 in <running> follows general YANG constraints and NACM rules, and
 other server-internal restrictions. If a system configuration node
 is non-modifiable, then writing a different value for that node MUST
 return an error. The immutability of system configuration is further
 defined in [I-D.ma-netmod-immutable-flag].

 A server may also allow a client to add data nodes to a list entry in
 <system> by writing those additional nodes in <running>. Those
 additional data nodes may not exist in <system> (i.e., an *addition*
 rather than an override).

 Comment 1: What if <system> contains a set of values for a leaf-list,
 and a client configures another set of values for that leaf-list in
 <running>, will the set of values in <running> completely replace the
 set of values in <system>? Or the two sets of values are merged
 together?

Ma, et al. Expires 8 July 2023 [Page 12]

Internet-Draft System-defined Configuration January 2023

 Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do
 the <running> values go before or after, or is this a case where a
 full-replace is needed.

5.5. Examples

 This section shows some examples of server-configuring of <running>
 automatically, declaring a system-defined node in <running>
 explicitly, modifying a system-instantiated leaf’s value and
 configuring descendant nodes of a system-defined node. For each
 example, the corresponding XML snippets are provided.

5.5.1. Server Configuring of <running> Automatically

 In this subsection, the following fictional module is used:

 module example-application {
 yang-version 1.1;
 namespace "urn:example:application";
 prefix "app";

 import ietf-inet-types {
 prefix "inet";
 }
 container applications {
 list application {
 key "name";
 leaf name {
 type string;
 }
 leaf protocol {
 type enumeration {
 enum tcp;
 enum udp;
 }
 }
 leaf destination-port {
 type inet:port-number;
 }
 }
 }
 }

Ma, et al. Expires 8 July 2023 [Page 13]

Internet-Draft System-defined Configuration January 2023

 The server may predefine some applications as a convenience for the
 clients. These predefined configurations are applied only after
 being referenced by other configurations, which fall into the
 "inactive-until-referenced" system configuration as defined in
 Section 2. The system-instantiated application entries may be
 present in <system> as follows:

 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>smtp</name>
 <protocol>tcp</protocol>
 <destination-port>25</destination-port>
 </application>
 ...
 </applications>

 The client may also define its customized applications. Suppose the
 configuration of applications is present in <running> as follows:

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

 A fictional ACL YANG module is used as follows, which defines a
 leafref for the leaf-list "application" data node to refer to an
 existing application name.

Ma, et al. Expires 8 July 2023 [Page 14]

Internet-Draft System-defined Configuration January 2023

 module example-acl {
 yang-version 1.1;
 namespace "urn:example:acl";
 prefix "acl";

 import example-application {
 prefix "app";
 }
 import ietf-inet-types {
 prefix "inet";
 }

 container acl {
 list acl_rule {
 key "name";
 leaf name {
 type string;
 }
 container matches {
 choice l3 {
 container ipv4 {
 leaf source_address {
 type inet:ipv4-prefix;
 }
 leaf dest_address {
 type inet:ipv4-prefix;
 }
 }
 }
 choice applications {
 leaf-list application {
 type leafref {
 path "/app:applications/app:application/app:name";
 }
 }
 }
 }
 leaf packet_action {
 type enumeration {
 enum forward;
 enum drop;
 enum redirect;
 }
 }
 }
 }
 }

Ma, et al. Expires 8 July 2023 [Page 15]

Internet-Draft System-defined Configuration January 2023

 If a client configures an ACL rule referencing system predefined
 nodes which are not present in <running>, the client may issue an
 <edit-config> operation with the parameter "resolve-system" as
 follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation:

Ma, et al. Expires 8 July 2023 [Page 16]

Internet-Draft System-defined Configuration January 2023

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application or:origin="or:system">
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application or:origin="or:system">
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 8 July 2023 [Page 17]

Internet-Draft System-defined Configuration January 2023

 Since the configuration of application "smtp" is not referenced by
 the client, it does not appear in <operational> but only in <system>.

5.5.2. Declaring a System-defined Node in <running> Explicitly

 It’s also possible for a client to explicitly declare the system-
 defined configurations that are referenced. For instance, in the
 above example, the client MAY also explicitly configure the following
 system defined applications "ftp" and "tftp" only with the list key
 "name" before referencing:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>
 </config>
 </edit-config>
 </rpc>

 Then the client issues an <edit-config> operation to configure an ACL
 rule referencing applications "ftp" and "tftp" without the parameter
 "resolve-system" as follows:

Ma, et al. Expires 8 July 2023 [Page 18]

Internet-Draft System-defined Configuration January 2023

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation, all the configuration of applications are explicitly
 configured by the client:

Ma, et al. Expires 8 July 2023 [Page 19]

Internet-Draft System-defined Configuration January 2023

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 <protocol or:origin="or:system">tcp</protocol>
 <destination-port or:origin="or:system">21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol or:origin="or:system">udp</protocol>
 <destination-port or:origin="or:system">69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 8 July 2023 [Page 20]

Internet-Draft System-defined Configuration January 2023

 Since the application names "ftp" and "tftp" are explicitly
 configured by the client, they take precedence over the values in
 <system>, the "origin" attribute will be set to "intended".

5.5.3. Modifying a System-instantiated Leaf’s Value

 In this subsection, we will use this fictional QoS data model:

 module example-qos-policy {
 yang-version 1.1;
 namespace "urn:example:qos";
 prefix "qos";

 container qos-policies {
 list policy {
 key "name";
 leaf name {
 type string;
 }
 list queue {
 key "queue-id";
 leaf queue-id {
 type int32 {
 range "1..32";
 }
 }
 leaf maximum-burst-size {
 type int32 {
 range "0..100";
 }
 }
 }
 }
 }
 }

 Suppose a client creates a qos policy "my-policy" with 4 system
 instantiated queues(1˜4). The configuration of qos-policies is
 present in <system> as follows:

Ma, et al. Expires 8 July 2023 [Page 21]

Internet-Draft System-defined Configuration January 2023

 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>50</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

 A client modifies the value of maximum-burst-size to 55 in queue-id
 1:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 </qos-policies>
 </config>
 </edit-config>
 </rpc>

 Then, the configuration of qos-policies is present in <operational>
 as follows:

Ma, et al. Expires 8 July 2023 [Page 22]

Internet-Draft System-defined Configuration January 2023

 <qos-policies xmlns="urn:example:qos"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

5.5.4. Configuring Descendant Nodes of a System-defined Node

 This subsection also uses the fictional interface YANG module defined
 in Appendix C.3 of [RFC8342]. Suppose the system provides a loopback
 interface (named "lo0") with a default IPv4 address of "127.0.0.1"
 and a default IPv6 address of "::1".

 The configuration of "lo0" interface is present in <system> as
 follows:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 The configuration of "lo0" interface is present in <operational> as
 follows:

Ma, et al. Expires 8 July 2023 [Page 23]

Internet-Draft System-defined Configuration January 2023

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 Later on, the client further configures the description node of a
 "lo0" interface as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of interface "lo0" is present in <operational>
 as follows:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address or:origin="or:system">::1</ip-address>
 </interface>
 </interfaces>

6. The "ietf-system-datastore" Module

Ma, et al. Expires 8 July 2023 [Page 24]

Internet-Draft System-defined Configuration January 2023

6.1. Data Model Overview

 This YANG module defines a new YANG identity named "system" that uses
 the "ds:datastore" identity defined in [RFC8342]. A client can
 discover the <system> datastore support on the server by reading the
 YANG library information from the operational state datastore. Note
 that no new origin identity is defined in this document, the
 "or:system" origin Metadata Annotation [RFC7952] is used to indicate
 the origin of a data item is system. Support for the "origin"
 annotation is identified with the feature "origin" defined in
 [RFC8526].

 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-system-datastore" and
 "ietf-datastores" YANG modules:

Identities:
 +--- datastore
 | +--- conventional
 | | +--- running
 | | +--- candidate
 | | +--- startup
 | | +--- system
 | | +--- intended
 | +--- dynamic
 | +--- operational
 The diagram above uses syntax that is similar to but not defined in [RFC8340].

6.2. Example Usage

 This section gives an example of data retrieval from <system>. The
 YANG module used are shown in Appendix C.2 of [RFC8342]. All the
 messages are presented in a protocol-independent manner. JSON is
 used only for its conciseness.

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

Ma, et al. Expires 8 July 2023 [Page 25]

Internet-Draft System-defined Configuration January 2023

 REQUEST (a <get-data> or GET request sent from the NETCONF or
 RESTCONF client):

 Datastore: <system>
 Target:/bgp

 An example of RESTCONF request:

 GET /restconf/ds/system/bgp HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml

 RESPONSE ("local-port" leaf value is supplied by the system):

 {
 "bgp": {
 "peer": {
 "name": "2001:db8::2:3",
 "local-port": "60794"
 }
 }
 }

6.3. YANG Module

 <CODE BEGINS> file "ietf-system-datastore@2023-01-05.yang"

 module ietf-system-datastore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";
 prefix sysds;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture(NMDA)";
 }

 organization
 "IETF NETDOD (Network Modeling) Working Group";
 contact
 "WG Web: https://datatracker.ietf.org/wg/netmod/
 WG List: NETMOD WG list <mailto:netmod@ietf.org>

 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 8 July 2023 [Page 26]

Internet-Draft System-defined Configuration January 2023

 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";
 description
 "This module defines a new YANG identity that uses the
 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2023-01-05 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 identity system {
 base ds:conventional;
 description
 "This read-only datastore contains the configuration
 provided by the system itself.";
 }
 }

 <CODE ENDS>

7. The "ietf-netconf-resolve-system" Module

 This YANG module is optional to implement.

Ma, et al. Expires 8 July 2023 [Page 27]

Internet-Draft System-defined Configuration January 2023

7.1. Data Model Overview

 This YANG module augments NETCONF <edit-config>, <edit-data> and
 <copy-config> operations with a new parameter "resolve-system" in the
 input parameters. If the "resolve-system" parameter is present, the
 server will copy the referenced system configuration into target
 datastore automatically. A NETCONF client can discover the "resolve-
 system" parameter support on the server by checking the YANG library
 information with "ietf-netconf-resolve-system" YANG module included
 from the operational state datastore.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-
 resolve-system" module:

 module: ietf-netconf-resolve-system
 augment /nc:edit-config/nc:input:
 +---w resolve-system? empty
 augment /nc:copy-config/nc:input:
 +---w resolve-system? empty
 augment /ncds:edit-data/ncds:input:
 +---w resolve-system? empty

 The following tree diagram [RFC8340] illustrates "edit-config",
 "copy-config" and "edit-data" rpcs defined in "ietf-netconf" and
 "ietf-netconf-nmda" respectively, augmented by "ietf-netconf-resolve-
 system" YANG module:

 rpcs:
 +---x edit-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | +---w running? empty {writable-running}?
 | +---w default-operation? enumeration
 | +---w test-option? enumeration {validate}?
 | +---w error-option? enumeration
 | +---w (edit-content)
 | | +--:(config)
 | | | +---w config? <anyxml>
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w resolve-system? empty
 +---x copy-config
 | +---w input
 | +---w target

Ma, et al. Expires 8 July 2023 [Page 28]

Internet-Draft System-defined Configuration January 2023

 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty {writable-running}?
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w source
 | | +---w (config-source)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | | +---w url? inet:uri {url}?
 | | +--:(config)
 | | +---w config? <anyxml>
 | +---w resolve-system? empty
 +---x edit-data
 +---w input
 +---w datastore ds:datastore-ref
 +---w default-operation? enumeration
 +---w (edit-content)
 | +--:(config)
 | | +---w config? <anydata>
 | +--:(url)
 | +---w url? inet:uri {nc:url}?
 +---w resolve-system? empty

7.2. Example Usage

 This section gives an example of an <edit-config> request to
 reference system-defined data nodes which are not present in
 <running> with a "resolve-system" parameter. A retrieval of
 <running> to show the auto-copied referenced system configurations
 after the <edit-config> request is also given. The YANG module used
 is shown as follows, leafrefs refer to an existing name and address
 of an interface:

Ma, et al. Expires 8 July 2023 [Page 29]

Internet-Draft System-defined Configuration January 2023

 module example-interface-management {
 yang-version 1.1;
 namespace "urn:example:interfacemgmt";
 prefix "inm";

 container interfaces {
 list interface {
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf mtu {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 }
 }
 container default-address {
 leaf ifname {
 type leafref {
 path "../../interfaces/interface/name";
 }
 }
 leaf address {
 type leafref {
 path "../../interfaces/interface[name = current()/../ifname]"
 + "/ip-address";
 }
 }
 }
 }

 Image that the system provides a loopback interface (named "lo0")
 with a predefined MTU value of "1500" and a predefined IP address of
 "127.0.0.1". The <system> datastore shows the following
 configuration of loopback interface:

Ma, et al. Expires 8 July 2023 [Page 30]

Internet-Draft System-defined Configuration January 2023

 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <mtu>1500</mtu>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>

 The client sends an <edit-config> operation to add the configuration
 of default-address with a "resolve-system" parameter:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <default-address xmlns="urn:example:interfacemgmt">
 <if-name>lo0</if-name>
 <address>127.0.0.1</address>
 </default-address>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Since the "resolve-system" parameter is provided, the server will
 resolve any leafrefs to system configurations and copy the referenced
 system-defined nodes into <running> automatically with the same value
 (i.e., the name and ip-address data nodes of lo0 interface) in
 <system> at the end of <edit-config> operation constraint
 enforcement. After the processing, a positive response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Then the client sends a <get-config> operation towards <running>:

Ma, et al. Expires 8 July 2023 [Page 31]

Internet-Draft System-defined Configuration January 2023

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <interfaces xmlns="urn:example:interfacemgmt"/>
 </filter>
 </get-config>
 </rpc>

 Given that the referenced interface "name" and "ip-address" of lo0
 are configured by the server, the following response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

7.3. YANG Module

 <CODE BEGINS> file "ietf-netconf-resolve-system@2023-01-05.yang"

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 module ietf-netconf-resolve-system {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";
 prefix ncrs;

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }
 import ietf-netconf-nmda {
 prefix ncds;
 reference
 "RFC 8526: NETCONF Extensions to Support the Network
 Management Datastore Architecture";

Ma, et al. Expires 8 July 2023 [Page 32]

Internet-Draft System-defined Configuration January 2023

 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>
 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";
 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control whether the server
 is allowed to copy referenced system configuration
 automatically without the client doing so explicitly.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2023-01-05 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

Ma, et al. Expires 8 July 2023 [Page 33]

Internet-Draft System-defined Configuration January 2023

 grouping resolve-system-grouping {
 description
 "Define the resolve-system parameter grouping.";
 leaf resolve-system {
 type empty;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment "/nc:edit-config/nc:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }

 augment "/nc:copy-config/nc:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }

 augment "/ncds:edit-data/ncds:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }
 }

 <CODE ENDS>

8. IANA Considerations

8.1. The "IETF XML" Registry

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

Ma, et al. Expires 8 July 2023 [Page 34]

Internet-Draft System-defined Configuration January 2023

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers two module names in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-system-datastore
 prefix: sys
 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore
 maintained by IANA: N
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system
 prefix: ncrs
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 maintained by IANA: N
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8.3. RESTCONF Capability URN Registry

 This document registers a capability in the "RESTCONF Capability
 URNs" registry [RFC8040]:

 Index Capability Identifier

 :resolve-system urn:ietf:params:restconf:capability:resolve-system:1.0

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

Ma, et al. Expires 8 July 2023 [Page 35]

Internet-Draft System-defined Configuration January 2023

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] apply to the new extended RPC operations
 defined in this document.

10. Contributors

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

 Jan Lindblad
 Cisco Systems

 Email: jlindbla@cisco.com

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf@chinatelecom.cn

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Ma, et al. Expires 8 July 2023 [Page 36]

Internet-Draft System-defined Configuration January 2023

Acknowledgements

 The authors would like to thank for following for discussions and
 providing input to this document (ordered by first name): Alex Clemm,
 Andy Bierman, Balazs Lengyel, Juergen Schoenwaelder, Martin
 Bjorklund, Mohamed Boucadair, Robert Wilton and Timothy Carey.

References

Normative References

 [RFC2119] Bradner, S. and RFC Publisher, "Key words for use in RFCs
 to Indicate Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 Bierman, A., Ed., and RFC Publisher, "Network
 Configuration Protocol (NETCONF)", RFC 6241,
 DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6470] Bierman, A. and RFC Publisher, "Network Configuration
 Protocol (NETCONF) Base Notifications", RFC 6470,
 DOI 10.17487/RFC6470, February 2012,
 <https://www.rfc-editor.org/info/rfc6470>.

 [RFC7950] Bjorklund, M., Ed. and RFC Publisher, "The YANG 1.1 Data
 Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August
 2016, <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., Watsen, K., and RFC Publisher,
 "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040,
 January 2017, <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 Wilton, R., and RFC Publisher, "Network Management
 Datastore Architecture (NMDA)", RFC 8342,
 DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 Wilton, R., and RFC Publisher, "NETCONF Extensions to
 Support the Network Management Datastore Architecture",
 RFC 8526, DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

Ma, et al. Expires 8 July 2023 [Page 37]

Internet-Draft System-defined Configuration January 2023

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., Tripathy, A., and RFC Publisher, "Subscription to YANG
 Notifications", RFC 8639, DOI 10.17487/RFC8639, September
 2019, <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A., Voit, E., and RFC Publisher, "Subscription to
 YANG Notifications for Datastore Updates", RFC 8641,
 DOI 10.17487/RFC8641, September 2019,
 <https://www.rfc-editor.org/info/rfc8641>.

Informative References

 [I-D.ma-netmod-immutable-flag]
 Ma, Q., Wu, Q., Lengyel, B., and H. Li, "YANG Extension
 and Metadata Annotation for Immutable Flag", Work in
 Progress, Internet-Draft, draft-ma-netmod-immutable-flag-
 04, 20 October 2022,
 <https://datatracker.ietf.org/doc/html/draft-ma-netmod-
 immutable-flag-04>.

 [RFC7317] Bierman, A., Bjorklund, M., and RFC Publisher, "A YANG
 Data Model for System Management", RFC 7317,
 DOI 10.17487/RFC7317, August 2014,
 <https://www.rfc-editor.org/info/rfc7317>.

 [RFC8174] Leiba, B. and RFC Publisher, "Ambiguity of Uppercase vs
 Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A. and RFC Publisher, "Guidelines for Authors and
 Reviewers of Documents Containing YANG Data Models",
 BCP 216, RFC 8407, DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 Wilton, R., and RFC Publisher, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., Niu, Y., and RFC Publisher, "A YANG
 Data Model for Factory Default Settings", RFC 8808,
 DOI 10.17487/RFC8808, August 2020,
 <https://www.rfc-editor.org/info/rfc8808>.

Ma, et al. Expires 8 July 2023 [Page 38]

Internet-Draft System-defined Configuration January 2023

Appendix A. Key Use Cases

 Following provides three use cases related to system-defined
 configuration lifecycle management. The simple interface data model
 defined in Appendix C.3 of [RFC8342] is used. For each use case,
 snippets of <running>, <system>, <intended> and <operational> are
 shown.

A.1. Device Powers On

 <running>:

 No configuration for "lo0" appears in <running>;

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Ma, et al. Expires 8 July 2023 [Page 39]

Internet-Draft System-defined Configuration January 2023

A.2. Client Commits Configuration

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point:

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Ma, et al. Expires 8 July 2023 [Page 40]

Internet-Draft System-defined Configuration January 2023

A.3. Operator Installs Card into a Chassis

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <mtu>1500</mtu>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu>1500</mtu>
 </interface>
 <interface>
 </interfaces>

 <operational>:

Ma, et al. Expires 8 July 2023 [Page 41]

Internet-Draft System-defined Configuration January 2023

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name or:origin>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 <interface>
 </interfaces>

Appendix B. Changes between Revisions

 v00 - v01

 * Clarify why client’s explicit copy is not preferred but cannot be
 avoided if resolve-system parameter is not defined

 * Clarify active system configuration

 * Update the timing when the server’s auto copy should be enforced
 if a resolve-system parameter is used

 * Editorial changes

Appendix C. Open Issues tracking

 * Should the "with-origin" parameter be supported for <intended>?

Authors’ Addresses

 Qiufang Ma (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: maqiufang1@huawei.com

Ma, et al. Expires 8 July 2023 [Page 42]

Internet-Draft System-defined Configuration January 2023

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Feng Chong
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: frank.fengchong@huawei.com

Ma, et al. Expires 8 July 2023 [Page 43]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track Graphiant
Expires: 16 July 2023 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 12 January 2023

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-08

Abstract

 This document specifies a new YANG module update procedure that can
 document when non-backwards-compatible changes have occurred during
 the evolution of a YANG module. It extends the YANG import statement
 with a minimum revision suggestion to help document inter-module
 dependencies. It provides guidelines for managing the lifecycle of
 YANG modules and individual schema nodes. It provides a mechanism,
 via the revision label YANG extension, to specify a revision
 identifier for YANG modules and submodules. This document updates
 RFC 7950, RFC 6020, RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 16 July 2023.

Wilton, et al. Expires 16 July 2023 [Page 1]

Internet-Draft Updated YANG Module Revision Handling January 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 5
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 7
 3.1.2. Non-backwards-compatible changes 8
 3.2. non-backwards-compatible extension statement 8
 3.3. Removing revisions from the revision history 8
 3.4. Revision label . 10
 3.4.1. File names . 10
 3.4.2. Revision label scheme extension statement 11
 3.5. Examples for updating the YANG module revision history . 11
 4. Guidance for revision selection on imports 14
 4.1. Recommending a minimum revision for module imports . . . 15
 4.1.1. Module import examples 16
 5. Updates to ietf-yang-library 17
 5.1. Resolving ambiguous module imports 18
 5.2. YANG library versioning augmentations 18
 5.2.1. Advertising revision-label 19
 5.2.2. Reporting how deprecated and obsolete nodes are
 handled . 19
 6. Versioning of YANG instance data 19
 7. Guidelines for using the YANG module update rules 20
 7.1. Guidelines for YANG module authors 20
 7.1.1. Making non-backwards-compatible changes to a YANG
 module . 21
 7.2. Versioning Considerations for Clients 22
 8. Module Versioning Extension YANG Modules 22
 9. Security considerations 31
 9.1. Security considerations for module revisions 31

Wilton, et al. Expires 16 July 2023 [Page 2]

Internet-Draft Updated YANG Module Revision Handling January 2023

 9.2. Security considerations for the modules defined in this
 document . 32
 10. IANA Considerations . 33
 10.1. YANG Module Registrations 33
 10.2. Guidance for versioning in IANA maintained YANG
 modules . 34
 11. References . 35
 11.1. Normative References 35
 11.2. Informative References 36
 Appendix A. Examples of changes that are NBC 38
 Appendix B. Examples of applying the NBC change guidelines . . . 38
 B.1. Removing a data node 39
 B.2. Changing the type of a leaf node 39
 B.3. Reducing the range of a leaf node 40
 B.4. Changing the key of a list 40
 B.5. Renaming a node . 41
 Contributors . 41
 Authors’ Addresses . 42

1. Introduction

 The current YANG [RFC7950] module update rules require that updates
 of YANG modules preserve strict backwards compatibility. This has
 caused problems as described in
 [I-D.ietf-netmod-yang-versioning-reqs]. This document recognizes the
 need to sometimes allow YANG modules to evolve with non-backwards-
 compatible changes, which can cause breakage to clients and importing
 YANG modules. Accepting that non-backwards-compatible changes do
 sometimes occur, it is important to have mechanisms to report when
 these changes occur, and to manage their effect on clients and the
 broader YANG ecosystem.

 This document defines a flexible versioning solution. Several other
 documents build on this solution with additional capabilities.
 [I-D.ietf-netmod-yang-schema-comparison] specifies an algorithm that
 can be used to compare two revisions of a YANG schema and provide
 granular information to allow module users to determine if they are
 impacted by changes between the revisions. The
 [I-D.ietf-netmod-yang-semver] document extends the module versioning
 work by introducing a revision label scheme based on semantic
 versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a
 mechanism to group sets of related YANG modules together in order to
 manage schema and conformance of YANG modules as a cohesive set
 instead of individually. Finally,
 [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
 mechanism that allows a client to choose which schemas to use when
 interacting with a server from the available schema that are
 supported and advertised by the server. These other documents are

Wilton, et al. Expires 16 July 2023 [Page 3]

Internet-Draft Updated YANG Module Revision Handling January 2023

 mentioned here as informative references. Support of the other
 documents is not required in an implementation in order to take
 advantage of the mechanisms and functionality offered by this module
 versioning document.

 The document comprises five parts:

 * Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes, and an optional
 revision label.

 * Updated guidance for revision selection on imports and a YANG
 extension statement allowing YANG module imports to document an
 earliest module revision that may satisfy the import dependency.

 * Updates and augmentations to ietf-yang-library to include the
 revision label in the module and submodule descriptions, to report
 how "deprecated" and "obsolete" nodes are handled by a server, and
 to clarify how module imports are resolved when multiple revisions
 could otherwise be chosen.

 * Considerations of how versioning applies to YANG instance data.

 * Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
 issues.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4.1 describes a YANG extension statement to
 describe potential YANG import revision dependencies.

 This document updates [RFC7950] section 5.2, [RFC6020] section 5.2
 and [RFC8407] section 3.2. Section 3.4.1 describes the use of a
 revision label in the name of a file containing a YANG module or
 submodule.

 This document updates [RFC7950] section 5.6.5 and [RFC8525].
 Section 5.1 defines how a client of a YANG library datastore schema
 resolves ambiguous imports for modules which are not "import-only".

Wilton, et al. Expires 16 July 2023 [Page 4]

Internet-Draft Updated YANG Module Revision Handling January 2023

 This document updates [RFC8407] section 4.7. Section 7 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include
 revision labels in the YANG library data and two boolean leafs to
 indicate whether status deprecated and status obsolete schema nodes
 are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 In addition, this document uses the following terminology:

 * YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

 * Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 * Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module

Wilton, et al. Expires 16 July 2023 [Page 5]

Internet-Draft Updated YANG Module Revision Handling January 2023

 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

 For a given YANG module revision, revision B is defined as being
 derived from revision A, if revision A is listed in the revision
 history of revision B. Although this document allows for a branched
 revision history, a given YANG module revision history does not
 contain all revisions in all possible branches, it only lists those
 from which is was derived, i.e., the module revision’s history
 describes a single path of derived revisions back to the root of the
 module’s revision history.

 A corollary to the text above is that the ancestry (derived
 relationship) between two module or submodule revisions cannot be
 determined by comparing the module or submodule revision date or
 label alone - the revision history must be consulted.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 MAY be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are BC to the previous revision of the
 module. This document introduces a method to indicate that an NBC
 change has occurred between module revisions: this is done by using a
 new "non-backwards-compatible" YANG extension statement in the module
 revision history.

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

Wilton, et al. Expires 16 July 2023 [Page 6]

Internet-Draft Updated YANG Module Revision Handling January 2023

 A new module revision MAY contain NBC changes, e.g., the semantics of
 an existing data-node definition MAY be changed in an NBC manner
 without requiring a new data-node definition with a new identifier.
 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 Note that NBC changes often create problems for clients, thus it is
 recommended to avoid making them.

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date. This applies even for module
 revisions containing (in the module or included submodules) only
 changes to any whitespace, formatting, comments or line endings
 (e.g., DOS vs UNIX).

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 * A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is a non-backwards-compatible change.

 * YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and the removal is classified as a
 backwards-compatible change. In some circumstances it may be
 helpful to retain the obsolete definitions since their identifiers
 may still be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 * A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 * Any change made to the "revision-date" or "recommended-min"
 substatements of an "import" statement, including adding new
 "revision-date" or "recommended-min" substatements, changing the
 argument of any "revision-date" or "recommended-min"
 substatetements, or removing any "revision-date" or "recommended-
 min" substatements, is classified as backwards-compatible.

Wilton, et al. Expires 16 July 2023 [Page 7]

Internet-Draft Updated YANG Module Revision Handling January 2023

 * Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards-
 compatible.

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

 Adding, modifying or removing a "rev:non-backwards-compatible"
 extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule. Doing so can
 lead to import breakages when import by recommended-min is used.
 Moreover, truncating history may cause loss of visibility of when
 non-backwards-compatible changes were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable
 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible substatements on all remaining entries still
 accurately reflect the compatibility relationship to their preceding
 entries remaining in the revision history.

Wilton, et al. Expires 16 July 2023 [Page 8]

Internet-Draft Updated YANG Module Revision Handling January 2023

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

 revision 2020-11-11 {
 rev:label 4.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-08-09 {
 rev:label 3.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-06-07 {
 rev:label 2.1.0;
 }

 revision 2020-02-10 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 }

 revision 2019-10-21 {
 rev:label 1.1.3;
 }

 revision 2019-03-04 {
 rev:label 1.1.2;
 }

 revision 2019-01-02 {
 rev:label 1.1.1;
 }

 In the revision history example above, removing the revision history
 entry for 2020-02-10 would also remove the rev:non-backwards-
 compatible annotation and hence the resulting revision history would
 incorrectly indicate that revision 2020-06-07 is backwards-compatible
 with revisions 2019-01-02 through 2019-10-21 when it is not, and so
 this change cannot be made. Conversely, removing one or more
 revisions out of 2019-03-04, 2019-10-21 and 2020-08-09 from the
 revision history would still retain a consistent revision history,
 and is acceptable, subject to an awareness of the concerns raised in
 the first paragraph of this section.

Wilton, et al. Expires 16 July 2023 [Page 9]

Internet-Draft Updated YANG Module Revision Handling January 2023

3.4. Revision label

 Each revision entry in a module or submodule MAY have a revision
 label associated with it, providing an alternative alias to identify
 a particular revision of a module or submodule. The revision label
 could be used to provide an additional versioning identifier
 associated with the revision.

 A revision label scheme is a set of rules describing how a particular
 type of revision label operates for versioning YANG modules and
 submodules. For example, YANG Semver [I-D.ietf-netmod-yang-semver]
 defines a revision label scheme based on Semver 2.0.0 [semver].
 Other documents may define other YANG revision label schemes.

 Submodules MAY use a revision label scheme. When they use a revision
 label scheme, submodules MAY use a revision label scheme that is
 different from the one used in the including module.

 The revision label space of submodules is separate from the revision
 label space of the including module. A change in one submodule MUST
 result in a new revision label of that submodule and the including
 module, but the actual values of the revision labels in the module
 and submodule could be completely different. A change in one
 submodule does not result in a new revision label in another
 submodule. A change in a module revision label does not necessarily
 mean a change to the revision label in all included submodules.

 If a revision has an associated revision label, then it may be used
 instead of the revision date in a "rev:recommended-min" extension
 statement argument.

 A specific revision label identifies a specific revision of the
 module. If two YANG modules contain the same module name and the
 same revision label (and hence also the same revision-date) in their
 latest revision statement, then the file contents of the two modules,
 including the revision history, MUST be identical.

3.4.1. File names

 This section updates [RFC7950] section 5.2, [RFC6020] section 5.2 and
 [RFC8407] section 3.2

 If a revision has an associated revision label, then it is
 RECOMMENDED that the name of the file for that revision be of the
 form:

Wilton, et al. Expires 16 July 2023 [Page 10]

Internet-Draft Updated YANG Module Revision Handling January 2023

 module-or-submodule-name [’#’ revision-label] (’.yang’ / ’.yin’)

 E.g., acme-router-module#2.0.3.yang

 YANG module (or submodule) files may be identified using either the
 revision-date (as per [RFC8407] section 3.2) or the revision label.

3.4.2. Revision label scheme extension statement

 The optional "rev:revision-label-scheme" extension statement is used
 to indicate which revision label scheme a module or submodule uses.
 There MUST NOT be more than one revision label scheme in a module or
 submodule. The mandatory argument to this extension statement:

 * specifies the revision label scheme used by the module or
 submodule

 * is defined in the document which specifies the revision label
 scheme

 * MUST be an identity derived from "revision-label-scheme-base".

 The revision label scheme used by a module or submodule SHOULD NOT
 change during the lifetime of the module or submodule. If the
 revision label scheme used by a module or submodule is changed to a
 new scheme, then all revision label statements that do not conform to
 the new scheme MUST be replaced or removed.

3.5. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how the branched revision history, "non-backwards-compatible"
 extension statement, and revision "label" extension statement could
 be used:

 Example YANG module with branched revision history.

Wilton, et al. Expires 16 July 2023 [Page 11]

Internet-Draft Updated YANG Module Revision Handling January 2023

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

 Example module, revision 2019-06-01:

Wilton, et al. Expires 16 July 2023 [Page 12]

Internet-Draft Updated YANG Module Revision Handling January 2023

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-06-01 {
 rev:label 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 rev:label 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

 Example module, revision 2019-05-01:

Wilton, et al. Expires 16 July 2023 [Page 13]

Internet-Draft Updated YANG Module Revision Handling January 2023

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-05-01 {
 rev:label 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 rev:label 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Guidance for revision selection on imports

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a specific revision
 date. In practice, importing a module with an exact revision date
 can be too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs, and hence
 section Section 7.1 suggests that authors do not restrict YANG module
 imports to exact revision dates.

Wilton, et al. Expires 16 July 2023 [Page 14]

Internet-Draft Updated YANG Module Revision Handling January 2023

 Instead, for conformance purposes (section 5.6 of [RFC7950]), the
 recommended approach for defining the relationship between specific
 YANG module revisions is to specify the relationships outside of the
 YANG modules, e.g., via YANG library [RFC8525], YANG packages
 [I-D.ietf-netmod-yang-packages], a filesystem directory containing a
 set of consistent YANG module revisions, or a revision control system
 commit label.

4.1. Recommending a minimum revision for module imports

 Although the previous section indicates that the actual relationship
 constraints between different revisions of YANG modules should be
 specified outside of the modules, in some scenarios YANG modules are
 designed to be loosely coupled, and implementors may wish to select
 sets of YANG module revisions that are expected to work together.
 For these cases it can be helpful for a module author to provide
 guidance on a recommended minimum revision that is expected to
 satisfy an YANG import. E.g., the module author may know of a
 dependency on a type or grouping that has been introduced in a
 particular imported YANG module revision. Although there can be no
 guarantee that all derived future revisions from the particular
 imported module will necessarily also be compatible, older revisions
 of the particular imported module are very unlikely to ever be
 compatible.

 This document introduces a new YANG extension statement to provide
 guidance to module implementors on a recommended minimum module
 revision of an imported module that is anticipated to be compatible.
 This statement has been designed to be machine-readable so that tools
 can parse the minimum revision extension statement and generate
 warnings if appropriate, but this extension statement does not alter
 YANG module conformance of valid YANG module versions in any way, and
 specifically it does not alter the behavior of the YANG module import
 statement from that specified in [RFC7950].

 The ietf-revisions module defines the "recommended-min" extension
 statement, a substatement to the YANG "import" statement, to allow
 for a "minimum recommended revision" to be documented:

 The argument to the "recommended-min" extension statement is a
 revision date or a revision label.

Wilton, et al. Expires 16 July 2023 [Page 15]

Internet-Draft Updated YANG Module Revision Handling January 2023

 A particular revision of an imported module adheres to an import’s
 "recommended-min" extension statement if the imported module’s
 revision history contains a revision statement with a matching
 revision date or revision label. Removing entries from a module’s
 revision history may cause a particular revision to no longer
 satisfy an import’s "recommended-min" statement if the revision-
 date or label is no longer present in the module’s revision
 history; further described in Section 3.3 and Section 7.1.

 The "recommended-min" extension statement MAY be specified
 multiple times, allowing a set of recommended minimum revisions to
 be documented. Module implementors are recommended to pick a
 module revision that adheres to any of the "recommended-min"
 statements.

 Adding, modifying or removing a "recommended-min" extension
 statement is a BC change.

4.1.1. Module import examples

 Consider the example module "example-module" from Section 3.5 that is
 hypothetically available in the following revision/label pairings:
 2019-01-01/1.0.0, 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0. The
 relationship between the revisions is as before:

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

4.1.1.1. Example 1

 This example recommends module revisions for import that match, or
 are derived from the revision 2019-02-01. E.g., this dependency
 might be used if there was a new container added in revision
 2019-02-01 that is augmented by the importing module. It includes
 revisions/labels: 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0.

Wilton, et al. Expires 16 July 2023 [Page 16]

Internet-Draft Updated YANG Module Revision Handling January 2023

 import example-module {
 rev:recommended-min 2019-02-01;
 }

 Alternatively, the first example could have used the revision label
 "2.0.0" instead, which selects the same set of revisions/labels.

 import example-module {
 rev:recommended-min 2.0.0;
 }

4.1.1.2. Example 2

 This example recommends module revisions for import that are derived
 from 2019-04-01 by using the revision label 2.1.0. It includes
 revisions/labels: 2019-04-01/2.1.0 and 2019-05-01/2.2.0. Even though
 2019-06-01/3.1.0 has a higher revision label number than
 2019-04-01/2.1.0 it is not a derived revision, and hence it is not a
 recommended revision for import.

 import example-module {
 rev:recommended-min 2.1.0;
 }

4.1.1.3. Example 3

 This example recommends module revisions for import that are derived
 from either 2019-04-01 or 2019-06-01. It includes revisions/labels:
 2019-04-01/2.1.0, 2019-05-01/2.2.0, and 2019-06-01/3.1.0.

 import example-module {
 rev:recommended-min 2019-04-01;
 rev:recommended-min 2019-06-01;
 }

5. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-revisions, that augments
 YANG library [RFC8525] with revision labels and two leafs to indicate
 how a server implements deprecated and obsolete schema nodes.

Wilton, et al. Expires 16 July 2023 [Page 17]

Internet-Draft Updated YANG Module Revision Handling January 2023

5.1. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the "import-only"
 list, with the requirement from [RFC7950] section 5.6.5 that only a
 single revision of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific
 revision within the datastore schema then it could be ambiguous as to
 which module revision the import statement should resolve to. Hence,
 a datastore schema constructed by a client using the information
 contained in YANG library may not exactly match the datastore schema
 actually used by the server.

 The following two rules remove the ambiguity:

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an "import-only" module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, then the import MUST resolve to the module revision
 with the latest revision date.

5.2. YANG library versioning augmentations

 The "ietf-yang-library-revisions" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-revisions
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

Wilton, et al. Expires 16 July 2023 [Page 18]

Internet-Draft Updated YANG Module Revision Handling January 2023

5.2.1. Advertising revision-label

 The ietf-yang-library-revisions YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "revision-label" leafs to
 optionally declare the revision label associated with each module and
 submodule.

5.2.2. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-library-revisions YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used to explicitly remove "deprecated" nodes from the
 schema. If this leaf is set to "false" or absent, then the
 behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true".

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Versioning of YANG instance data

 Instance data sets [RFC9195] do not directly make use of the updated
 revision handling rules described in this document, as compatibility
 for instance data is undefined.

 However, instance data specifies the content-schema of the data-set.
 This schema SHOULD make use of versioning using revision dates and/or
 revision labels for the individual YANG modules that comprise the
 schema or potentially for the entire schema itself (e.g.,
 [I-D.ietf-netmod-yang-packages]).

Wilton, et al. Expires 16 July 2023 [Page 19]

Internet-Draft Updated YANG Module Revision Handling January 2023

 In this way, the versioning of a content-schema associated with an
 instance data set may help a client to determine whether the instance
 data could also be used in conjunction with other revisions of the
 YANG schema, or other revisions of the modules that define the
 schema.

7. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

7.1. Guidelines for YANG module authors

 All IETF YANG modules MUST include revision label statements for all
 newly published YANG modules, and all newly published revisions of
 existing YANG modules. The revision label MUST take the form of a
 YANG semantic version number [I-D.ietf-netmod-yang-semver].

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history
 could break import by revision, and hence it is RECOMMENDED to retain
 them. If all dependencies have been updated to not import specific
 revisions of a module, then the corresponding revision statements can
 be removed from that module. An alternative solution, if the
 revision section is too long, would be to remove, or curtail, the
 older description statements associated with the previous revisions.

 The "rev:recommended-min" extension MAY be used in YANG module
 imports to indicate revision dependencies between modules in
 preference to the "revision-date" statement, which causes overly
 strict import dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

Wilton, et al. Expires 16 July 2023 [Page 20]

Internet-Draft Updated YANG Module Revision Handling January 2023

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 * A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

7.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are some guidelines on how non-
 backwards-compatible changes can be made incrementally, with the
 assumption that deprecated nodes are implemented by the server, and
 obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to "obsolete". The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidently reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

Wilton, et al. Expires 16 July 2023 [Page 21]

Internet-Draft Updated YANG Module Revision Handling January 2023

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

 See Appendix B for examples on how NBC changes can be made.

7.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 * Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 * Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 * Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

8. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,
 revision label, revision label scheme, and importing by revision.

Wilton, et al. Expires 16 July 2023 [Page 22]

Internet-Draft Updated YANG Module Revision Handling January 2023

 <CODE BEGINS> file "ietf-yang-revisions@2022-11-29.yang"
 module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2002 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

Wilton, et al. Expires 16 July 2023 [Page 23]

Internet-Draft Updated YANG Module Revision Handling January 2023

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2022-11-29 {
 rev:label "1.0.0-draft-ietf-netmod-yang-module-versioning-08";
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 typedef revision-date {
 type string {
 pattern ’[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])’;
 }
 description
 "A date associated with a YANG revision.

 Matches dates formatted as YYYY-MM-DD.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language";
 }

 typedef revision-label {
 type string {
 length "1..255";
 pattern ’[a-zA-Z0-9,\-_.+]+’;
 pattern ’[0-9]{4}-[0-9]{2}-[0-9]{2}’ {
 modifier "invert-match";
 error-message
 "The revision-label must not match a revision-date.";
 }
 }
 description
 "A label associated with a YANG revision.

 Alphanumeric characters, comma, hyphen, underscore, period
 and plus are the only accepted characters. MUST NOT match
 revision-date or pattern similar to a date.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 typedef revision-date-or-label {
 type union {

Wilton, et al. Expires 16 July 2023 [Page 24]

Internet-Draft Updated YANG Module Revision Handling January 2023

 type revision-date;
 type revision-label;
 }
 description
 "Represents either a YANG revision date or a revision label";
 }

 extension non-backwards-compatible {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards-compatible module update rules
 defined in RFC-XXX, then the ’non-backwards-compatible’
 statement MUST be added as a substatement to the revision
 statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,
 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards-compatible SHOULD NOT include the
 ’non-backwards-compatible’ statement. An example of when an
 author might add the ’non-backwards-compatible’ statement is
 if they believe a change could negatively impact clients even
 though the backwards compatibility rules defined in RFC-XXXX
 classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2,
 non-backwards-compatible revision extension statement";
 }

 extension label {
 argument revision-label;
 description

Wilton, et al. Expires 16 July 2023 [Page 25]

Internet-Draft Updated YANG Module Revision Handling January 2023

 "The revision label can be used to provide an additional
 versioning identifier associated with a module or submodule
 revision. One such scheme that could be used is [XXXX:
 ietf-netmod-yang-semver].

 The format of the revision label argument MUST conform to the
 pattern defined for the revision label typedef in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one revision label statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Revision labels MUST be unique amongst all revisions of a
 module or submodule.

 Adding a revision label is a backwards-compatible version
 change. Changing or removing an existing revision label in
 the revision history is a non-backwards-compatible version
 change, because it could impact any references to that
 revision label.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 extension revision-label-scheme {
 argument revision-label-scheme-base;
 description
 "The revision label scheme specifies which revision label
 scheme the module or submodule uses.

 The mandatory revision-label-scheme-base argument MUST be an
 identity derived from revision-label-scheme-base.

 This extension is only valid as a top-level statement, i.e.,
 given as as a substatement to ’module’ or ’submodule’. No
 substatements for this extension have been standardized.

 This extension MUST be used if there is a revision label
 statement in the module or submodule.

 Adding a revision label scheme is a backwards-compatible
 version change. Changing a revision label scheme is a
 non-backwards-compatible version change, unless the new
 revision label scheme is backwards-compatible with the
 replaced revision label scheme. Removing a revision label
 scheme is a non-backwards-compatible version change.";

Wilton, et al. Expires 16 July 2023 [Page 26]

Internet-Draft Updated YANG Module Revision Handling January 2023

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }

 extension recommended-min {
 argument revision-date-or-label;
 description
 "Recommends the revision of the module that may be imported to
 one that matches or is derived from the specified
 revision-date or revision label.

 The argument value MUST conform to the
 ’revision-date-or-label’ defined type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min’ statements per
 parent statement are allowed. No substatements for this
 extension have been standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’recommended-min’ statements is
 an acceptable recommended revision for import.

 A particular revision of an imported module adheres to an
 import’s ’recommended-min’ extension statement if the imported
 module’s revision history contains a revision statement with a
 matching revision date or revision label.

 Adding, removing or updating a ’recommended-min’ statement to
 an import is a backwards-compatible change.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 4,
 Recommending a minimum revision for module imports";
 }

 identity revision-label-scheme-base {
 description
 "Base identity from which all revision label schemes are
 derived.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }
 }
 <CODE ENDS>

 YANG module with augmentations to YANG Library to revision labels

Wilton, et al. Expires 16 July 2023 [Page 27]

Internet-Draft Updated YANG Module Revision Handling January 2023

 <CODE BEGINS> file "ietf-yang-library-revisions@2021-11-04.yang"
 module ietf-yang-library-revisions {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions";
 prefix yl-rev;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level revision label and to provide an indication of how
 deprecated and obsolete nodes are handled by the server.

 Copyright (c) 2002 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to

Wilton, et al. Expires 16 July 2023 [Page 28]

Internet-Draft Updated YANG Module Revision Handling January 2023

 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace label version with 1.0.0 and
 // remove this note.

 revision 2021-11-04 {
 rev:label "1.0.0-draft-ietf-netmod-yang-module-versioning-05";
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 // library 1.0 modules-state is not augmented with revision-label

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the revision label value in the
 specific revision of the module loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment
 "/yanglib:yang-library/yanglib:module-set/yanglib:module/"

Wilton, et al. Expires 16 July 2023 [Page 29]

Internet-Draft Updated YANG Module Revision Handling January 2023

 + "yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the revision label value in the
 specific revision of the submodule included by the module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the revision label value in the
 specific revision of the module included in this
 module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific
 revision of the submodule included by the import-only-module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }

Wilton, et al. Expires 16 July 2023 [Page 30]

Internet-Draft Updated YANG Module Revision Handling January 2023

 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";
 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes
 with a status ’deprecated’ are implemented equivalently as
 if they had status ’current’; otherwise deviations MUST be
 used to explicitly remove deprecated nodes from the schema.
 If this leaf is absent or set to false, then the behavior is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }
 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf
 is absent or set to false, then the behaviour is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 5.2.2,
 Reporting how deprecated and obsolete nodes are handled";
 }
 }
 }
 <CODE ENDS>

9. Security considerations

9.1. Security considerations for module revisions

 As discussed in the introduction of this document, YANG modules
 occasionally undergo changes that are not backwards compatible. This
 occurs in both standards and vendor YANG modules despite the
 prohibitions in RFC 7950. RFC 7950 also allows nodes to change to
 status ’obsolete’ which can change behavior and compatibility for a
 client.

Wilton, et al. Expires 16 July 2023 [Page 31]

Internet-Draft Updated YANG Module Revision Handling January 2023

 The fact that YANG modules change in a non-backwards-compatible
 manner may have security implications. Such changes should be
 carefully considered, including the scenarios described below. The
 rev:non-backwards-compatible extension statement introduced in this
 document provides an alert that the module or submodule may contain
 changes that impact users and need to be examined more closely for
 both compatibility and potential security implications. Flagging the
 change reduces the risk of introducing silent exploitable
 vulnerabilities.

 When a module undergoes a non-backwards-compatible change, a server
 may implement different semantics for a given leaf than a client
 using an older version of the module is expecting. If the particular
 leaf controls any security functions of the device, or is related to
 parts of the configuration or state that are sensitive from a
 security point of view, then the difference in behavior between the
 old and new revisions needs to be considered carefully. In
 particular, changes to the default of the leaf should be examined.

 Implementors and users should also consider impact to data node
 access control rules (e.g. The Network Configuration Access Control
 Model (NACM) [RFC8341]) in the face of non-backwards-compatible
 changes. Access rules may need to be adjusted when a new module
 revision is introduced that contains a non-backwards-compatible
 change.

 If the changes to a module or submodule have security implications,
 it is recommended to highlight those implications in the description
 of the revision statement.

9.2. Security considerations for the modules defined in this document

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 This document does not define any new protocol or data nodes that are
 writable.

Wilton, et al. Expires 16 July 2023 [Page 32]

Internet-Draft Updated YANG Module Revision Handling January 2023

 This document updates YANG Library [RFC8525] with augmentations to
 include revision labels in the YANG library data and two boolean
 leafs to indicate whether status deprecated and status obsolete
 schema nodes are implemented by the server. These read-only
 augmentations do not add any new security considerations beyond those
 already present in [RFC8525].

10. IANA Considerations

10.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-library-revisions module:

 Name: ietf-yang-library-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 revisions

 Prefix: yl-rev

 Reference: [RFCXXXX]

Wilton, et al. Expires 16 July 2023 [Page 33]

Internet-Draft Updated YANG Module Revision Handling January 2023

10.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example,
 "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
 (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

Wilton, et al. Expires 16 July 2023 [Page 34]

Internet-Draft Updated YANG Module Revision Handling January 2023

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

11. References

11.1. Normative References

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 08, 24 October 2022, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-semver-08.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed. and RFC Publisher, "YANG - A Data
 Modeling Language for the Network Configuration Protocol
 (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 Bierman, A., Ed., and RFC Publisher, "Network
 Configuration Protocol (NETCONF)", RFC 6241,
 DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

Wilton, et al. Expires 16 July 2023 [Page 35]

Internet-Draft Updated YANG Module Revision Handling January 2023

 [RFC7950] Bjorklund, M., Ed. and RFC Publisher, "The YANG 1.1 Data
 Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August
 2016, <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A., Bjorklund, M., and RFC Publisher, "Network
 Configuration Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E. and RFC Publisher, "The Transport Layer
 Security (TLS) Protocol Version 1.3", RFC 8446,
 DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

11.2. Informative References

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://www.ietf.org/archive/id/draft-clacla-
 netmod-yang-model-update-06.txt>.

Wilton, et al. Expires 16 July 2023 [Page 36]

Internet-Draft Updated YANG Module Revision Handling January 2023

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 packages-03.txt>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-schema-comparison-01.txt>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 ver-selection-00.txt>.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-07, 10 July 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 versioning-reqs-07.txt>.

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M., Berger, L., Ed., and RFC Publisher, "YANG
 Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340,
 March 2018, <https://www.rfc-editor.org/info/rfc8340>.

 [RFC9195] Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
 2022, <https://www.rfc-editor.org/info/rfc9195>.

Wilton, et al. Expires 16 July 2023 [Page 37]

Internet-Draft Updated YANG Module Revision Handling January 2023

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 * Deleting a data node, or changing it to status obsolete.

 * Changing the name, type, or units of a data node.

 * Modifying the description in a way that changes the semantic
 meaning of the data node.

 * Any changes that remove any previously allowed values from the
 allowed value set of the data node, either through changes in the
 type definition, or the addition or changes to "must" statements,
 or changes in the description.

 * Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 * Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 7.1.1.

 The examples are all for "config true" nodes.

Wilton, et al. Expires 16 July 2023 [Page 38]

Internet-Draft Updated YANG Module Revision Handling January 2023

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 "vpn-name" is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. One
 possible option is to have the server prevent the new node from
 being set if the old node is already set (and vice-versa). The
 new node could have a "when" statement added to it to achieve
 this. The old node, however, must not have a "when" statement
 added, or an existing "when" modified to be more restrictive,
 since this would be an NBC change. In any case, the server could
 reject the old node from being set if the new node is already
 set.

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

Wilton, et al. Expires 16 July 2023 [Page 39]

Internet-Draft Updated YANG Module Revision Handling January 2023

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent entries in the new list from
 being created if the old list already has entries (and vice-
 versa).

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Wilton, et al. Expires 16 July 2023 [Page 40]

Internet-Draft Updated YANG Module Revision Handling January 2023

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent the new node from being set
 if the old node is already set (and vice-versa). The new node
 could have a "when" statement added to it to achieve this. The
 old node, however, must not have a "when" statement added, or an
 existing "when" modified to be more restrictive, since this would
 be an NBC change. In any case, the server could reject the old
 node from being set if the new node is already set.

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The authors and the following individuals
 are (or have been) members of the design team and have worked on the
 YANG versioning project:

Wilton, et al. Expires 16 July 2023 [Page 41]

Internet-Draft Updated YANG Module Revision Handling January 2023

 Benoit Claise
 benoit.claise@huawei.com

 Bo Wu
 lana.wubo@huawei.com

 Ebben Aries
 exa@juniper.net

 Jan Lindblad
 lindbla@cisco.com

 Juergen Schoenwaelder
 j.shoenwaelder@jacobs-university.de

 Mahesh Jethanandani
 mjethanandani@gmail.com

 Michael (Wangzitao)
 wangzitao@huawei.com

 Per Andersson
 perander@cisco.com

 Qin Wu
 bill.wu@huawei.com

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussions on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen for
 their contributions and review comments.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

Wilton, et al. Expires 16 July 2023 [Page 42]

Internet-Draft Updated YANG Module Revision Handling January 2023

 Reshad Rahman (editor)
 Graphiant
 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson
 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

Wilton, et al. Expires 16 July 2023 [Page 43]

Network Working Group P. Andersson, Ed.

Internet-Draft R. Wilton

Updates: 7950 (if approved) Cisco Systems, Inc.

Intended status: Standards Track 11 March 2023

Expires: 12 September 2023

 YANG Schema Comparison

 draft-ietf-netmod-yang-schema-comparison-02

Abstract

 This document specifies an algorithm for comparing two revisions of a

 YANG schema to determine the scope of changes, and a list of changes,

 between the revisions. The output of the algorithm can be used to

 help select an appropriate revision-label or YANG semantic version

 number for a new revision. This document defines a YANG extension

 that provides YANG annotations to help the tool accurately determine

 the scope of changes between two revisions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Andersson & Wilton Expires 12 September 2023 [Page 1]

Internet-Draft YANG Schema Comparison March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Key Issues . 3

 1.1. On-wire vs Schema analysis 3

 1.2. error-tags, error messages, and other error statements . 4

 1.3. Comparison on module or full schema (YANG artifact,

 arbitrary blob. Questions 4

 2. Open Issues . 4

 2.1. Override/per-node tags 5

 2.2. Separate rules for config vs state 5

 2.3. Tool/report verbosity 5

 2.4. sub-modules . 5

 2.5. Write algorithm in pseudo code or just describe the rules/

 goals in text? . 5

 2.6. Categories in the report: bc, nbc, potentially-nbc,

 editorial. Allow filtering in the draft without defining

 it? . 5

 2.7. Only for YANG 1.1? 5

 2.8. renamed-from . 5

 3. Tool options . 5

 4. Introduction . 6

 5. Terminology and Conventions 7

 6. Generic YANG schema tree comparison algorithm 8

 6.1. YANG module revision scope extension annotations 9

 6.2. Node compatibility extension statements 9

 7. YANG module comparison algorithm 13

 8. YANG schema comparison algorithms 13

 8.1. Standard YANG schema comparison algorithm 13

 8.2. Filtered YANG schema comparison algorithm 14

 9. Comparison tooling . 15

 10. Module Versioning Extension YANG Modules 15

 11. Contributors . 21

 12. Security Considerations 22

 13. IANA Considerations . 22

 13.1. YANG Module Registrations 22

 14. References . 22

 14.1. Normative References 22

 14.2. Informative References 23

 Authors’ Addresses . 24

Andersson & Wilton Expires 12 September 2023 [Page 2]

Internet-Draft YANG Schema Comparison March 2023

1. Key Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The contributors have identified several key issues that need

 attention. This section presents selected key issues which have been

 discussed together with suggestions for proposed solution or

 requirements.

1.1. On-wire vs Schema analysis

 Should one algorithm be used or two? The consesus reached was to

 define two separate algorithms, one for on-wire format and one for

 schema.

 On the wire: the focus is on what types of changes affect the client

 requests and server responses for YANG driven protocols, e.g.

 NETCONF, RESTCONF, gNMI. If the same requests and responses occur,

 then there is no "on the wire" impact of the change. For example,

 changing the name of a "choice" has no impact "on the wire". For

 many clients, this level of compatiblity is enough.

 Schema: any changes that affect the YANG schema in an NBC manner

 according to the full rules of

 [I-D.ietf-netmod-yang-module-versioning]. This may be important for

 clients that, for example, automatically generate code using the YANG

 and where the change of a typedef name or a choice name could be

 significant. Also important for other modules that may augment or

 deviate the schema being compared.

 Changes to the module that aren’t semantic should raise that there

 has been editorial changes

 Ordering in the schema, RFC 7950 doesn’t allow reordering; thus an

 NBC change.

 Open Questions:

 Groupings / uses

 typedefs, namespaces, choice names, prefixes, module metadata.

 * typedef renaming (on-wire, same base type etc)

 * Should all editorial (text) diffs be reported?

Andersson & Wilton Expires 12 September 2023 [Page 3]

Internet-Draft YANG Schema Comparison March 2023

 * What about editorial changes that might change semantics, e.g. a

 description of a leaf?

 * Metadata arguments which relies on the formatted input text. E.g

 description, contact (etc), extension (how does the user want to

 tune verbosity level for editorial changes: whitespace, spelling,

 editorial, potentially-nbc?

 * XPath, must, when: don’t normalize XPath expressions

 * presence statements

1.2. error-tags, error messages, and other error statements

 Error tags and messages might be relied on verbatim by users.

 * error-tag: standardized in [RFC6241]

 * error-app-tag: arbitrary text ([RFC6241] but also model)

 * error-message: arbitrary

 Failed must statement, error-message, assumed NBC

 Default behaviour is changes to error tags, messages etc are NBC.

1.3. Comparison on module or full schema (YANG artifact, arbitrary

 blob. Questions

 * features

 * packages vs directories vs libraries vs artifact

 * package specific comparison, package metadata or only looking at

 the modules

 * import only or implemented module

 Filter out comparison for a specific subrtree, path etc. Use case

 for on-wire e.g. yang subscriptions, did the model change fro what is

 subscribed on?

2. Open Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The following issues have not ben discussed in any wider extent yet.

Andersson & Wilton Expires 12 September 2023 [Page 4]

Internet-Draft YANG Schema Comparison March 2023

2.1. Override/per-node tags

2.2. Separate rules for config vs state

2.3. Tool/report verbosity

 * where to report changes (module, grouping, typedef, uses)

 * output level (conceptual level or exact strings)

 * granularity: error/warning/info level per reported change category

2.4. sub-modules

2.5. Write algorithm in pseudo code or just describe the rules/goals in

 text?

2.6. Categories in the report: bc, nbc, potentially-nbc, editorial.

 Allow filtering in the draft without defining it?

 One option can be to have a tool option that presents the reason

 behind the decision, e.g. --details could be used to explain to the

 user why a certain change was marked as nbc.

 Another option is to present reasoning and analysis in deeper levels

 of verbosity; e.g. one extra level of verbosity, -v, could present

 the reason for categorizing a change nbc, and an additional extra

 level of verbosity, e.g. -vv, could also present the detailed

 analysis the tool made to categorize the change.

2.7. Only for YANG 1.1?

2.8. renamed-from

3. Tool options

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 During the work a list of useful tool options are identified for

 later discussion and publication in an appendix.

 * An option for how to interpret description changes (for the on-

 wire algorithm) by default, e.g. treat them as editorial or nbc.

 * Option: --skip-error-tags, etc

Andersson & Wilton Expires 12 September 2023 [Page 5]

Internet-Draft YANG Schema Comparison March 2023

4. Introduction

 Warning, this is an early (-00) draft with the intention of scoping

 the outline of the solution, hopefully for the WG to back the

 direction of the solution. Refinement of the solution details is

 expected, if this approach is accepted by the WG.

 This document defines a solution to Requirement 2.2 in

 [I-D.ietf-netmod-yang-versioning-reqs]. Complementary documents

 provide a complete solution to the YANG versioning requirements, with

 the overall relationship of the solution drafts described in

 [I-D.ietf-netmod-yang-solutions].

 YANG module ’revision-labels’

 [I-D.ietf-netmod-yang-module-versioning] and the use of YANG semantic

 version numbers [I-D.ietf-netmod-yang-semver] can be used to help

 manage and report changes between revisions of individual YANG

 modules.

 YANG packages [I-D.ietf-netmod-yang-packages] along with YANG

 semantic version numbers can be used to help manage and report

 changes between revisions of YANG schema.

 [I-D.ietf-netmod-yang-module-versioning] and

 [I-D.ietf-netmod-yang-packages] define how to classify changes

 between two module or package revisions, respectively, as backwards

 compatible or non-backwards-compatible.

 [I-D.ietf-netmod-yang-semver] refines the definition, to allow

 backwards compatible changes to be classified as ’minor changes’ or

 ’editorial changes’.

 ’Revision-label’s and YANG semantic version numbers, whilst being

 generally simple and helpful in the mainline revision history case,

 are not sufficient in all scenarios. For example, when comparing two

 revisions/versions on independent revision branches, without a direct

 ancestor relationship between the two revisions/versions. In this

 cases, an algorithmic comparison approach is beneficial.

 In addition, the module revision history’s ’nbc-changes’ extension

 statement, and YANG semantic version numbers, effectively declare the

 worst case scenario. If any non-backwards-compatible changes are

 restricted to only parts of the module/schema that are not used by an

 operator, then the operator is able to upgrade, and effectively treat

 the differences between the two revisions/versions as backwards

 compatible because they are not materially impacted by the non-

 backwards-compatible changes.

Andersson & Wilton Expires 12 September 2023 [Page 6]

Internet-Draft YANG Schema Comparison March 2023

 Hence, this document defines algorithms that can be applied to

 revisions of YANG modules or versions of YANG schema (e.g., as

 represented by YANG packages), to determine the changes, and scope of

 changes between the revisions/versions.

 For many YANG statements, programmatic tooling can determine whether

 the changes between the statements constitutes a backwards-compatible

 or non-backwards-compatible change. However, for some statements, it

 is not feasible for current tooling to determine whether the changes

 are backwards-compatible or not. For example, in the general case,

 tooling cannot determine whether the change in a YANG description

 statement causes a change in the semantics of a YANG data node. If

 the change is to fix a typo or spelling mistake then the change can

 be classified as an editorial backwards-compatible change.

 Conversely, if the change modifies the behavioral specification of

 the data node then the change would need to be classified as either a

 non editorial backwards-compatible change or a non-backwards-

 compatible change. Hence, extension statements are defined to

 annotate a YANG module with additional information to clarify the

 scope of changes in cases that cannot be determined by algorithmic

 comparison.

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/

 issues, tagged with ’schema-comparison’.

5. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document makes use of the following terminology introduced in

 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 This document uses terminology introduced in the YANG versioning

 requirements document [I-D.ietf-netmod-yang-versioning-reqs].

 This document makes of the following terminology introduced in the

 YANG Packages [I-D.ietf-netmod-yang-packages]:

 * YANG schema

 In addition, this document defines the terminology:

Andersson & Wilton Expires 12 September 2023 [Page 7]

Internet-Draft YANG Schema Comparison March 2023

 * Change scope: Whether a change between two revisions is classified

 as non-backwards-compatible, backwards-compatible, or editorial.

 * Node compatibility statement: An extension statements (e.g. nbc-

 change-at) that can be used to indicate the backwards

 compatibility of individual schema nodes and specific YANG

 statements.

6. Generic YANG schema tree comparison algorithm

 The generic schema comparison algorithm works on any YANG schema.

 This could be a schema associated with an individual YANG module, or

 a YANG schema represented by a set of modules, e.g., specified by a

 YANG package.

 The algorithm performs a recursive tree wise comparison of two

 revisions of a YANG schema, with the following behavior:

 The comparison algorithm primarily acts on the parts of the schema

 defined by unique identifiers.

 Each identifier is qualified with the name of the module that

 defines the identifier.

 Identifiers in different namespaces (as defined in 6.2.1 or RFC

 7950) are compared separately. E.g., ’features’ are compared

 separately from ’identities’.

 Within an identifier namespace, the identifiers are compared

 between the two schema revisions by qualified identifier name.

 The ’renamed-from’ extension allow for a meaningful comparison

 where the name of the identifier has changed between revisions.

 The ’renamed-from’ identifier parameter is only used when an

 identifier in the new schema revision cannot be found in the old

 schema revision.

 YANG extensions, features, identities, typedefs are checked by

 comparing the properties defined by their YANG sub-statements

 between the two revisions.

 YANG groupings, top-level data definition statements, rpcs, and

 notifications are checked by comparing the top level properties

 defined by their direct child YANG sub-statements, and also by

 recursively checking the data definition statements.

 The rules specified in section 3 of

 [I-D.ietf-netmod-yang-module-versioning] determine whether the

 changes are backwards-compatible or non-backwards-compatible.

Andersson & Wilton Expires 12 September 2023 [Page 8]

Internet-Draft YANG Schema Comparison March 2023

 The rules specified in section 3.2 of

 [I-D.ietf-netmod-yang-packages] determine whether backwards-

 compatible changes are ’minor’ or ’editorial’.

 For YANG "description", "must", and "when" statements, the

 "backwards-compatible" and "editorial" extension statements can be

 used to mark instances when the statements have changed in a

 backwards-compatible or editorial way. Since by default the

 comparison algorithm assumes that any changes in these statements

 are non-backwards-compatible. XXX, more info required here, since

 the revisions in the module history probably need to be available

 for this to work in the general branched revisions case.

 Submodules are not relevant for schema comparison purposes, i.e.

 the comparison is performed after submodule resolution has been

 completed.

6.1. YANG module revision scope extension annotations

6.2. Node compatibility extension statements

 In addition to the revision extension statement in

 [I-D.ietf-netmod-yang-module-versioning], this document defines YANG

 extension statements to indicate compatibility information for

 individual schema nodes and certain YANG statements.

 The node compatibility extension statements are applicable to schema

 nodes (e.g. leaf, rpc, choice) as defined in [RFC7950], as well as a

 set of YANG statements (e.g. typedef) as listed in the YANG

 definition of the nbc-change-at extension in the ietf-yang-revisions

 module in this document.

 While the top level non-backwards-compatible-revision statement is

 mandatory when there is a non-backwards-compatible change, the node

 compatibility statements are optional.

 For many YANG statements, programmatic tooling can determine whether

 the changes to a statement between two module revisions constitutes a

 backwards-compatible or non-backwards-compatible change. However,

 for some statements, it may be impractical for tooling to determine

 whether the changes are backwards-compatible or not. For example, in

 the general case, tooling cannot determine whether the change in a

 YANG description statement causes a change in the semantics of a YANG

 schema node. If the change is to fix a typo or spelling mistake then

 the change can be classified as an editorial backwards-compatible

 change. Conversely, if the change modifies the behavioral

 specification of the data node then the change would need to be

Andersson & Wilton Expires 12 September 2023 [Page 9]

Internet-Draft YANG Schema Comparison March 2023

 classified as either a non editorial backwards-compatible change or a

 non-backwards-compatible change. Hence, extension statements are

 defined to annotate a YANG module with additional information to

 clarify the scope of changes in cases that cannot be determined by

 algorithmic comparison.

 Three extensions are defined for schema node compatibility

 information:

 nbc-change-at: Indicates a specific YANG statement had a non-

 backwards-compatible change at a particular module or sub-module

 revision

 bc-change-at: Indicates a specific YANG statement had a backwards-

 compatible change at a particular module or sub-module revision

 editorial-change-at: Indicates a specific YANG statement had an

 editorial change at a particular module or sub-module revision.

 The meaning of an editorial change is as per YANG Semver

 [I-D.ietf-netmod-yang-semver]

 When a node compatibility statement is added to a schema node in a

 sub-module, the revision indicated for the compatibility statement is

 that of the sub-module.

 Adding, modifying or removing any of the node compatibility

 statements is considered to be a BC change.

 The following example illustrates the node compatibility statements:

Andersson & Wilton Expires 12 September 2023 [Page 10]

Internet-Draft YANG Schema Comparison March 2023

 container some-stuff {

 leaf used-to-be-a-string {

 rev:nbc-change-at "3.0.0" {

 description "Changed from a string to a uint32.";

 }

 type uint32;

 }

 leaf fixed-my-description-typo {

 rev:editorial-change-at "2022-06-03";

 type string;

 description "This description used to have a typo."

 }

 list sir-changed-a-lot {

 rev:editorial-change-at "3.0.0";

 rev:bc-change-at "2.3.0";

 rev:bc-change-at "1.2.1_non_compatible";

 description "a list of stuff";

 ordered-by user;

 key "foo";

 leaf foo {

 type string;

 }

 leaf thing {

 type uint8;

 }

 }

 Note that an individual YANG statement may have a backwards-

 compatible change in a revision that is non-backwards-compatible

 (e.g. some other node changed in a non-backwards-compatible fashion

 in that particular revision).

 If changes are ported from one branch of YANG model revisions to

 another branch, care must be taken with any node compatibilty

 statements. A simple copy-n-paste should not be used. The node

 compatibilty statements may incorrectly reference a revision that is

 not in the history of the new revision. Further, the statements

 might not apply depending on what the history is like in that new

 branch (e.g., an NBC change that is ported might not be an NBC change

 in the new branch). Node compatiblity statements should not be

 copied over to the new branch. Instead, the changes should be

 considered as completely new on the new branch, and any compatibility

 information should be generated from scratch.

Andersson & Wilton Expires 12 September 2023 [Page 11]

Internet-Draft YANG Schema Comparison March 2023

 When a node compatibility statement is present, that compatibilty

 statement is the authoritative classification of the backwards

 compatibility of the change to the schema node in the specifed

 revision. This allows a human author to explicitly communicate the

 compatibilty and potentially override the rules specified in this

 document. This is useful in a number of situations including:

 * When a tool may not be able to accurately determine the

 compatibilty of a change. For example, a change in a ’pattern’ or

 ’must’ statement can be difficult for a user or tool to determine

 if it is a compatible change.

 * When a pattern, range or other statement is changed to more

 correctly define the server constraint. An example is correcting

 a pattern that incorrectly included 355.xxx.xxx.xxx as a possible

 IPv4 address to make it only accept up to 255.xxx.xxx.xxx.

 Nothing about the backwards compatibility of a schema node is implied

 by the absence of a node compatibility statement. Hence, the schema

 node definition must be compared between the two revisions to

 determine the backwards compatibility.

 If any nbc-change-at extension statements exists in a module or sub-

 module, then the module or sub-module MUST have non-backwards-

 compatible-revision substatements in each revision statement of the

 module or sub-module history where the revision matches the argument

 of any nbc-change-at statements. If any revision statements are

 removed, then all node compatibiilty statements that reference that

 revision MUST also be removed. Conversely, node compatibilty

 statements MUST NOT be removed unless the associated revision

 statement in the revision history is removed.

 If a node compatiblity statement is added to a grouping, then all

 instances where the grouping is used in the module or by an importing

 module are also impacted by the compatibilty information. Similarly

 for a ’typedef’, all leafs and leaf-lists that use that typedef share

 the specified compatibility classification. A non-backwards-

 compatible change to a typedef or grouping defined in one module that

 is used by an importing module, does not cause the importing module

 to add a non-backwards-compatible-revision statement to the revision

 history. Non-backwards-compatible marking does not carry through

 import statements.

 A node compatibility statement at a leaf, leaf-list, or typedef

 context takes precedence over a node compatibility statement in a

 typedef used by the leaf, leaf-list, or typedef. If multiple

 typedefs with compatibility statements are used by a leaf, leaf-list,

 or typedef (e.g. a union), and there is no compatibility statement at

Andersson & Wilton Expires 12 September 2023 [Page 12]

Internet-Draft YANG Schema Comparison March 2023

 the top leaf, leaf-list, or typedef context, then the order of

 precedence used to classify the compatibility of the top level leaf,

 leaf-list, or typedef is as follows: nbc-change-at, bc-change-at, and

 finally editorial-change-at. That is, the leaf, leaf-list, or

 typedef takes the most impactful change classification of all the

 underlying typedefs.

 Node compatibility statements are not supported on YANG statements

 such as ’pattern’ or ’range’. The compatibility statement instead

 goes against the leaf, leaf-list, or typedef context.

 Node compatibility statements that refer to pre-release revisions of

 a module MUST be removed when a full release revision of the module

 is published.

 Node compatibilty statements SHOULD NOT be used when it isn’t clear

 which change the statement is referring to. For example: If a leaf

 is reordered within a container, a node compatibility statement

 SHOULD NOT be used against the parent container nor against the

 reordered leaf. Similarly, if a leaf is renamed or moved to another

 context without keeping the old leaf present in the model and marked

 obsolete, a node compatibilty statement SHOULD not be used.

7. YANG module comparison algorithm

 The schema comparison algorithm defined in Section 6 can be used to

 compare the schema for individual modules, but with the following

 modifications:

 Changes to the module’s metadata information (i.e. module level

 description, contact, organization, reference) should be checked

 (as potential editorial changes).

 The module’s revision history should be ignored from the

 comparison.

 Changes to augmentations and deviations should be sorted by path

 and compared.

8. YANG schema comparison algorithms

8.1. Standard YANG schema comparison algorithm

 The standard method for comparing two YANG schema versions is to

 individually compare the module revisions for each module implemented

 by the schema using the algorithm defined in Section 7 and then

 aggregating the results together:

Andersson & Wilton Expires 12 September 2023 [Page 13]

Internet-Draft YANG Schema Comparison March 2023

 * If all implemented modules in the schema have only changed in an

 editorial way then the schema is changed in an editorial way

 * If all implemented modules in the schema have only been changed in

 an editorial or backwards-compatible way then the schema is

 changed in a backwards-compatible way

 * Otherwise if any implemented module in the schema has been changed

 in a non-backwards-compatible way then the schema is changed in a

 non-backwards-compatible way.

 The standard schema comparison method is the RECOMMENDED scheme to

 calculate the version number change for new versions of YANG

 packages, because it allows the package version to be calculated

 based on changes to implemented modules revision history (or YANG

 semantic version number if used to identify module revisions).

8.2. Filtered YANG schema comparison algorithm

 Another method to compare YANG schema, that is less likely to report

 inconsequential differences, is to construct full schema trees for

 the two schema versions, directly apply a version of the comparison

 algorithm defined in Section 6. This may be particular useful when

 the schema represents a complete datastore schema for a server

 because it allows various filtered to the comparison algorithm to

 provide a more specific answer about what changes may impact a

 particular client.

 The full schema tree can easily be constructed from a YANG package

 definition, or alternative YANG schema definition.

 Controlled by input parameters to the comparison algorithm, the

 following parts of the schema trees can optionally be filtered during

 the comparison:

 All "grouping" statements can be ignored (after all "use"

 statements have been processed when constructing the schema).

 All module and submodule metadata information (i.e. module level

 description, contact, organization, reference) can be ignored.

 The comparison can be restricted to the set of features that are

 of interest (different sets of features may apply to each schema

 versions).

Andersson & Wilton Expires 12 September 2023 [Page 14]

Internet-Draft YANG Schema Comparison March 2023

 The comparison can be restricted to the subset of data nodes,

 RPCs, notifications and actions, that are of interest (e.g., the

 subset actually used by a particular client), providing a more

 meaningful result.

 The comparison could filter out backwards-compatible ’editorial’

 changes.

 In addition to reporting the overall scope of changes at the schema

 level, the algorithm output can also optionally generate a list of

 specific changes between the two schema, along with the

 classification of those individual changes.

9. Comparison tooling

 ’pyang’ has some support for comparison two module revisions, but

 this is currently limited to a linear module history.

 TODO, it would be helpful if there is reference tooling for schema

 comparison.

10. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,

 revision label, status description, and importing by version.

 <CODE BEGINS> file "ietf-yang-rev-annotations@2023-02-14.yang"

 module ietf-yang-rev-annotations {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-rev-annotations";

 prefix rev-ext;

 import ietf-yang-revisions {

 prefix rev;

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>";

 description

 "This YANG 1.1 module contains extensions to annotation to YANG

 module with additional metadata information on the nature of

Andersson & Wilton Expires 12 September 2023 [Page 15]

Internet-Draft YANG Schema Comparison March 2023

 changes between two YANG module revisions.

 XXX, maybe these annotations could also be included in

 ietf-yang-revisions?

 Copyright (c) 2019 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (inc above) with actual RFC number and

 // remove this note.

 revision 2023-03-11 {

 rev:revision-label 1.0.0-draft-ietf-netmod-yang-schema-comparison-02;

 description

 "Draft revision";

 reference

 "XXXX: YANG Schema Comparison";

 }

 extension nbc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a non-backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

Andersson & Wilton Expires 12 September 2023 [Page 16]

Internet-Draft YANG Schema Comparison March 2023

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 nbc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An nbc-change-at statement can have 0 or 1 ’description’

 substatements.

 The nbc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension bc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

Andersson & Wilton Expires 12 September 2023 [Page 17]

Internet-Draft YANG Schema Comparison March 2023

 bc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An bc-change-at statement can have 0 or 1 ’description’

 substatements.

 The bc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where an editorial change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 editorial-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

Andersson & Wilton Expires 12 September 2023 [Page 18]

Internet-Draft YANG Schema Comparison March 2023

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An editorial-change-at statement can have 0 or 1 ’description’

 substatements.

 The editorial-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension backwards-compatible {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where a

 backwards-compatible change has occurred relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 must

 when

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

Andersson & Wilton Expires 12 September 2023 [Page 19]

Internet-Draft YANG Schema Comparison March 2023

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where an editorial change

 has occurred relative to the previous revision listed in the

 revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension renamed-from {

 argument yang-identifier;

 description

 "Specifies a previous name for this identifier.

 This can be used when comparing schema to optimize handling

 for data nodes that have been renamed rather than naively

 treated them as data nodes that have been deleted and

 recreated.

 The argument ’yang-identifier’ MUST take the form of a YANG

 identifier, as defined in section 6.2 of RFC 7950.

 Any YANG statement that takes a YANG identifier as its

Andersson & Wilton Expires 12 September 2023 [Page 20]

Internet-Draft YANG Schema Comparison March 2023

 argument MAY have a single ’rev-ext:renamed-from’

 sub-statement.

 TODO, we should also facilitate identifiers being moved into

 other modules, e.g. by supporting a module-name qualified

 identifier.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 }

 <CODE ENDS>

11. Contributors

 This document grew out of the YANG module versioning design team that

 started after IETF 101. The following individuals are (or have been)

 members of the design team and have worked on the YANG versioning

 project:

 * Balazs Lengyel

 * Benoit Claise

 * Bo Wu

 * Ebben Aries

 * Jason Sterne

 * Joe Clarke

 * Juergen Schoenwaelder

 * Mahesh Jethanandani

 * Michael Wang

 * Qin Wu

 * Reshad Rahman

 * Rob Wilton

 * Jan Lindblad

 * Per Andersson

Andersson & Wilton Expires 12 September 2023 [Page 21]

Internet-Draft YANG Schema Comparison March 2023

 The ideas for a tooling based comparison of YANG module revisions was

 first described in [I-D.clacla-netmod-yang-model-update]. This

 document extends upon those initial ideas.

12. Security Considerations

 The document does not define any new protocol or data model. There

 are no security impacts.

13. IANA Considerations

13.1. YANG Module Registrations

 The following YANG module is requested to be registered in the "IANA

 Module Names" registry:

 The ietf-yang-rev-annotations module:

 Name: ietf-yang-rev-annotations

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-rev-

 annotations

 Prefix: rev-ext

 Reference: [RFCXXXX]

14. References

14.1. Normative References

 [I-D.ietf-netmod-yang-module-versioning]

 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.

 Sterne, "Updated YANG Module Revision Handling", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-module-

 versioning-08, 12 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-module-versioning-08>.

 [I-D.ietf-netmod-yang-packages]

 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,

 "YANG Packages", Work in Progress, Internet-Draft, draft-

 ietf-netmod-yang-packages-03, 4 March 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-packages-03>.

Andersson & Wilton Expires 12 September 2023 [Page 22]

Internet-Draft YANG Schema Comparison March 2023

 [I-D.ietf-netmod-yang-semver]

 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,

 J., and B. Claise, "YANG Semantic Versioning", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-

 10, 17 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-semver-10>.

 [I-D.ietf-netmod-yang-solutions]

 Wilton, R., "YANG Versioning Solution Overview", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 solutions-01, 2 November 2020,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-solutions-01>.

 [I-D.ietf-netmod-yang-versioning-reqs]

 Clarke, J., "YANG Module Versioning Requirements", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 versioning-reqs-07, 10 July 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-versioning-reqs-07>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

 [I-D.clacla-netmod-yang-model-update]

 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New

 YANG Module Update Procedure", Work in Progress, Internet-

 Draft, draft-clacla-netmod-yang-model-update-06, 2 July

 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-

 netmod-yang-model-update-06>.

Andersson & Wilton Expires 12 September 2023 [Page 23]

Internet-Draft YANG Schema Comparison March 2023

Authors’ Addresses

 Per Andersson (editor)

 Cisco Systems, Inc.

 Email: perander@cisco.com

 Robert Wilton

 Cisco Systems, Inc.

 Email: rwilton@cisco.com

Andersson & Wilton Expires 12 September 2023 [Page 24]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 21 July 2023 Graphiant
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 17 January 2023

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-10

Abstract

 This document specifies a scheme and guidelines for applying an
 extended set of semantic versioning rules to revisions of YANG
 artifacts (e.g., modules and packages). Additionally, this document
 defines an RFCAAAA-compliant revision-label-scheme for this YANG
 semantic versioning scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 July 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 21 July 2023 [Page 1]

Internet-Draft YANG Semver January 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Conventions 3
 3. YANG Semantic Versioning 4
 3.1. Relationship Between SemVer and YANG Semver 4
 3.2. YANG Semver Pattern 4
 3.3. Semantic Versioning Scheme for YANG Artifacts 5
 3.3.1. Branching Limitations with YANG Semver 7
 3.3.2. YANG Semver with submodules 8
 3.3.3. Examples for YANG semantic versions 8
 3.4. YANG Semantic Version Update Rules 10
 3.5. Examples of the YANG Semver Label 12
 3.5.1. Example Module Using YANG Semver 12
 3.5.2. Example of Package Using YANG Semver 14
 4. Import Module by Semantic Version 15
 5. Guidelines for Using Semver During Module Development 15
 5.1. Pre-release Version Precedence 17
 5.2. YANG Semver in IETF Modules 17
 5.2.1. Guidelines for IETF Module Development 17
 5.2.2. Guidelines for Published IETF Modules 18
 6. YANG Module . 18
 7. Contributors . 20
 8. Security Considerations 21
 9. IANA Considerations . 21
 9.1. YANG Module Registrations 21
 9.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 22
 10. References . 22
 10.1. Normative References 22
 10.2. Informative References 23
 Appendix A. Example IETF Module Development 25
 Authors’ Addresses . 26

Clarke, et al. Expires 21 July 2023 [Page 2]

Internet-Draft YANG Semver January 2023

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived. Additionally, section 3.4 of
 [I-D.ietf-netmod-yang-module-versioning] defines a revision-label
 which can be used as an alias to provide additional context or as a
 meaningful label to refer to a specific revision.

 This document defines a revision-label scheme that uses extended
 semantic versioning rules [SemVer] for YANG artifacts (i.e., YANG
 modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) as well as the revision label
 definition for using this scheme. The goal being to add a human
 readable revision label that provides compatibility information for
 the YANG artifact without needing to compare or parse its body. The
 label and rules defined herein represent the RECOMMENDED revision
 label scheme for IETF YANG artifacts.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * SemVer: A version string that corresponds to the rules defined in
 [SemVer] . This specific camel-case notation is the one used by
 the SemVer 2.0.0 website and used within this document to
 distinguish between YANG Semver.

Clarke, et al. Expires 21 July 2023 [Page 3]

Internet-Draft YANG Semver January 2023

 * YANG Semver: A revision-label identifier that is consistent with
 the extended set of semantic versioning rules, based on [SemVer] ,
 defined within this document.

3. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

3.1. Relationship Between SemVer and YANG Semver

 [SemVer] is completely compatible with YANG Semver in that a SemVer
 semantic version number is legal according to the YANG Semver rules
 (though the inverse is not necessarily true). YANG Semver is a
 superset of the SemVer rules, and allow for limited branching within
 YANG artifacts. If no branching occurs within a YANG artifact (i.e.,
 you do not use the compatibility modifiers described below), the YANG
 Semver version label will appear as a SemVer version number.

3.2. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version string (e.g., in revision-label or as a
 package version) that corresponds to the following pattern:
 ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a YANG Semver string after a trailing ’-’
 character. Build metadata MAY be appended after a trailing ’+’
 character. If both pre-release and build metadata are present, then
 build metadata MUST follow pre-release metadata. While build
 metadata MUST be ignored when comparing YANG semantic versions, pre-

Clarke, et al. Expires 21 July 2023 [Page 4]

Internet-Draft YANG Semver January 2023

 release metadata MUST be used during module and submodule development
 as specified in Section 5 . Both pre-release and build metadata are
 allowed in order to support all the [SemVer] rules. Thus, a version
 lineage that follows strict [SemVer] rules is allowed for a YANG
 artifact.

 To signal the use of this versioning scheme, modules and submodules
 MUST set the revision-label-scheme extension, as defined in
 [I-D.ietf-netmod-yang-module-versioning] , to the identity "yang-
 semver". That identity value is defined in the ietf-yang-semver
 module below.

 Additionally, this ietf-yang-semver module defines a typedef that
 formally specifies the syntax of the YANG Semver.

3.3. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts that employ the YANG Semver label. The
 versioning scheme has the following properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning] .

 * YANG artifacts that follow the [SemVer] versioning scheme are
 fully compatible with implementations that understand the YANG
 semantic versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version numbers used by the YANG semantic
 versioning scheme are exactly the same as those defined by the
 [SemVer] versioning scheme.

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’rev:revision-label’ statement.

Clarke, et al. Expires 21 July 2023 [Page 5]

Internet-Draft YANG Semver January 2023

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version label. For example,
 the first revision of a module or submodule may have been produced
 before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no "_compatible" or "_non_compatible" modifier.

 * ’Z’ is the PATCH version. Changes in the PATCH version number can
 indicate an editorial change to the YANG artifact. In conjunction
 with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
 indicate a more substantive module change. An editorial change is
 defined to be a change in the YANG artifact’s content that does
 not affect the semantic meaning or functionality provided by the
 artifact in any way. Some examples include correcting a spelling
 mistake in the description of a leaf within a YANG module or
 submodule, non-significant whitespace changes (e.g., realigning
 description statements or changing indentation), or changes to
 YANG comments. Note: restructuring how a module uses, or does not
 use, submodules is treated as an editorial level change on the
 condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 * ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
 not valid in [SemVer]), that indicates backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

 - If the modifier string is absent, the change represents an
 editorial change.

Clarke, et al. Expires 21 July 2023 [Page 6]

Internet-Draft YANG Semver January 2023

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the revision label, then all descendants of
 that revision with the same X.Y version digits will also have a
 modifier. The modifier can change from "_compatible" to
 "_non_compatible" in a descendant revision, but the modifier MUST NOT
 change from "_non_compatible" to "_compatible" and MUST NOT be
 removed. The persistence of the "_non_compatible" modifier ensures
 that comparisons of revision labels do not give the false impression
 of compatibility between two potentially non-compatible revisions.
 If "_non_compatible" was removed, for example between revisions
 "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply an
 editorial change), then comparing revision labels of "3.3.3" back to
 an ancestor "3.0.0" would look like they are backwards compatible
 when they are not (since "3.3.2_non_compatible" was in the chain of
 ancestors and introduced a non-backwards-compatible change).

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

3.3.1. Branching Limitations with YANG Semver

 YANG artifacts that use the YANG Semver revision-label scheme MUST
 ensure that two artifacts with the same MAJOR version number and no
 _compatible or _non_compatible modifiers are backwards compatible.
 Therefore, certain branching schemes cannot be used with YANG Semver.
 For example, the following branched parent-child module relationship
 using the following YANG Semver revision labels is not supported:

Clarke, et al. Expires 21 July 2023 [Page 7]

Internet-Draft YANG Semver January 2023

 3.5.0 -- 3.6.0 (add leaf foo)
 |
 |
 3.20.0 (added leaf bar)

 In this case, given only the revision labels 3.6.0 and 3.20.0 without
 any parent-child relationship information, one would assume that
 3.20.0 is backwards compatible with 3.6.0. But in the illegal
 example above, 3.20.0 is not backwards compatible with 3.6.0 since
 3.20.0 does not contain the leaf foo.

 Note that this type of branched parent-child relationship, where two
 revisions have different backwards compatible changes based on the
 same parent, is allowed in [I-D.ietf-netmod-yang-module-versioning] .

3.3.2. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 3.2 and Section 3.3 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resultant schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

3.3.3. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

Clarke, et al. Expires 21 July 2023 [Page 8]

Internet-Draft YANG Semver January 2023

 YANG Semantic versions for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 parent/child ancestry relationships between the revisions. It does
 not describe the chronology of the revisions (i.e. when in time each
 revision was published relative to the other revisions).

 The following description lists an example of what the chronological
 order of the revisions could look like, from oldest revision to
 newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

Clarke, et al. Expires 21 July 2023 [Page 9]

Internet-Draft YANG Semver January 2023

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

 The partial ancestry relationships based on the semantic versioning
 numbers are as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1_compatible < 1.1.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1_non_compatible <
 1.2.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.3.1_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.4.0

 There is no ordering relationship between "1.1.1_non_compatible" and
 either "1.2.0" or "1.2.1_non_compatible", except that they share the
 common ancestor of "1.1.0".

 Looking at the version number alone does not indicate ancestry. The
 module definition in "2.0.0", for example, does not contain all the
 contents of "1.3.0". Version "2.0.0" is not derived from "1.3.0".

3.4. YANG Semantic Version Update Rules

 When a new revision of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact
 revision is calculated, based on the changes between the two artifact
 revisions, and the YANG semantic version of the base artifact
 revision from which the changes are derived.

Clarke, et al. Expires 21 July 2023 [Page 10]

Internet-Draft YANG Semver January 2023

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 3. If an artifact is being updated in an editorial way, then the
 next version number depends on the format of the current version
 number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version numbers beginning with 0, i.e.,
 "0.X.Y", are regarded as pre-release definitions and need not
 follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 5 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 5 .

Clarke, et al. Expires 21 July 2023 [Page 11]

Internet-Draft YANG Semver January 2023

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version number, the following rules MAY be applied when choosing a
 new version number:

 1. An artifact author MAY update the version number with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip version numbers. That is, an
 artifact’s revision history could be 1.0.0, 1.1.0, and 1.3.0
 where 1.2.0 is skipped. Note that skipping versions has an
 impact when importing modules by revision-or-derived. See
 Section 4 for more details on importing modules with revision-
 label version gaps.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison] , also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

3.5. Examples of the YANG Semver Label

3.5.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses the YANG Semver revision-
 label based on the rules defined in this document.

Clarke, et al. Expires 21 July 2023 [Page 12]

Internet-Draft YANG Semver January 2023

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";
 rev:revision-label-scheme "ysver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ysver"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 rev:revision-label 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 rev:revision-label 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 rev:revision-label 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 rev:revision-label 1.1.0;
 }

 revision 2017-02-07 {
 description "First release version.";
 rev:revision-label 1.0.0;
 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // rev:revision-label 0.2.0;

Clarke, et al. Expires 21 July 2023 [Page 13]

Internet-Draft YANG Semver January 2023

 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // rev:revision-label 0.1.0;
 // }

 //YANG module definition starts here
 }

3.5.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the YANG Semver revision
 label based on the rules defined in this document. Note: ’\’ line
 wrapping per [RFC8792] .

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "content-schema": {
 "module": "ietf-yang-packages@2022-03-04"
 },
 "timestamp": "2022-12-06T17:00:38Z",
 "description": ["Example of a Package \
 using YANG Semver"],
 "content-data": {
 "ietf-yang-packages:packages": {
 "package": [
 {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }
]
 }
 }
 }
 }

 Figure 1

Clarke, et al. Expires 21 July 2023 [Page 14]

Internet-Draft YANG Semver January 2023

4. Import Module by Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on a module or a derived revision of a module. The
 rev:revision-or-derived statement can specify either a revision date
 or a revision label. The YANG Semver revision-label value can be
 used as the argument to rev:revision-or-derived . When used as such,
 any module that contains exactly the same YANG semantic version in
 its revision history may be used to satisfy the import requirement.
 For example:

 import example-module {
 rev:revision-or-derived 3.0.0;
 }

 Note: the import lookup does not stop when a non-backward-compatible
 change is encountered. That is, if module B imports a module A at or
 derived from version 2.0.0, resolving that import will pass through a
 revision of module A with version "2.1.0_non_compatible" in order to
 determine if the present instance of module A derives from "2.0.0".

 If an import by revision-or-derived cannot locate the specified
 revision-label in a given module’s revision history, that import will
 fail. This is noted in the case of version gaps. That is, if a
 module’s history includes "1.0.0", "1.1.0", and "1.3.0", an import
 from revision-or-derived at "1.2.0" will be unable to locate the
 specified revision entry and thus the import cannot be satisfied.

5. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407] .

 Development of a brand new YANG module or submodule outside of the
 IETF that uses YANG Semver as its revision-label scheme SHOULD begin
 with a 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version component.
 For example, an initial module or submodule revision-label might be
 either 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0
 MAJOR version component scheme, they MAY switch to the pre-release
 scheme with a MAJOR version component of 1 when the module or
 submodule is nearing initial release (e.g., a module’s or submodule’s
 revision label may transition from 0.3.0 to 1.0.0-beta.1 to indicate
 it is more mature and ready for testing).

Clarke, et al. Expires 21 July 2023 [Page 15]

Internet-Draft YANG Semver January 2023

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions:

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

 When developing a new revision of an existing module or submodule
 using the YANG Semver revision-label scheme, the intended target
 semantic version MUST be used along with pre-release notation. For
 example, if a released module or submodule which has a current
 revision-label of 1.0.0 is being modified with the intent to make
 non-backwards-compatible changes, the first development MAJOR version
 component must be 2 with some pre-release notation such as -alpha.1,
 making the version 2.0.0-alpha.1. That said, every publicly
 available release of a module or submodule MUST have a unique YANG
 Semver revision-label (where a publicly available release is one that
 could be implemented by a vendor or consumed by an end user).
 Therefore, it may be prudent to include the year or year and month
 development began (e.g., 2.0.0-201907-alpha.1). As a module or
 submodule undergoes development, it is possible that the original
 intent changes. For example, a 1.0.0 version of a module or
 submodule that was destined to become 2.0.0 after a development cycle
 may have had a scope change such that the final version has no non-
 backwards-compatible changes and becomes 1.1.0 instead. This change
 is acceptable to make during the development phase so long as pre-
 release notation is present in both versions (e.g., 2.0.0-alpha.3
 becomes 1.1.0-alpha.4). However, on the next development cycle
 (after 1.1.0 is released), if again the new target release is 2.0.0,
 new pre-release components must be used such that every revision-
 label for a given module or submodule MUST be unique throughout its
 entire lifecycle (e.g., the first pre-release version might be
 2.0.0-202005-alpha.1 if keeping the same year and month notation
 mentioned above).

Clarke, et al. Expires 21 July 2023 [Page 16]

Internet-Draft YANG Semver January 2023

5.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a ratified module or submodule with revision-
 label 1.0.0 is initially intended to become 2.0.0 in its next
 ratified version, the scope of work may change such that the final
 version is 1.1.0. During the development cycle, the pre-release
 versions could move from 2.0.0-some-pre-release-tag to 1.1.0-some-
 pre-release-tag. This downwards changing of version numbers makes it
 difficult to evaluate semantic version rules between pre-release
 versions. However, taken independently, each pre-release version can
 be compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

5.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions for their revision-labels.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the revision-label MUST use the
 target (i.e., intended) MAJOR and MINOR version components with a 0
 PATCH version component. If the intended ratified release will be
 non-backward-compatible with the current ratified release, the MINOR
 version component MUST be 0.

5.2.1. Guidelines for IETF Module Development

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version string, including the current
 document revision. For example, if a module or submodule which is
 currently released at version 1.0.0 is being revised to include non-
 backwards-compatible changes in draft-user-netmod-foo, its
 development revision-labels MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

Clarke, et al. Expires 21 July 2023 [Page 17]

Internet-Draft YANG Semver January 2023

 Some draft revisions may not include an update to the YANG modules or
 submodules contained in the draft. In that case, those modules or
 submodules that are not updated do not not require a change to their
 versions. Updates to the YANG Semver version MUST only be done when
 the revision of the module changes.

 See Appendix A for a detailed example of IETF pre-release versions.

5.2.2. Guidelines for Published IETF Modules

 For IETF YANG modules and submodules that have already been
 published, revision-labels MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver version rules specified in
 Section 3.4 . For example, if a module or submodule started out in
 the pre-NMDA ([RFC8342]) world, and then had NMDA support added
 without removing any legacy "state" branches -- and you are looking
 to add additional new features -- a sensible choice for the target
 YANG Semver would be 1.2.0 (since 1.0.0 would have been the initial,
 pre-NMDA release, and 1.1.0 would have been the NMDA revision).

6. YANG Module

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

 <CODE BEGINS> file "ietf-yang-semver@2023-01-17.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ysver;
 rev:revision-label-scheme "yang-semver";

 import ietf-yang-revisions {
 prefix rev;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>
 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

Clarke, et al. Expires 21 July 2023 [Page 18]

Internet-Draft YANG Semver January 2023

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the rev:revision-label to "1.0.0".

 revision 2023-01-17 {
 rev:label "1.0.0-draft-ietf-netmod-yang-semver-10";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Identities
 */

 identity yang-semver {
 base rev:revision-label-scheme-base;
 description
 "The revision-label scheme corresponds to the YANG Semver
 scheme which is defined by the pattern in the ’version’

Clarke, et al. Expires 21 July 2023 [Page 19]

Internet-Draft YANG Semver January 2023

 typedef below. The rules governing this revision-label
 scheme are defined in the reference for this identity.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Typedefs
 */

 typedef version {
 type rev:revision-label {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this revision label scheme are defined in the
 reference for this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

7. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The design team consists of the following
 members whom have worked on the YANG versioning project: Balazs
 Lengyel, Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason
 Sterne, Joe Clarke, Juergen Schoenwaelder, Mahesh Jethanandani,
 Michael (Wangzitao), Qin Wu, Reshad Rahman, and Rob Wilton.

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update] . We would like the thank
 Kevin D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver] . We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

Clarke, et al. Expires 21 July 2023 [Page 20]

Internet-Draft YANG Semver January 2023

8. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040] . The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242] . The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446] .

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 That said, the YANG module in this document does not define any
 schema nodes (i.e., nothing that can be read or written). It only
 defines a typedef and an identity. Therefore, there is no need to
 further protect any nodes with access control.

9. IANA Considerations

9.1. YANG Module Registrations

 This document requests IANA to register a URI in the "IETF XML
 Registry" [RFC3688] . Following the format in RFC 3688, the
 following registration is requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registered in the "IANA
 Module Names" [RFC6020] . Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ysver

 Reference: [RFCXXXX]

Clarke, et al. Expires 21 July 2023 [Page 21]

Internet-Draft YANG Semver January 2023

9.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang] .

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning] ,
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver revision label for all new revisions, as defined in Section 3
 .

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 3.4 .

 Note: For IANA maintained YANG modules and submodules that have
 already been published, revision labels MUST be retroactively applied
 to all existing revisions when the next new revision is created,
 starting at version "1.0.0" for the initial published revision, and
 then incrementing according to the YANG Semver rules specified in
 Section 3.4 .

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Clarke, et al. Expires 21 July 2023 [Page 22]

Internet-Draft YANG Semver January 2023

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-08, 12 January 2023,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 module-versioning-08.txt>.

10.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://www.ietf.org/archive/id/draft-clacla-
 netmod-yang-model-update-06.txt>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 packages-03.txt>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-schema-comparison-01.txt>.

Clarke, et al. Expires 21 July 2023 [Page 23]

Internet-Draft YANG Semver January 2023

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

Clarke, et al. Expires 21 July 2023 [Page 24]

Internet-Draft YANG Semver January 2023

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 revision-label) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version lineage after adoption:

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is ratified and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-asmith-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision (track 1):

Clarke, et al. Expires 21 July 2023 [Page 25]

Internet-Draft YANG Semver January 2023

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00
 |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

 In parallel with (track 2):

 1.1.0-draft-asmith-netmod-exmod-changes-00
 |
 1.1.0-draft-asmith-netmod-exmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in asmith’s draft as draft-ietf-netmod-exmod-changes. A
 single version lineage continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is ratified, and the new module version becomes 1.1.0.

Authors’ Addresses

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Graphiant
 Email: reshad@yahoo.com

Clarke, et al. Expires 21 July 2023 [Page 26]

Internet-Draft YANG Semver January 2023

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 21 July 2023 [Page 27]

NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 10 September 2023 B. Lengyel

 Ericsson

 H. Li

 HPE

 9 March 2023

 YANG Extension and Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-05

Abstract

 This document defines a way to formally document as a YANG extension

 or YANG metadata an existing model handling behavior: modification

 restrictions on data declared as configuration.

 This document defines a YANG extension named "immutable" to indicate

 that specific "config true" data nodes are not allowed to be

 created/deleted/updated. To indicate that specific entries of a

 list/leaf-list node or instances inside list entries cannot be

 updated/deleted after initialization, a metadata annotation with the

 same name is also defined. Any data node or instance marked as

 immutable is read-only to the clients of YANG-driven management

 protocols, such as NETCONF, RESTCONF and other management operations

 (e.g., SNMP and CLI requests).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 September 2023.

Ma, et al. Expires 10 September 2023 [Page 1]

Internet-Draft Immutable Flag March 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Terminology . 4

 1.2. Applicability . 5

 2. Solution Overview . 5

 3. "Immutable" YANG Extension 6

 3.1. Definition . 6

 3.2. Inheritance of Immutable YANG Extension 7

 4. "Immutable" Metadata Annotation 7

 4.1. Definition . 7

 5. Interaction between Immutable YANG Extension and Metadata

 Annotation . 8

 6. Interaction between Immutable Flag and NACM 8

 7. YANG Module . 8

 8. IANA Considerations . 12

 8.1. The "IETF XML" Registry 12

 8.2. The "YANG Module Names" Registry 12

 9. Security Considerations 12

 Acknowledgements . 12

 References . 12

 Normative References . 13

 Informative References . 13

 Appendix A. Detailed Use Cases 14

 A.1. UC1 - Modeling of server capabilities 14

 A.2. UC2 - HW based autoconfiguration - Interface Example . . 15

 A.2.1. Error Response to Client Updating the Value of an

 Interface Type 16

 A.3. UC3 - Predefined Access control Rules 17

 A.4. UC4 - Declaring System defined configuration

 unchangeable . 18

 A.5. UC5 - Immutable BGP AS number and peer type 18

 A.6. UC6 - Modeling existing data handling behavior in other

 standard organizations 20

Ma, et al. Expires 10 September 2023 [Page 2]

Internet-Draft Immutable Flag March 2023

 Appendix B. Existing implementations 20

 Appendix C. Changes between revisions 20

 Appendix D. Open Issues tracking 22

 Authors’ Addresses . 22

1. Introduction

 This document defines a way to formally document as a YANG extension

 or YANG metadata an existing model handling behavior that is already

 allowed in YANG and which has been used by multiple standard

 organizations and vendors. It is the aim to create one single

 standard solution for documenting modification restrictions on data

 declared as configuration, instead of the multiple existing vendor

 and organization specific solutions. See Appendix Bfor existing

 implementations.

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However

 there exists data that cannot be modified by the client(it is

 immutable), but still needs to be declared as "config true" to:

 * allow configuration of data nodes under immutable lists or

 containers;

 * place "when", "must" and "leafref" constraints between

 configuration and immutable schema nodes.

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

 Clients believe that "config true" nodes are modifiable even though

 the server is allowed to reject such a modification at any time. If

 the server knows that it will reject the modification, it should

 document this towards the clients in a machine readable way.

 To address this issue, this document defines a YANG extension named

 "immutable" to indicate that specific "config true" data nodes are

 not allowed to be created/deleted/updated. To indicate that specific

 entries of a list/leaf-list node or instances inside list entries

 cannot be updated/deleted after initialization, a metadata annotation

 [RFC7952] with the same name is also defined. Any data node or

 instance marked as immutable is read-only to the clients of YANG-

 driven management protocols, such as NETCONF, RESTCONF and other

 management operations (e.g., SNMP and CLI requests). Marking

 instance data nodes as immutable (as opposed to marking schema-nodes)

 is useful when only some instances of a list or leaf-list shall be

 marked as read-only.

Ma, et al. Expires 10 September 2023 [Page 3]

Internet-Draft Immutable Flag March 2023

 Immutability is an existing model handling practice. While in some

 cases it is needed, it also has disadvantages, therefore it SHOULD be

 avoided wherever possible.

 The following is a list of already implemented and potential use

 cases.

 UC1 Modeling of server capabilities

 UC2 HW based autoconfiguration

 UC3 Predefined Access control Rules

 UC4 Declaring System defined configuration unchangeable

 UC5 Immutable BGP AS number and peer type

 UC6 Modeling existing data handling behavior in other standard

 organizations

 Appendix A describes the use cases in detail.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terms are defined in [RFC6241] and [RFC8341] and are

 not redefined here:

 * configuration data

 * access operation

 * write access

 The following terms are defined in this document:

 immutable: A schema or instance node property indicating that the

 configuration data is not allowed to be created/deleted/updated.

Ma, et al. Expires 10 September 2023 [Page 4]

Internet-Draft Immutable Flag March 2023

1.2. Applicability

 The "immutable" concept defined in this document only indicates write

 access restrictions to writable datastores. A particular data node

 or instance MUST have the same immutability in all writable

 datastores. The immutable annotation information should also be

 visible in read-only datastores (e.g., <system>, <intended>,

 <operational>), however this only serves as information about the

 data node itself, but has no effect on the handling of the read-only

 datastore.

 The immutability property of a particular data node or instance MUST

 be protocol-independent and user-independent.

2. Solution Overview

 Already some servers handle immutable configuration data and will

 reject any attempt to the "create", "delete" or "update" such data.

 This document allows the existing immutable data node or instance to

 be marked by YANG extension or metadata annotation. Requests to

 create/update/delete an immutable configuration data always return an

 error (if no corresponding "exceptions" are declared in a YANG

 extension). The error reporting is performed immediately at an

 <edit-config> operation time, regardless what the target

 configuration datastore is. For an example of an "invalid-value"

 error response, see Appendix A.2.1.

 However, the following operations SHOULD be allowed for immutable

 nodes:

 * Use a create, update, delete/remove operation on an immutable node

 if the effective change is null. E.g., if a leaf has a current

 value of "5" it should be allowed to replace it with a value of

 "5";

 * Create an immutable data node with a same value that already

 exists in the <system> datastore.;

 Note that even if a particular data node is immutable without the

 exception for "delete", it still can be deleted if its parent node is

 deleted, e.g., /if:interfaces/if:interface/if:type leaf is immutable,

 but the deletion to the /if:interfaces/if:interface list entry is

 allowed; if a particular data node is immutable without the exception

 for "create", it means the client can never create the instance of

 it, regardless the handling of its parent node; it may be created by

 the system or have a default value when its parent is created.

Ma, et al. Expires 10 September 2023 [Page 5]

Internet-Draft Immutable Flag March 2023

 In some cases adding the immutable property is allowed but does not

 have any additional semantic meaning. For example, a key leaf is

 given a value when a list entry is created, and cannot be modified

 and deleted unless the list entry is deleted. A mandatory leaf MUST

 exist and cannot be deleted if the ancestor node exists in the data

 tree.

3. "Immutable" YANG Extension

3.1. Definition

 The "immutable" YANG extension can be a substatement to a "config

 true" leaf, leaf-list, container, list, anydata or anyxml statement.

 It has no effect if used as a substatment to a "config false" node,

 but can be allowed anyway. When present, it indicates that data

 nodes based on the parent statement are not allowed to be added,

 removed or updated except according to the exceptions argument. Any

 such write attempt will be rejected by the server.

 The "immutable" YANG extension defines an argument statement named

 "exceptions" which gives a list of operations that users are

 permitted to invoke for the specified node.

 The following values are supported for the "exceptions" argument:

 * create: allow users to create instances of the data node;

 * update: allow users to modify instances of the data node;

 * delete: allow users to delete instances of the data node.

 If more than one value is used, a space-separated string for the

 "exceptions" argument is used. For example, if a particular data

 node can be created and modified, but cannot be deleted, the

 following "immutable" YANG extension with "create" and "update"

 exceptions should be defined in a substatement to that data node:

 immutable "create update";

 Providing an empty string for the "exceptions" argument is equivalent

 to a single extension without an argument followed. Providing all 3

 values can be used to override immutability inherited from its

 ancestor node. For data nodes with no write access restriction

 inherited from its ancestor node (see Section 3.2), providing all 3

 values has the same effect as not using this extension at all, but

 can be used anyway.

Ma, et al. Expires 10 September 2023 [Page 6]

Internet-Draft Immutable Flag March 2023

 Note that leaf-list instances can be created and deleted, but not

 modified. Any exception for "update" operation to leaf-list data

 nodes SHALL be ignored.

3.2. Inheritance of Immutable YANG Extension

 Immutability specified by the use of the ’immutable’ extension

 statement (including any exception argument) is inherited by all

 child and descendant nodes of a container or a list. It is possible

 to override thhe inherited immutability property by placing another

 immuable extension statement on a specific child/descendant node.

 For example, given the following list definition:

 list application {

 im:immutable "create delete";

 key name;

 leaf name {

 type string;

 }

 leaf protocol {

 im:immutable;

 type enumeration {

 enum tcp;

 enum udp;

 }

 }

 leaf port-number {

 im:immutable "create update delete";

 type int16;

 }

 }

 application list entries are allowed to be created and deleted, but

 cannot be modified; "protocol" cannot be changed in any way while

 "port-number" can be created, modified or deleted. Using the

 immutable statement with exception argument we can make immutability

 stricter (for the protocol child node) or less restrictive (for the

 port-number child node).

4. "Immutable" Metadata Annotation

4.1. Definition

 The "immutable" flag SHALL be used to indicate the immutability of a

 particular instantiated data node. It can only be used for list/

 leaf-list entries. The "immutable" flag is of type boolean.

Ma, et al. Expires 10 September 2023 [Page 7]

Internet-Draft Immutable Flag March 2023

 Note that "immutable" metadata annotation is used to annotate

 instances of a list/leaf-list rather than schema nodes. A list may

 have multiple entries/instances in the data tree, "immutable" can

 annotate some of the instances as read-only, while others are read-

 write.

 Any list/leaf-list instance annotated with immutable="true" by the

 server is read-only to clients and cannot be updated/deleted. If a

 list entry is annotated with immutable="true", the whole instance is

 read-only and any contained descendant configuration is not allowed

 to be created, updated and deleted. Descendant nodes SHALL NOT carry

 the immutable annotation.

 When the client retrieves data from a particular datastore, immutable

 data node instances MUST be annotated with immutable="true" by the

 server. If the "immutable" metadata annotation for a list/leaf-list

 entry is not specified, the default "immutable" value is false.

 Explicitly annotating instances as immutable="false" has the same

 effect as not specifying this value.

5. Interaction between Immutable YANG Extension and Metadata Annotation

 When a client reads data from a datastore, if a data node is

 specified as immutable using the extension statement, the

 corresponding data node instances generally SHALL NOT be marked with

 the immutable annotation. However, if the immutable extension

 statement has exceptions defined, the server MAY decide that for a

 particular list entriy or leaf-list instance strict immutability

 shall apply without exceptions. In this case the server SHALL mark

 the relevant data node instances with the immutable annotation. The

 immutable annotation overrides any exceptions specified for the

 immutabile statement inlcuding any exception on any descendant nodes.

6. Interaction between Immutable Flag and NACM

 If a data node or some list or leaf-list entries are immutable the

 server MUST reject any operation that attempts to create, delete or

 update them, however the "exceptions" argument, if present, SHALL be

 taken into account. Rejecting an operation due to immutability SHALL

 be done indepent of any access control settings.

7. YANG Module

Ma, et al. Expires 10 September 2023 [Page 8]

Internet-Draft Immutable Flag March 2023

 <CODE BEGINS>

 file="ietf-immutable@2022-12-14.yang"

 //RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named ’immutable’

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable=’true’ by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 The module defines the immutable extension that indicates

 that data nodes based on the parent data-definition

 statement cannot be created, removed, or updated

 except according to the ’exceptions’ argument.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

Ma, et al. Expires 10 September 2023 [Page 9]

Internet-Draft Immutable Flag March 2023

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-12-14 {

 description

 "Initial revision.";

 // RFC Ed.: replace XXXX and remove this comment

 reference

 "RFC XXXX: YANG Extension and Metadata Annotation for

 Immutable Flag";

 }

 extension immutable {

 argument exceptions;

 description

 "The ’immutable’ extension as a substatement to a data

 definition statement indicates that data nodes based on

 the parent statement MUST NOT be added, removed or

 updated by management protocols, such as NETCONF,

 RESTCONF or other management operations (e.g., SNMP

 and CLI requests) except when indicated by the

 exceptions argument.

 Immutable data MAY be marked as config true to allow

 ’leafref’, ’when’ or ’must’ constraints to be based

 on it.

 The statement MUST only be a substatement of the leaf,

 leaf-list, container, list, anydata, anyxml statements.

 Zero or one immutable statement per parent statement

 is allowed.

 No substatements are allowed.

Ma, et al. Expires 10 September 2023 [Page 10]

Internet-Draft Immutable Flag March 2023

 The argument is a list of space-separated operations that

 are permitted to be used for the specified node, while

 other operations are forbidden by the immutable extension.

 - create: allows users to create instances of the data node

 - update: allows users to modify instances of the data node

 - delete: allows users to delete instances of the data node

 To disallow all user write access, omit the argument;

 To allow only create and delete user access, provide

 the string ’create delete’ for the ’exceptions’ parameter.

 Equivalent YANG definition for this extension:

 leaf immutable {

 type bits {

 bit create;

 bit update;

 bit delete;

 }

 default ’’;

 }

 Immutability specified by the use of the ’immutable’ extension

 statement (including any exception argument) is inherited by all

 child and descendant nodes of a container or a list. It is possible

 to override the inherited immutability property by placing another

 immutable extension statement on a specific child/descendant node.

 Adding immutable or removing values from the

 exceptions argument of an existing immutable statement

 are non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

 }

 md:annotation immutable {

 type boolean;

 description

 "The ’immutable’ annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 ’immutable=true’ is read-only to clients and cannot be

 updated through NETCONF, RESTCONF or CLI. It applies to the

 list and leaf-list entries. If a list entry is annotated

 with immutable=’true’, the whole instance is read-only and

 including any contained descendant data nodes.

 The default is ’immutable=false’ if not specified for an instance.";

 }

 }

Ma, et al. Expires 10 September 2023 [Page 11]

Internet-Draft Immutable Flag March 2023

 <CODE ENDS>

8. IANA Considerations

8.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX

 // RFC Ed.: replace XXXX and remove this comment

9. Security Considerations

 The YANG module specified in this document defines a YANG extension

 and a metadata Annotation. These can be used to further restrict

 write access but cannot be used to extend access rights.

 This document does not define any protocol-accessible data nodes.

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

Acknowledgements

 Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

 Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke, Scott

 Mansfield for reviewing, and providing important input to, this

 document.

References

Ma, et al. Expires 10 September 2023 [Page 12]

Internet-Draft Immutable Flag March 2023

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

Informative References

 [I-D.ietf-netmod-system-config]

 Ma, Q., Wu, Q., and C. Feng, "System-defined

 Configuration", Work in Progress, Internet-Draft, draft-

 ietf-netmod-system-config-01, 4 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 system-config-01>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Ma, et al. Expires 10 September 2023 [Page 13]

Internet-Draft Immutable Flag March 2023

 [TR-531] ONF, "UML to YANG Mapping Guidelines,

 <https://wiki.opennetworking.org/download/

 attachments/376340494/Draft_TR-531_UML-YANG_Mapping_Gdls_v

 1.1.03.docx?version=5&modificationDate=1675432243513&api=v

 2>", February 2023.

 [TS28.623] 3GPP, "Telecommunication management; Generic Network

 Resource Model (NRM) Integration Reference Point (IRP);

 Solution Set (SS) definitions,

 <https://www.3gpp.org/ftp/Specs/

 archive/28_series/28.623/28623-i02.zip>".

 [TS32.156] 3GPP, "Telecommunication management; Fixed Mobile

 Convergence (FMC) Model repertoire,

 <https://www.3gpp.org/ftp/Specs/

 archive/32_series/32.156/32156-h10.zip>".

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false schema nodes.

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension making it unchangable. After this the

 ’interface-timer’ shall be defined as a leaf-ref pointing at the

 ’supported-timer-values’.

Ma, et al. Expires 10 September 2023 [Page 14]

Internet-Draft Immutable Flag March 2023

A.2. UC2 - HW based autoconfiguration - Interface Example

 This section shows how to use immutable YANG extension to mark some

 data node as immutable.

 When an interface is physically present, the system will create an

 interface entry automatically with valid name and type values in

 <system> (if exists, see [I-D.ietf-netmod-system-config]). The

 system-generated data is dependent on and must represent the HW

 present, and as a consequence must not be changed by the client. The

 data is modelled as "config true" and should be marked as immutable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

 The immutability of the data is the same for all interface instances,

 thus following fragment of a fictional interface module including an

 "immutable" YANG extension can be used:

Ma, et al. Expires 10 September 2023 [Page 15]

Internet-Draft Immutable Flag March 2023

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable "create delete";

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

 Note that the "name" leaf is defined as a list key which can never

 been modified for a particular list entry, there is no need to mark

 "name" as immutable.

A.2.1. Error Response to Client Updating the Value of an Interface Type

 This section shows an example of an error response due to the client

 modifying an immutable configuration.

 Assume the system creates an interface entry named "eth0" given that

 an inerface is inserted into the device. If a client tries to change

 the type of an interface to a value that doesn’t match the real type

 of the interface used by the system, the request will be rejected by

 the server:

Ma, et al. Expires 10 September 2023 [Page 16]

Internet-Draft Immutable Flag March 2023

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

 </rpc-reply>

A.3. UC3 - Predefined Access control Rules

 Setting up detailed rules for access control is a complex task. (see

 [RFC8341]) A vendor may provide an initial, predefined set of groups

 and related access control rules so that the customer can use access

 control out-of-the-box. The customer may continue using these

 predefined rules or may add his own groups and rules. The predefined

 groups shall not be removed or altered guaranteeing that access

 control remains usable and basic functions e.g., a system-security-

 administrator are always available.

 The system needs to protect the predefined groups and rules, however,

 the list "groups" or the list "rule-list" cannot be marked as

 config=false or with the "immutable" extension in the YANG model

 because that would prevent the customer adding new entries. Still it

Ma, et al. Expires 10 September 2023 [Page 17]

Internet-Draft Immutable Flag March 2023

 would be good to notify the client in a machine readable way that the

 predefined entries cannot be modified. When the client retrieves

 access control data the immutable="true" metadata annotation should

 be used to indicate to the client that the predefined groups and

 rules cannot be modified.

A.4. UC4 - Declaring System defined configuration unchangeable

 As stated in [I-D.ietf-netmod-system-config] the device itself might

 supply some configuration. As defined in that document in section

 "5.4. Modifying (overriding) System Configuration" the server may

 allow some parts of system configuration to be modified while other

 parts of the system configuration are non-modifiable. The immutable

 extension or metadata annotation can be used to define which parts

 are non-modifiable and to inform the client about this fact.

A.5. UC5 - Immutable BGP AS number and peer type

 An autonomous system (AS) number is assigned and used primarily with

 BGP to uniquely identify each network system. Changing AS attribute

 will cause it to delete all the current routing entries and learning

 new ones, during which process it might lead to traffic disruption.

 It is usually not allowed to modify the AS attribute once it is

 configured unless all BGP configurations are removed.

 Another example is the type attribute of BGP neighbors. The peer

 type of the BGP neighbor is closely related to the network topology:

 external BGP (EBGP) peer type relationships are established between

 BGP routers running in different ASs; while internal BGP (IBGP) peer

 type relationships are established between BGP routers running in the

 same AS. Thus BGP peer type cannot be changed to the value which

 does not match the actual one. Since there are EBGP/IBGP-specific

 configurations which need to reference the "peer-type" node (e.g., in

 "when" statement) and be conditionally available, it can only be

 modelled as "config true" but immutable.

 Following is the fragment of a simplified BGP module with the /bgp/as

 and /bgp/neighbor/peer-type defined as immutable:

Ma, et al. Expires 10 September 2023 [Page 18]

Internet-Draft Immutable Flag March 2023

 container bgp {

 leaf as {

 im:immutable "create delete";

 type inet:as-number;

 mandatory true;

 description

 "Local autonomous system number of the router.";

 }

 list neighbor {

 key "remote-address";

 leaf remote-address {

 type inet:ip-address;

 description

 "The remote IP address of this entry’s BGP peer.";

 }

 leaf peer-type {

 im:immutable "create delete";

 type enumeration {

 enum ebgp {

 description

 "External (EBGP) peer.";

 }

 enum ibgp {

 description

 "Internal (IBGP) peer.";

 }

 }

 mandatory true;

 description

 "Specify the type of peering session associated with this

 neighbor. The value can be IBGP or EBGP.";

 }

 leaf ebgp-max-hop {

 when "../peer-type=’ebgp’";

 type uint32 {

 range "1..255";

 }

 description

 "The maximum number of hops when establishing an EBGP peer

 relationship with a peer on an indirectly-connected network.

 By default, an EBGP connection can be set up only on a

 directly-connected physical link.";

 }

 }

 }

Ma, et al. Expires 10 September 2023 [Page 19]

Internet-Draft Immutable Flag March 2023

A.6. UC6 - Modeling existing data handling behavior in other standard

 organizations

 A number of standard organizations and industry groups (ITU-T, 3GPP,

 ORAN) already use concepts similar to immutability. These modeling

 concepts sometimes go back to more than 10 years and cannot be and

 will not be changed irrespective of the YANG RFCs. Some of these

 organizations are introducing YANG modelling. Without a formal YANG

 statement to define data nodes immutable the property is only defined

 in plain Englist text in the description statement. The immutable

 extension and/or metadata annotation can be used to define these

 existing model properties in a machine-readable way.

Appendix B. Existing implementations

 There are already a number of full or partial implementations of

 immutability.

 3GPP TS 32.156 [TS32.156] and 28.623 [TS28.623]: Requirements and

 a partial solution

 ITU-T using ONF TR-531[TR-531] concept on information model level

 but no YANG representation.

 Ericsson: requirements and solution

 YumaPro: requirements and solution

 Nokia: partial requirements and solution

 Huawei: partial requirements and solution

 Cisco using the concept at least in some YANG modules

 Junos OS provides a hidden and immutable configuration group

 called junos-defaults

Appendix C. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v04 - v05

 * Emphasized that the proposal tries to formally document existing

 allowed behavior

 * Reword the abstract and introduction sections;

Ma, et al. Expires 10 September 2023 [Page 20]

Internet-Draft Immutable Flag March 2023

 * Restructure the document;

 * Simplified the interface example in Appendix;

 * Add immutable BGP AS number and peer-type configuration example.

 * Added temporary section in Annex B about list of existing non-

 standard solutions

 * Clarified inheritance of immutability

 * Clarified that this draft is not dependent on the existence of the

 <system> datastore.

 v03 - v04

 * Clarify how immutable flag interacts with NACM mechanism.

 v02 - v03

 * rephrase and avoid using "server MUST reject" statement, and try

 to clarify that this documents aims to provide visibility into

 existing immutable behavior;

 * Add a new section to discuss the inheritance of immutability;

 * Clarify that deletion to an immutable node in <running> which is

 instantiated in <system> and copied into <running> should always

 be allowed;

 * Clarify that write access restriction due to general YANG rules

 has no need to be marked as immutable.

 * Add an new section named "Acknowledgements";

 * editoral changes.

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

Ma, et al. Expires 10 September 2023 [Page 21]

Internet-Draft Immutable Flag March 2023

 v00 - v01

 * Added immutable extension

 * Added new use-cases for immutable extension and annotation

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Appendix D. Open Issues tracking

 * Can we do better about the "immutable" terminology?

 * Is a Boolean type for immutable metadata annotation sufficient?

 * Can immutable data be removed due to a when or choice statement?

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

Ma, et al. Expires 10 September 2023 [Page 22]

Internet-Draft Immutable Flag March 2023

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 10 September 2023 [Page 23]

IETF K. Moriarty

Internet-Draft Center for Internet Security (CIS)

Intended status: Standards Track 8 March 2023

Expires: 9 September 2023

 Security Considerations Template for YANG Module Documents

 draft-moriarty-yangsecuritytext-02

Abstract

 This document includes the template text agreed upon by the

 Operations Area and Security Area for inclusion in YANG documents.

 The best practices are updated as needed and will result in updates

 to this template for use to provide a consistent set of security

 considerations for authors, developers, and implementors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Moriarty Expires 9 September 2023 [Page 1]

Internet-Draft draft-moriarty-yangsecuritytext-01 March 2023

Table of Contents

 1. Introduction . 2

 2. YANG Security Considerations Template 2

 3. Security Considerations 4

 4. IANA Considerations . 4

 5. Contributors . 4

 6. References . 4

 6.1. Normative References 4

 6.2. Informative References 4

 Appendix A. Change Log . 5

 Author’s Address . 5

1. Introduction

 This document includes the template text agreed upon by the

 Operations Area and Security Area for inclusion in YANG documents.

 The best practices are updated as needed and will result in updates

 to this template for use to provide a consistent set of security

 considerations for authors, developers, and implementors.

 Updates may be made through errata or a publication of an updated

 document for ease of use by the IETF and other standards

 organizations. The current version is maintained on a wiki.

2. YANG Security Considerations Template

 The following template text, in addition to the guidance provided by

 the Security Area Directors in the Security Area wiki, must be

 included in the applicable IETF YANG publications. The text is

 provided as a template for use by other organizations with a

 requirement to reference it appropriately to this document.

 This RFC contains text intended for use as a template as designated

 below by the markers

 <BEGIN TEMPLATE TEXT> and <END TEMPLATE TEXT>

 or other clear designation. Such Template Text is subject to the

 provisions of Section 9(b) of the

 <BEGIN TEMPLATE TEXT>

 Security Considerations

 The YANG module(s) specified in this document defines a schema for

 data that is designed to be accessed via network management protocols

 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

Moriarty Expires 9 September 2023 [Page 2]

Internet-Draft draft-moriarty-yangsecuritytext-01 March 2023

 layer is the secure transport layer, and the mandatory-to-implement

 secure transport is Secure Shell (SSH) [RFC6242]. The lowest

 RESTCONF layer is HTTPS, and the mandatory-to-implement secure

 transport is TLS [RFC 8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]

 provides the means to restrict access for particular NETCONF or

 RESTCONF users to a preconfigured subset of all available NETCONF or

 RESTCONF protocol operations and content.

 -- if you have any writable data nodes (those are all the -- "config

 true" nodes, and remember, that is the default) -- describe their

 specific sensitivity or vulnerability.

 There are a number of data nodes defined in this YANG module that are

 writable/creatable/deletable (i.e., config true, which is the

 default). These data nodes may be considered sensitive or vulnerable

 in some network environments. Write operations (e.g., edit-config)

 to these data nodes without proper protection can have a negative

 effect on network operations. These are the subtrees and data nodes

 and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- for all YANG modules you must evaluate whether any readable data

 -- nodes (those are all the "config false" nodes, but also all other

 -- nodes, because they can also be read via operations like get or --

 get-config) are sensitive or vulnerable (for instance, if they --

 might reveal customer information or violate personal privacy -- laws

 such as those of the European Union if exposed to -- unauthorized

 parties)

 Some of the readable data nodes in this YANG module may be considered

 sensitive or vulnerable in some network environments. It is thus

 important to control read access (e.g., via get, get-config, or

 notification) to these data nodes. These are the subtrees and data

 nodes and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- if your YANG module has defined any rpc operations -- describe

 their specific sensitivity or vulnerability.

 Some of the RPC operations in this YANG module may be considered

 sensitive or vulnerable in some network environments. It is thus

 important to control access to these operations. These are the

 operations and their sensitivity/vulnerability:

Moriarty Expires 9 September 2023 [Page 3]

Internet-Draft draft-moriarty-yangsecuritytext-01 March 2023

 <list RPC operations and state why they are sensitive>

 <END TEMPLATE TEXT>

 Note: [RFC 8446], [RFC6241], [RFC6242], [RFC8341], and [RFC8040] must

 be "normative references".

3. Security Considerations

 This document defines a template to provide consistent YANG Security

 Considerations on publications by the IETF and other standards bodies

 and organizations.

4. IANA Considerations

 This memo includes no request to IANA.

5. Contributors

 Thank you to reviewers and contributors who helped to improve the

 security consdierations for YANG. The text has been developed and

 refined over many years on an Operations Area working group mailing

 list and to a Security Area wiki. Revisions have been made by IETF

 Security Area Directors and Operations Area Directors similar to the

 template for SNMP security considerations. Thank you to the

 following known contributors: Sean Turner, Stephen Farrell, Beniot

 Claise, and Erik Rescorla.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

Moriarty Expires 9 September 2023 [Page 4]

Internet-Draft draft-moriarty-yangsecuritytext-01 March 2023

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure

 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

Appendix A. Change Log

 Note to RFC Editor: if this document does not obsolete an existing

 RFC, please remove this appendix before publication as an RFC.

Author’s Address

 Kathleen M. Moriarty

 Center for Internet Security (CIS)

 31 Tech Valley Drive

 East Greenbush, NY,

 United States of America

 Email: Kathleen.Moriarty.ietf@gmail.com

Moriarty Expires 9 September 2023 [Page 5]

	draft-feng-opsawg-incident-management-00
	draft-haas-netmod-unknown-bits-01
	draft-ietf-anima-rfc8366bis-07
	draft-ietf-netmod-intf-ext-yang-11
	draft-ietf-netmod-sub-intf-vlan-model-08
	draft-ietf-netmod-system-config-01
	draft-ietf-netmod-yang-module-versioning-08
	draft-ietf-netmod-yang-schema-comparison-02
	draft-ietf-netmod-yang-semver-10
	draft-ma-netmod-immutable-flag-05
	draft-moriarty-yangsecuritytext-02

