
radextra BOF M. Cullen

Internet-Draft Painless Security

Intended status: Standards Track A. DeKok

Expires: 11 January 2024 FreeRADIUS

 M. Donnelly

 Painless Security

 J. Howlett

 Federated Solutions

 10 July 2023

 Status-Realm and Loop Prevention for the Remote Dial-In User Service

 (RADIUS)

 draft-cullen-radextra-status-realm-01

Abstract

 This document describes extension to the Remote Authentication Dial-

 In User Service (RADIUS) protocol to allow participants in a multi-

 hop RADIUS proxy fabric to check the status of a remote RADIUS

 authentication realm, gain visibility into the path that a RADIUS

 request will take across the RADIUS proxy fabric, and mitigate or

 prevent RADIUS proxy loops.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Cullen, et al. Expires 11 January 2024 [Page 1]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Requirements Notation . 3

 3. Terminology . 3

 4. Overview . 6

 4.1. Status-Realm Overview 6

 4.2. RADIUS Loop Prevention Overview 7

 5. Packet Formats . 7

 5.1. Status-Realm-Request Packet 7

 5.2. Status-Realm-Response Packet 8

 6. Max-Hop-Count Attribute 9

 7. Status-Realm-Response-Code Attribute 9

 8. Server-Information Attribute 11

 8.1. Status-Realm Responding-Server 12

 9. Status-Realm Implementation Requirements 13

 9.1. RADIUS Client Requirements 13

 9.2. Server Requirements 14

 9.3. Proxy Server Requirements 15

 10. Status-Realm Implementation Status 16

 10.1. Status-Realm Message Exchange Examples 16

 11. Proxy Loop Detection Implementation Requirements 17

 11.1. Server Requirements 17

 11.2. Proxy Requirements 17

 12. Proxy Loop Detection Implementation Status 17

 12.1. Loop Detection Message Exchange Examples 17

 13. Management Information Base (MIB) Considerations 18

 14. Interaction with RADIUS Client MIB Modules 18

 15. Table of Attributes . 19

 16. IANA Considerations . 19

 17. Security Considerations 20

 18. Acknowledgements . 21

 19. References . 21

 19.1. Normative References 21

 19.2. Informative References 21

 Authors’ Addresses . 22

Cullen, et al. Expires 11 January 2024 [Page 2]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

1. Introduction

 This document describes an extension to the Remote Authentication

 Dial-In User Service (RADIUS) protocol [RFC2865], to allow

 participants in a multi-hop RADIUS proxy fabric to check the status

 of a remote RADIUS authentication realm, gain visibility into the

 path that a RADIUS request will take across the RADIUS proxy fabric,

 and mitigate or prevent RADIUS proxy forwarding loops.

 This document defines two new RADIUS Packet Type Codes:

 * Status-Realm-Request (TBD)

 * Status-Realm-Response (TBD)

 This document also defines the following RADIUS Attributes:

 * Status-Realm-Response-Code (TBD)

 * Max-Hop-Count (TBD)

 * Server-Identifier (TBD)

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

3. Terminology

 The following terms are used throughout this document. Their

 definitions are included here for consistency and clarity.

 RADIUS Request A RADIUS Request is the first message in a

 RADIUS message exchange. RADIUS request

 message types include: Access-Request,

 Accounting-Request, and Status-Server. This

 document defines a new RADIUS Request

 message type: Status-Realm-Request.

 RADIUS Response A RADIUS Response is any RADIUS message sent

 in reply to a RADIUS Request. RADIUS

 reponse message types include: Access-

 Accept, Access-Challenge, Access-Reject,

 Accounting-Response. This document defines

 a new RADIUS Response message type: Status-

 Realm-Response.

Cullen, et al. Expires 11 January 2024 [Page 3]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 RADIUS Instance A single device or software module that

 implements the RADIUS protocol.

 RADIUS Client A RADIUS Client is a RADIUS Instance that

 sends RADIUS Request messages and recevies

 RADIUS Reponse messages in reply.

 RADIUS Server A RADIUS Server is a RADIUS Instance that

 receives RADIUS Requests and sends RADIUS

 Response messages in reply.

 Authentication Request An Authentication Request is sent to

 authenticate a particular user within a

 particular realm. The user and realm

 information are typically included in a

 User-Name Attribute [RFC2865] within the

 Authentication Request.

 Authentication Server An Authentication Server is a RADIUS Server

 that receives Access-Requests for a given

 RADIUS Realm, and sends Access-Access,

 Access-Challenge or Access-Reject messages

 in response. A single Authentication Server

 may serve more than one Authentication

 Realm.

 Authentication Realm An Authentication Realm consists of a group

 of users within a single organization that

 can be authenticated using RADIUS. A single

 Authentication Realm MAY be served by more

 than one Authentication Server.

 Target Realm The Target Realm of a RADIUS Request is the

 RADIUS Realm toward which the Request is

 directed. The Target Realm is typically

 contained within the "User-Name" attribute

 of a Request.

 RADIUS Proxy A RADIUS Proxy receives RADIUS Requests and

 forwards then towards the Target Realm

 included in the RADIUS Request message. It

 also receives the corresponding RADIUS

 Respone message and fowards them back

 towards the RADIUS Client that originated

 the request. In this context forwarding a

 RADIUS Requst consists of generating a new

 RADIUS Request containing information from

 the original Request, and sending it to the

Cullen, et al. Expires 11 January 2024 [Page 4]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 configured next-hop RADIUS server for the

 Target Realm. Forwarding a RADIUS Response

 consists of sending it to the RADIUS Server

 from which the corresponding Request was

 received.

 RADIUS Proxy Fabric A multi-hop group of inter-connected RADIUS

 Servers that Proxy requests among themselves

 towards a set of Target Realms.

 RADIUS Proxy Path The RADIUS Server Path is a the set of

 RADIUS Servers that a RADIUS Request

 traverses from the first RADIUS Server that

 is contacted by the RADIUS Client to the

 final RADIUS Server that responds to the

 Request.

 Proxy Loop A Proxy Loop may occur when two or more

 RADIUS Proxies are configured such that a

 RADIUS Request follow a circular path

 through the Proxy Fabric, never reaching the

 Target Realm. This is a pathological and

 potentially damaging misconfiguration.

 First-Hop Server The First-Hop Server is the first RADIUS

 Server within a Proxy Fabric to recieve a

 RADIUS Request. In some cases, the First-

 Hop RADIUS Server may receive the request

 from a separate RADIUS Client. In other

 case, the First-Hop RADIUS Server and the

 RADIUS Client may be running in a single

 RADIUS Instance.

 Last-Hop Proxy The Last-Hop Proxy is the last RADIUS Proxy

 to forward a RADIUS Request before it

 reaches the Authentication Server.

 Depending on its configuraiton, the Last-Hop

 Proxy may or may not know that is the Last-

 Hop Proxy for a given RADIUS Request.

 Note: It is possible for a single RADIUS instance to server in

 multiple roles. For example, it is common for a RADIUS Server to act

 as an Authentication Server for some Realms, while acting as a Proxy

 for other Realms. A RADIUS Proxy will, by its nature, act as a

 RADIUS Server for some RADIUS messages while acting as a RADIUS

 Client for others. The requirements in this document apply to all

 RADIUS instances whenever they are acting in the role to which the

 requirement applies.

Cullen, et al. Expires 11 January 2024 [Page 5]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

4. Overview

 This document defines two functional extensions to RADIUS: Querying

 the status of a remote RADIUS Realm (Status-Realm), and mitigating,

 detecting and preventing loops in a RADIUS Proxy forwarding loops

 (Proxy Loop Prevention). This section contains a short overview of

 each function. Detailed definitions and requirements are covered in

 later sections of this document.

4.1. Status-Realm Overview

 Status-Realm-Request messages are sent by RADIUS Clients to to query

 the reachability and status of a particular Target Realm. In some

 cases, the Status-Realm RADIUS Client may be able to reach an

 Authentication Server for the Target Realm directly. In other cases,

 the RADIUS Client will send the initial Status-Realm request to a

 RADIUS Proxy, which will forward the Status-Realm-Request toward the

 indicated realm.

 Status-Realm-Requests may be sent to the RADIUS authentication port

 or the RADIUS accounting port of the first-hop RADIUS server. RADIUS

 proxies should forward Status-Realm-Requests received on the

 authentication port to the authentication port of the next-hop RADIUS

 server. Status-Realm-Requests received on the accounting port

 should, similarly, be forwarded to the accounting port of the next-

 hop server.

 When a Status-Realm-Request packet is received by an Authentication

 Server for the Target Realm, the Authentication Server MUST respond

 with a Status-Realm-Response packet.

 If an intermediate RADIUS Proxy is unable to forward a Status-Realm-

 Request packet towards the Target Realm, either because it has no

 information about how to reach the Target Realm, or because there are

 no reachable Authentication Servers for the Target Realm, the RADIUS

 Proxy MUST return a Status-Realm-Response packet containing a Status-

 Realm-Response-Code attribute.

 Status-Realm packets allow the sender to determine the reachability

 and status of a Authentication Realm, without requiring a direct

 RADIUS connection to a RADIUS Server for the Target realm, and

 without requiring credentials for an authorized user within that

 realm. This can be useful for debugging RADIUS authentication

 issues, identifying routing issues within a RADIUS proxy fabric, or

 monitoring realm availability.

Cullen, et al. Expires 11 January 2024 [Page 6]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 Using the Max-Hop-Count attribute defined in this document, RADIUS

 Clients can also implement "traceroute-like" functionality,

 discovering a series of proxies on route to a target realm.

4.2. RADIUS Loop Prevention Overview

 RADIUS Proxies are configured to know which next-hop RADIUS Server to

 use for a given Target Realm. There is no dynamic routing protocol

 or tree-spanning protocol in use, so Proxy Loops are a common

 occurence due to misconfiguration. These loops can be controlled or

 prevented using implementation-specific or operator-specific

 mechanisms, but it would be useful to have well-defined, common

 mechanism.

 The Max-Hop-Count attribute described in this document can be used to

 mitigate the damage caused by Proxy Loops. The Max-Hop-Count

 attribute is set to a small integer by the RADIUS Client or First-Hop

 RADIUS Server. The value is decremented each time a RADIUS message

 is proxied. When the Max-Hop-Count reaches zero, the request is

 discarded, ending the loop.

 This document also defines a more effective method of detecting and

 preventing Proxy Forwarding Loops: RADIUS Loop Prevention. This

 document defines a RADIUS Server-Identifier attribute that is used to

 uniquely identify a RADIUS Server. When a RADIUS Proxy receives a

 RADIUS Request packet, it checks to see if the Request contains a

 Server-Identifier attribute indicating that it has already processed

 this packet. If so, it discards the packet. If not, it adds its own

 Server Identifier to the packet before forwarding it.

5. Packet Formats

 This section describes the RADIUS packet formats for Status-Realm-

 Request and Status-Realm-Response packets. Status-Realm-Requests are

 sent in the same format, whether they are sent to the authentication

 port or the accounting port.

5.1. Status-Realm-Request Packet

 Status-Realm-Request packets reuse the RADIUS packet format, with the

 fields and values for those fields as defined in [RFC2865],

 Section 3.

Cullen, et al. Expires 11 January 2024 [Page 7]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 A Status-Realm-Request packet MUST include a Message-Authenticator

 attribute, as defined in [RFC2869], section 5.14. The Message-

 Authenticator provides per-packet authentication and integrity

 protection. The Authenticator field of a Status-Realm-Request packet

 MUST be generated using the same method as that used for the Request

 Authenticator field of Access-Request packets.

 A Status-Realm-Request packets MUST include a User-Name Attribute,

 containing the Target Realm for the Request. The ’user’ portion of

 the User-Name SHOULD be ignored, if present.

 A Status-Realm-Request message MUST also include a Max-Hop-Count

 attribute, as defined above.

 Status-Realm-Requests MAY include NAS-Identifier, and one of (NAS-IP-

 Address or NAS-IPv6-Address). These attributes are not necessary for

 the operation of Status-Realm, but may be useful information to a

 server that receives those packets.

 Status-Realm-Request packets MUST NOT contain authentication

 credentials (such as User-Password, CHAP-Password, EAP-Message) or

 User or NAS accounting attributes (such as Acct-Session-Id, Acct-

 Status-Type, Acct-Input-Octets).

5.2. Status-Realm-Response Packet

 Status-Realm-Response packets reuse the RADIUS packet format, with

 the fields and values for those fields as defined in [RFC2865],

 Section 3.

 The Response Authenticator field of a Status-Realm-Response packet

 MUST be generated using the same method used for calculating the

 Response Authenticator of an Access-Accept or an Access-Reject sent

 in response to an Access-Request, with the Status-Realm-Request

 Request Authenticator taking the place of the Access-Request Request

 Authenticator.

 The Status-Realm-Response packet MUST contain a Status-Realm-

 Response-Code attribute, as defined below, indicating the results of

 the Status-Realm request.

 The Status-Realm-Response packet MAY contain the following

 attributes: Reply-Message, Message-Authenticator, Server-Information.

 Note that when a server responds to a Status-Realm-Request packet, it

 MUST NOT send more than one Status-Realm-Response packet.

Cullen, et al. Expires 11 January 2024 [Page 8]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

6. Max-Hop-Count Attribute

 This section defines a new RADIUS attribute, Max-Hop-Count (TBD).

 The value of the Max-Hop-Count attribute is an integer, as defined in

 [RFC8044], Section 3.1. Valid values are small positive integers, 0

 to 255.

 This attribute is used to limit the number of RADIUS servers that

 will proxy a packet before it reaches its final destination. When a

 RADIUS server that implements the Max-Hop-Count Attribute determines

 that it wants to proxy a RADIUS Request to another RADIUS Server, it

 will check the Max-Hop-Count attribute. If the Max-Hop-Count

 attribute is present and the value is zero, the Request MUST NOT be

 forwarded and an error response SHOULD be returned, as appropriate to

 the request type. If the Max-Hop-Count is greater than zero, the

 proxy server MUST decrement the hop count by 1 before forwarding the

 request.

 In the context of Status-Realm-Requests, this attribute can be used

 to implement "traceroute-like" functionality. By sending a series of

 Status-Realm-Requests with incremented values of Max-Hop-Count,

 starting with a Max-Hop-Count value of O, the RADIUS Client will

 receive a series of Status-Realm-Responses from the RADIUS Proxies on

 the Proxy Path to a given Target Realm.

 When used on other types of RADIUS Request messages, this option can

 mitigate the damage caused by RADIUS proxy loops. It is therefore

 possible that a RADIUS Client or a RADIUS proxy server will support

 the Max-Hop-Count attribute, even if they do not support Status-

 Realm. When used to limit RADIUS proxy loops, it is RECOMMENDED that

 the value of the Max-Hop-Count attribute be set to 32, by default.

 For any type of RADIUS request message, setting the Max-Hop-Count

 attribute to 0 effectively requests that the request message not be

 proxied. Setting the attribute to a value greater than 0 requests

 that the request message be proxied across at most that many

 intermediate proxies between the visited and home server.

 If this attribute is not present on a RADIUS Request received from a

 RADIUS Client, the First-Hop RADIUS Server MAY add this option,

 setting it to the default value of 32, or to any valid, configured

 value.

7. Status-Realm-Response-Code Attribute

 This section defines a new RADIUS attribute, Status-Realm-Response-

 Code (TBD). This is of type tlv, as defined in [RFC8044], section

 3.13. It contains 3 sub-attributes:

Cullen, et al. Expires 11 January 2024 [Page 9]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 * Response-Code (Type = 1)

 * Hop-Count (Type = 2)

 * Responding-Server (Type = 3)

 Response-Code is of type ’integer’, as defined in [RFC8044],

 Section 3.1. Exactly one Response-Code sub-attribute MUST be

 included in in every Status-Realm-Response-Code attribute. It will

 contain one of the following values:

 0 The target realm is available

 1 No proxy route to the target realm

 2 No available servers for the target realm

 3 The target realm is missing or invalid

 4 Max-Hop-Count exceeded

 5-255 Unspecified error, the target realm is unreachable

 256 Administratively prohibited, target realm status

 unknown

 257 Internal error, target realm status unknown

 258 Bad Status-Realm-Request, missing or invalid

 Target Realm in the request message, target

 realm status unknown

 259 Bad Status-Realm-Request, missing or invalid

 Max-Hop-Count, target realm status unknown

 260-511 Unspecified error, Target Realm status unknown

 512+ Reserved

 Response-Code values from 0 to 255 indicate the status of the target

 realm on the RADIUS network. Response-Code values from 256 to 511

 indicate errors in processing the Status-Realm request, and cannot

 indicate the status of the target realm.

 Hop-Count is of type ’integer’. Valid values are 0-255. The value

 of this sub-attribute MUST be set to the value of the Max-Hop-Count

 attribute in the received Status-Realm-Request. If no Max-Hop-Count

 is included in the Status-Realm-Request message, this sub-attribute

 MUST be omitted.

Cullen, et al. Expires 11 January 2024 [Page 10]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 Responding-Server is of type ’tlv’, as defined in [RFC8044],

 Section 3.13. This sub-attribute MUST be returned in every Status-

 Realm-Response attribute. The value field of this sub-attribute

 contains a Server-Information Attribute for the responding server, as

 described below.

8. Server-Information Attribute

 The Server-Information attribute is used to identify a specific

 RADIUS Server. It MAY be added to any RADIUS Request message to

 indicate that a particular RADIUS Server has processed the Request.

 If present in a RADIUS Request, it SHOULD be copied into the

 corresponding RADIUS Response. RADIUS Servers SHOULD NOT add Server-

 Information attributes to Response messages when processing

 Responses.

 This attribute is of type ’tlv’, as defined in [RFC8044],

 Section 3.13. The value of this attribute consists of a set of sub-

 attributes, all of type ’tlv’. Each sub-attribute contains an

 identifier for a RADIUS proxy. The Server-Identifier MUST have at

 least one sub-attribute and MAY have more than one sub-attribute. If

 multiple sub-attributes are present, a RADIUS proxy MUST match all of

 the sub-attributes in order to match the identifier.

 The following sub-attributes may be included in the value field of a

 Server-Information Attribute. The Type code for each sub-attribute

 is included in parenthesis.

 * Server-Operator (Type = 1)

 * Server-Identifier (Type = 2)

 * Hop-Count (Type = 3)

 * Time-Delta (Type = 4)

 The Server-Operator is of type ’string’. It is the analogue of the

 Operator-Name, as defined in [RFC5580].

 The Server-Identifier in an analogue of the NAS-Identifier defined in

 [RFC2865]. It indicates the name of this particular proxy server.

 This field is used to identify which server processed the Request,

 among those operated by the organization indicated in the Server-

 Operator sub-attribute.

 The Time-Delta attribute is of type ’integer’. It represents the

 number of milliseconds the request took to return through this proxy

 server. For the target server, this value SHOULD be 0.

Cullen, et al. Expires 11 January 2024 [Page 11]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

8.1. Status-Realm Responding-Server

 This attribute is also included as the sub-attribute Responding-

 Server within the Status-Realm-Response-Code attribute, defined

 above, to indicate which RADIUS Server has sent the Status-Realm-

 Response message. Thus, a Status-Realm response may contain many

 Server-Information attributes, as well as a Status-Realm-Response-

 Code attribute with the Responding-Server sub-attribute, which has

 the same structure.

 If a Status-Realm request targeting "target-realm" is routed over

 proxy servers P1 and P2 before reaching the "target-realm" home

 server, then the response message will contain these attributes:

 * Server-Information:

 - Server-Operator: P1

 - Server-Identifier: P1

 - Hop-Count: 32

 - Time-Delta: 90

 * Server-Information:

 - Server-Operator: P2

 - Server-Identifier: P2-Alpha

 - Hop-Count: 31

 - Time-Delta: 60

 * Status-Realm-Response-Code:

 - Response-Code: 0 (Available)

 - Hop-Count: 30

 - Responding-Server:

 o Server-Operator: target-realm

 o Server-Identifier: radius1.target-realm

 o Hop-Count: 30

Cullen, et al. Expires 11 January 2024 [Page 12]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 o Time-Delta: 0

9. Status-Realm Implementation Requirements

 This section describes implementation details and requirements for

 RADIUS Clients and servers that support Status-Realm.

9.1. RADIUS Client Requirements

 When Status-Realm-Request packets are sent from a RADIUS Client, they

 MUST NOT be retransmitted. Instead, the Identity field MUST be

 changed every time a packet is transmitted. The old packet should be

 discarded, and a new Status-Realm-Request packet should be generated

 and sent, with new Identity and Authenticator fields.

 RADIUS Clients MUST include the Message-Authenticator attribute in

 all Status-Realm-Request packets. Failure to do so would mean that

 the packets could be trivially spoofed, leading to potential denial-

 of-service (DoS) attacks.

 The RADIUS Client MUST include a User-Name attribute in the request.

 The "user" portion of the username SHOULD be omitted. The "realm"

 portion of the username is the target realm for the Status-Realm

 request.

 RADIUS Clients that support Status-Realm-Requests SHOULD allow a user

 or administrator to set or configure the Count value of the Max-Hop-

 Count Attribute described above. If a different value is not

 indicated, the RADIUS Client SHOULD include a Max-Hop-Count attribute

 with a Count value of 32 in the Status-Realm-Request packet to

 prevent the possibility that Status-Realm-Requests will loop

 indefinitely.

 The RADIUS Client MAY increment packet counters as a result of

 sending a Status-Realm-Resquest or receiving a Status-Realm-Response.

 The RADIUS Client MUST NOT perform any other action that is normally

 performed when it receives a Response packet, such as permitting a

 user to have login access to a port.

 RADIUS Clients MAY send Status-Realm-Request packets to the RADIUS

 destination ports from the same source port(s) used to send other

 Request packets. Other RADIUS Clients MAY choose to send Status-

 Realm-Request packets from a unique source port that is not used to

 send other Request packets.

 In the case where a RADIUS Client sends a Status-Realm-Request

 packets from a source port also used to send other Request packets,

 the Identifier field MUST be unique across all outstanding Request

Cullen, et al. Expires 11 January 2024 [Page 13]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 packets for that source port, independent of the value of the RADIUS

 Code field for those outstanding requests. Once the RADIUS Client

 has either received a corresponding Status-Realm-Response packet or

 determined that the Status-Realm-Request has timed out, it may reuse

 the Identifier in another Request packet.

 The RADIUS Client MUST validate the Response Authenticator in the

 Status-Realm-Response. If the Response Authenticator is not valid,

 the packet MUST be silently discarded. If the Response Authenticator

 is valid, then the packet MUST be deemed to be a valid response.

9.2. Server Requirements

 Servers SHOULD permit administrators to globally enable or disable

 the acceptance of Status-Realm-Request packets. The default SHOULD

 be that acceptance is enabled. Servers SHOULD also permit

 administrators to enable or disable acceptance of Status-Realm-

 Request packets on a per-RADIUS Client basis. The default SHOULD be

 that acceptance is enabled.

 If a server does not support Status-Realm, or if it is configured not

 to respond to Status-Realm-Requests, then it MUST silently discard

 any Status-Realm-Requests messages that it receives. If a server

 receives a Status-Realm-Request packet from a RADIUS Client from

 which it is configured not to accept Status-Realm-Requests, then it

 MUST silently discard the message.

 If a server supports Status-Realm, is configured to respond to

 Status-Realm-Requets, and receives a Status-Realm-Request packet from

 a permitted RADIUS Client, it MUST first validate the Message-

 Authenticator attribute as defined in [RFC3579], Section 3.2.

 Packets failing this validation MUST be silently discarded.

 If the Status-Realm-Request passes Message-Authenticator validation,

 then the server should check if the Target Realm matches a local

 realm served by this Server. If it does match, the server should

 send a Status-Realm-Response packet indicating that status of the

 Target Realm, reachable or unreachable (Status-Server-Response-Code =

 0 or 2).

 If the Target Realm does not match a local realm, then the server

 should determine whether it is configured to proxy packets towards

 the Target Realm. If so, the server should implement the Proxy

 Server Requirements, below. Servers SHOULD ignore the value of the

 "user" portion of the User-Name attribute, if any.

Cullen, et al. Expires 11 January 2024 [Page 14]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 Servers SHOULD NOT discard Status-Realm packets merely because they

 have recently sent the RADIUS Client a response packet. The query

 may have originated from an administrator who does not have access to

 the response packet stream or one who is interested in obtaining

 additional information about the server.

 The server MAY decide to send an error response to a Status-Realm-

 Request packet based on local-site policy. For example, a server

 that is running but is unable to perform its normal duties SHOULD

 send a Status-Realm-Response packet indicating an internal error

 (Status-Server-Response-Code = 257). This situation can happen, for

 example, when a server requires access to a database for normal

 operation, but the connection to that database is down. Or, it may

 happen when the accepted load on the server is lower than the current

 load.

 The server MAY increment packet counters or create log entries as a

 result of receiving a Status-Realm-Request packet or sending a

 Status-Realm-Response packet. The server SHOULD NOT perform any

 other action that is normally performed when it receives a Request

 packet, other than sending a Response packet.

 If the Status-Realm-Request packet includes a Max-Hop-Count

 attribute, that attribute (with its current value) MUST be returned

 in any corresponding Status-Realm-Response packet.

 Note that [RFC2865], Section 3, defines a number of RADIUS Codes, but

 does not make statements about which Codes are valid for port 1812.

 In contrast, [RFC2866], Section 3, specifies that only RADIUS

 Accounting packets are to be sent to port 1813. This specification

 is compatible with the standards-track specification [RFC2865], as it

 defines a new Message Type Code for packets to port 1812. This

 specification is not compatible with the informational document

 [RFC2866], as it adds a new Code (Status-Realm-Request) that is valid

 for port 1813.

9.3. Proxy Server Requirements

 Many RADIUS servers act as RADIUS proxies, forwarding requests to

 other RADIUS servers. Such servers SHOULD proxy Status-Realm-Request

 packets to enable RADIUS Clients to determine the status of

 Authentication Realms that are not directly connected to the RADIUS

 Client.

 RADIUS proxies that support Status-Realm-Requests MUST support the

 Max-Hop-Count attribute defined above. Before forwarding a Status-

 Realm-Request packet, a proxy MUST check the Max-Hop-Count Attribute.

 If the Max-Hop-Count attribute is present and the Count is zero (0),

Cullen, et al. Expires 11 January 2024 [Page 15]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 the proxy MUST send a Status-Realm-Response indicating that the hop

 count has been exceeded (Status-Server-Response-Code = 4), and MUST

 NOT forward the packet. If the Max-Hop-Count attribute is present,

 and the Count value is not zero, the proxy MUST decrement the Max-

 Hop-Count value before forwarding the packet.

 The RADIUS proxy MUST check the "realm" portion of the User-Name

 attribute in the Status-Realm-Request to determine the Target Realm

 for the request. If the target realm is missing or malformed, the

 RADIUS proxy MUST send a Status-Realm-Response indicating an invalid

 realm (Status-Server-Response-Code = 3). If the realm is properly

 formed, the Status-Realm-Request packet should be proxied toward the

 Target Realm, using the same next-hop RADIUS server that the proxy

 server would use for other request packets received on the same port.

 In some cases, a RADIUS proxy may not have an available next-hop

 RADIUS server for the Target Realm. In that case, the RADIUS proxy

 server MUST send a Status-Realm-Response packet indicating that there

 is no proxy route to the Target Realm (Status-Server-Response-Code =

 1).

 In cases where a RADIUS proxy is configured to have a direct

 connection to the RADIUS server(s) of the Target Realm, but is

 configured not to forward Status-Realm-Request packets to the target

 server(s), the proxy MAY use other methods to determine the status of

 the Target Realm (such as Status-Server packets or recent Access-

 Request state information), and send a Status-Realm-Response

 indicating the determined state of the Target Realm (Status-Server-

 Response-Code = 0 or 2). If the proxy is configured not to forward

 Status-Realm-Request packet to the Target Realm and does not have

 other methods to detect the status of the Target Realm, it SHOULD

 return a Status-Realm-Response packet indicating that the request is

 administrative prohibited (Status-Server-Response-Code = 257).

 If the Status-Realm-Request packet includes a Max-Hop-Count

 attribute, that attribute (with its current value) MUST be returned

 in any corresponding Status-Realm-Response packet.

10. Status-Realm Implementation Status

 There is an initial implementation of Status-Realm available here:

 https://github.com/alandekok/freeradius-server/tree/Status-Realm

10.1. Status-Realm Message Exchange Examples

 Message exchange examples are TBD.

Cullen, et al. Expires 11 January 2024 [Page 16]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

11. Proxy Loop Detection Implementation Requirements

 This section describes implementation details and requirements for

 RADIUS Clients, Servers and Proxies that support Proxy Loop

 Detection.

11.1. Server Requirements

 A RADIUS Server that implements Proxy Loop Prevention add its own

 Server-Information Attribute to any RADIUS message that it generates,

 including RADIUS Response messages. It MUST also copy all Server-

 Information atributes from a received RADIUS Request into any RADIUS

 Response that it generates in reply to that Request.

11.2. Proxy Requirements

 A RADIUS Proxy that implements the Loop Prevention mechanism defined

 in this document MUST be configured with information to populate a

 Server-Information attribute, and matching criteria to determine if a

 Server-Information attribute in an incoming request indicates the

 existence of a Proxy Loop.

 Before forwarding a RADIUS Request towards the Target Realm, a RADIUS

 Proxy that implements Proxy Loop Prevention MUST examine each of the

 Server-Information attributes included in the Request message to

 determine whether the message is caught in a Proxy Loop. If so, the

 Proxy should discard the message. If a Proxy Loop is not detected,

 the RADIUS Proxy MUST add its own Server-Information attribute to any

 RADIUS Request that they forward toward the Target Realm.

12. Proxy Loop Detection Implementation Status

 The Proxy Loop Detection mechanism is similar to RADIUS Vendor-

 Specific attribute used today to detect RADIUS Proxy Loops. Unlike

 the Vendor-Specific attributes in use today, this mechanism includes

 server information within a single, globally-defrined attribute,

 rather than requiring that a unique vendor identifiers be allocated

 for each RADIUS Server operator.

12.1. Loop Detection Message Exchange Examples

 Message exchange examples are TBD.

Cullen, et al. Expires 11 January 2024 [Page 17]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

13. Management Information Base (MIB) Considerations

 Status-Realm-Request packets are sent to the defined RADIUS ports, so

 they can affect the [RFC4669] and [RFC4671] RADIUS server MIB

 modules. [RFC4669] defines a counter named

 radiusAuthServTotalUnknownTypes that counts the number of RADIUS

 packets of unknown type that were received. [RFC4671] defines a

 similar counter named radiusAccServTotalUnknownTypes.

 Implementations not supporting Status-Realm-Requests or

 implementations that are configured not to respond to Status-Realm-

 Request packets MUST use these counters to track received Status-

 Realm packets.

 If, however, Status-Realm-Requests are supported and the server is

 configured to respond as described above, then the counters defined

 in [RFC4669] and [RFC4671] MUST NOT be used to track Status-Realm-

 Request or Status-Realm-Response packets. That is, when a server

 fully implements Status-Realm, the counters defined in [RFC4669] and

 [RFC4671] MUST be unaffected by the transmission or reception of

 packets relating to Status-Realm-Requests.

 If a server supports Status-Realm-Request and the [RFC4669] or

 [RFC4671] MIB modules, then it SHOULD also support vendor-specific

 MIB extensions dedicated solely to tracking Status-Realm-Request and

 Status-Realm-Response packets. Any definition of the server MIB

 modules for Status-Realm-Requests is outside of the scope of this

 document.

14. Interaction with RADIUS Client MIB Modules

 RADIUS Clients implementing Status-Realm-Request MUST NOT increment

 [RFC4668] or [RFC4670] counters upon reception of Status-Realm-

 Response packets. That is, when a RADIUS Client fully implements

 Status-Realm-Request, the counters defined in [RFC4668] and [RFC4670]

 MUST be unaffected by the transmission or reception of packets

 relating to Status-Realm.

 If an implementation supports Status-Realm-Request and the [RFC4668]

 or [RFC4670] MIB modules, then it SHOULD also support vendor-specific

 MIB extensions dedicated solely to tracking Status-Realm requests and

 responses. Any definition of the RADIUS Client MIB modules for

 Status-Realm-Requests is outside of the scope of this document.

Cullen, et al. Expires 11 January 2024 [Page 18]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

15. Table of Attributes

 The following table provides a guide to which attributes may be found

 in Status-Realm-Request and Status-Realm-Response packets, and in

 what quantity. Attributes other than the ones listed below SHOULD

 NOT be found in a Status-Realm-Request packet.

 Status- Status-

 Realm- Realm-

 Request Response

 1 1 1 User-Name

 0 0 2 User-Password

 0 0 3 CHAP-Password

 0-1 0 4 NAS-IP-Address (Note 1)

 0 0+ 18 Reply-Message

 0+ 0+ 26 Vendor-Specific

 0-1 0 32 NAS-Identifier (Note 1)

 0 0 79 EAP-Message

 1 0-1 80 Message-Authenticator

 0-1 0 95 NAS-IPv6-Address (Note 1)

 0 1 (TBD) Status-Realm-Response-Code

 1 0 (TBD) Max-Hop-Count

 0+ 0+ (TBD) Server-Information

 0 0 103-121 Digest-*

 Note 1: Status-Realm-Request packet SHOULD contain one of (NAS-IP-

 Address or NAS-IPv6-Address), or NAS-Identifier, or both NAS-

 Identifier and one of (NAS-IP-Address or NAS-IPv6-Address).

 The following table defines the meaning of the table entries included

 above:

 0 This attribute MUST NOT be present in packet.

 0+ Zero or more instances of this attribute MAY be present in

 the packet.

 0-1 Zero or one instance of this attribute MAY be present in

 the packet.

 1 Exactly one instance of this attribute MUST be present in

 the packet.

16. IANA Considerations

 This document defines the Status-Realm-Request (TBD) and the Status-

 Realm-Response (TBD) RADIUS Packet Type Codes, both of which should

 be assigned by IANA from the Unassigned block of RADIUS Packet Type

 Codes.

Cullen, et al. Expires 11 January 2024 [Page 19]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 This document defines three new RADIUS attributes, Max-Hop-Count

 (TBD) and Status-Realm-Response-Code (TBD) and Server-Identifier

 (TBD), which should be assigned by IANA from an Unassigned block of

 RADIUS Attribute Types, such as the Unassigned block for Extended-

 Attribute-1.

 This document also defines two new Protocol Registries that need to

 be created: "Values for RADIUS Attribute (TBD), Status-Realm-

 Response-Code" and "Valies for RADIUS Attribute (TBD), Server-

 Identifier". Initial values for these registries are defined above.

17. Security Considerations

 Status-Realm-Request packets are similar to Access-Request packets,

 and are therefore subject to the same security considerations as

 described in [RFC2865], Section 8. Status-Realm packets also use the

 Message-Authenticator attribute, and are therefore subject to the

 same security considerations as [RFC3579], Section 4.

 We reiterate that all Status-Realm-Request packets MUST contain a

 Message-Authenticator. Servers not checking the Message-

 Authenticator attribute could respond to Status-Realm packets from an

 attacker, potentially enabling a reflected DoS attack onto a real

 RADIUS Client.

 Where this document differs from [RFC2865] is that it defines a new

 request/response method in RADIUS: the Status-Realm-Request and

 Status-Realm-Response. The Status-Realm-Request is similar to the

 previously described and widely implemented Status-Server message

 [RFC5997], and no additional security considerations are known to

 relate to the implementation or use of Status-Server. This option

 differs from Status-Server because it is forwarded through proxies,

 so it can be sent to a RADIUS Server that does not have a direct

 connection to the Status-Realm RADIUS Client. However, Access-

 Request packets are also forwarded, and there should be no additional

 attacks other than those incurred by forwarding Status-Realm-Request

 packets.

 Attacks on cryptographic hashes are well known [RFC4270] and getting

 better with time. RADIUS uses the MD5 hash [RFC1321] for packet

 authentication and attribute obfuscation. There are ongoing efforts

 in the IETF to analyze and address these issues for the RADIUS

 protocol.

 Security Considerations for Loop Prevention are TBD.

Cullen, et al. Expires 11 January 2024 [Page 20]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

18. Acknowledgements

 This document was written using xml2rfc, as described in [RFC7991]

 Some of the sections in this document were adapted from the

 description of the Status-Server RADIUS Packet Type Code in

 [RFC5997].

19. References

19.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,

 "Remote Authentication Dial In User Service (RADIUS)",

 RFC 2865, DOI 10.17487/RFC2865, June 2000,

 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC8044] DeKok, A., "Data Types in RADIUS", RFC 8044,

 DOI 10.17487/RFC8044, January 2017,

 <https://www.rfc-editor.org/info/rfc8044>.

19.2. Informative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

 DOI 10.17487/RFC1321, April 1992,

 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,

 DOI 10.17487/RFC2866, June 2000,

 <https://www.rfc-editor.org/info/rfc2866>.

 [RFC2869] Rigney, C., Willats, W., and P. Calhoun, "RADIUS

 Extensions", RFC 2869, DOI 10.17487/RFC2869, June 2000,

 <https://www.rfc-editor.org/info/rfc2869>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication

 Dial In User Service) Support For Extensible

 Authentication Protocol (EAP)", RFC 3579,

 DOI 10.17487/RFC3579, September 2003,

 <https://www.rfc-editor.org/info/rfc3579>.

Cullen, et al. Expires 11 January 2024 [Page 21]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 [RFC4270] Hoffman, P. and B. Schneier, "Attacks on Cryptographic

 Hashes in Internet Protocols", RFC 4270,

 DOI 10.17487/RFC4270, November 2005,

 <https://www.rfc-editor.org/info/rfc4270>.

 [RFC4668] Nelson, D., "RADIUS Authentication Client MIB for IPv6",

 RFC 4668, DOI 10.17487/RFC4668, August 2006,

 <https://www.rfc-editor.org/info/rfc4668>.

 [RFC4669] Nelson, D., "RADIUS Authentication Server MIB for IPv6",

 RFC 4669, DOI 10.17487/RFC4669, August 2006,

 <https://www.rfc-editor.org/info/rfc4669>.

 [RFC4670] Nelson, D., "RADIUS Accounting Client MIB for IPv6",

 RFC 4670, DOI 10.17487/RFC4670, August 2006,

 <https://www.rfc-editor.org/info/rfc4670>.

 [RFC4671] Nelson, D., "RADIUS Accounting Server MIB for IPv6",

 RFC 4671, DOI 10.17487/RFC4671, August 2006,

 <https://www.rfc-editor.org/info/rfc4671>.

 [RFC5580] Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A., and

 B. Aboba, "Carrying Location Objects in RADIUS and

 Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,

 <https://www.rfc-editor.org/info/rfc5580>.

 [RFC5997] DeKok, A., "Use of Status-Server Packets in the Remote

 Authentication Dial In User Service (RADIUS) Protocol",

 RFC 5997, DOI 10.17487/RFC5997, August 2010,

 <https://www.rfc-editor.org/info/rfc5997>.

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",

 RFC 7991, DOI 10.17487/RFC7991, December 2016,

 <https://www.rfc-editor.org/info/rfc7991>.

Authors’ Addresses

 Margaret Cullen

 Painless Security

 Phone: +1 (781)405-7464

 Email: margaret@painless-security.com

 Alan DeKok

 FreeRADIUS

 Email: aland@freeradius.org

Cullen, et al. Expires 11 January 2024 [Page 22]

Internet-Draft RADIUS Status-Realm and Loop Detection July 2023

 Mark Donnelly

 Painless Security

 Phone: +1 (857)928-5967

 Email: mark@painless-security.com

 Josh Howlett

 Federated Solutions

 Phone: +44 (0)7510 666 950

 Email: josh@federated-solutions.com

Cullen, et al. Expires 11 January 2024 [Page 23]

RADEXT Working Group A. DeKok

Internet-Draft FreeRADIUS

Intended status: Standards Track 23 October 2023

Expires: 25 April 2024

 Deprecating Insecure Practices in RADIUS

 draft-dekok-radext-deprecating-radius-05

Abstract

 RADIUS crypto-agility was first mandated as future work by RFC 6421.

 The outcome of that work was the publication of RADIUS over TLS (RFC

 6614) and RADIUS over DTLS (RFC 7360) as experimental documents.

 Those transport protocols have been in wide-spread use for many years

 in a wide range of networks. They have proven their utility as

 replacements for the previous UDP (RFC 2865) and TCP (RFC 6613)

 transports. With that knowledge, the continued use of insecure

 transports for RADIUS has serious and negative implications for

 privacy and security.

 This document formally deprecates using the User Datagram Protocol

 (UDP) and of the Transmission Control Protocol (TCP) as transport

 protocols for RADIUS. These transports are permitted inside of

 secure networks, but their use in secure networks is still

 discouraged. For all other environments, the use of secure

 transports such as IPsec or TLS is mandated. We also discuss

 additional security issues with RADIUS deployments, and give

 recommendations for practices which increase security and privacy.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-dekok-radext-deprecating-

 radius/.

 Discussion of this document takes place on the RADEXT Working Group

 mailing list (mailto:radext@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/radext/.

 Source for this draft and an issue tracker can be found at

 https://github.com/freeradius/deprecating-radius.git.

DeKok Expires 25 April 2024 [Page 1]

Internet-Draft Deprecating RADIUS October 2023

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Simply using IPSec or TLS is not enough 6

 1.2. Overview . 7

 2. Terminology . 8

 3. Overview of issues with RADIUS 9

 3.1. Information is sent in Clear Text 9

 3.2. MD5 has been broken 9

 3.3. Complexity of cracking RADIUS shared secrets 10

 3.4. Tunnel-Password and CoA-Request packets 11

 4. All short Shared Secrets have been compromised 13

 5. Deprecating Insecure transports 13

 5.1. Deprecating UDP and TCP as transports 13

 5.2. Mandating Secure transports 14

 5.3. Crypto-Agility . 15

 6. Migration Path and Recommendations 16

DeKok Expires 25 April 2024 [Page 2]

Internet-Draft Deprecating RADIUS October 2023

 6.1. Shared Secrets . 17

 6.2. Message-Authenticator 18

 6.3. Recommending TLS-PSK 18

 7. Increasing the Security of RADIUS 19

 7.1. Minimizing Personal Identifiable Information 19

 7.1.1. Chargeable-User-Identity 20

 7.2. User-Password and Proxying 24

 7.3. Password Visibility and Storage 25

 7.4. MS-CHAP . 26

 7.5. EAP . 28

 7.6. Eliminating Proxies 28

 8. Privacy Considerations 28

 9. Security Considerations 28

 10. IANA Considerations . 29

 11. Acknowledgements . 29

 12. Changelog . 29

 13. References . 29

 13.1. Normative References 29

 13.2. Informative References 30

 Author’s Address . 34

1. Introduction

 The RADIUS protocol [RFC2865] was first standardized in 1997, though

 its roots go back much earlier to 1993. The protocol uses MD5

 [RFC1321] to sign some packets types, and to obfuscate certain

 attributes such as User-Password. As originally designed, Access-

 Request packets were entirely unauthenticated, and could be trivially

 spoofed as discussed in [RFC3579] Section 4.3.2. In order to prevent

 such spoofing, that specification defined the Message-Authenticator

 attribute ([RFC3579] Section 3.2) which allowed for packets to carry

 a signature based on HMAC-MD5.

 The state of MD5 security was discussed in [RFC6151], which led to

 the state of RADIUS security being reviewed in [RFC6421] Section 3.

 The outcome of that review was the remainder of [RFC6421], which

 created crypto-agility requirements for RADIUS.

 RADIUS was historically secured with IPSec, as described in [RFC3579]

 Section 4.2:

DeKok Expires 25 April 2024 [Page 3]

Internet-Draft Deprecating RADIUS October 2023

 To address the security vulnerabilities of RADIUS/EAP,

 implementations of this specification SHOULD support IPsec

 (RFC2401) along with IKE (RFC2409) for key management. IPsec ESP

 (RFC2406) with non-null transform SHOULD be supported, and IPsec

 ESP with a non-null encryption transform and authentication

 support SHOULD be used to provide per-packet confidentiality,

 authentication, integrity and replay protection. IKE SHOULD be

 used for key management.

 The use of IPSec allowed RADIUS to be sent privately, and securely,

 across the Internet. However, experience showed that TLS was in many

 ways simpler for implementations and deployment than IPSec. While

 IPSec required operating system support, TLS was an application-space

 library. This difference, coupled with the wide-spread adoption of

 TLS for HTTPS ensures that it was often easier for applications to

 use TLS than IPSec.

 RADIUS/TLS [RFC6614] and RADIUS/DTLS [RFC7360] were then defined in

 order to meet the crypto-agility requirements of [RFC6421]. RADIUS/

 TLS has been in wide-spread use for about a decade, including eduroam

 [EDUROAM], and more recently OpenRoaming [OPENROAMING] and

 [I-D.tomas-openroaming]. RADIUS/DTLS has seen less use across the

 public Internet, but it nonetheless has multiple implementations.

 As of the writing of this specification, RADIUS/UDP is still widely

 used, even though it depends on MD5 and "ad hoc" constructions for

 security. While MD5 has been broken, it is a testament to the design

 of RADIUS that there have been (as yet) no attacks on RADIUS

 Authenticator signatures which are stronger than brute-force.

 However, the problems with MD5 means that if a someone can view

 unencrypted RADIUS traffic, even a hobbyist attacker can crack all

 possible RADIUS shared secrets of eight characters or less. Such

 attacks can also result in compromise of all passwords carried in the

 User-Password attribute.

 Even if a stronger packet signature method was used as in [RFC6218],

 it would not fully address the issues with RADIUS. Most information

 in RADIUS is sent in clear-text, and only a few attributes are hidden

 via obfuscation methods which rely on more "ad hoc" MD5

 constructions. The privacy implications of this openness are severe.

 Any observer of non-TLS RADIUS traffic is able to obtain a

 substantial amount of personal identifiable information (PII) about

 users. The observer can tell who is logging in to the network, what

 devices they are using, where they are logging in from, and their

 approximate location (usually city). With location-based attributes

 as defined in [RFC5580], a users location may be determined to within

DeKok Expires 25 April 2024 [Page 4]

Internet-Draft Deprecating RADIUS October 2023

 15 or so meters outdoors, and with "meter-level accuracy indoors"

 [WIFILOC]. An observer can also use RADIUS accounting packets to

 determine how long a user is online, and to track a summary of their

 total traffic (upload and download totals).

 When RADIUS/UDP is used across the public Internet, the location of

 individuals can potentially be tracked in real-time (usually 10

 minute intervals), to within 15 meters. Their devices can be

 identified, and tracked. Any passwords they send via the User-

 Password attribute can be be compromised. Even using CHAP-Password

 offers minimal protection, as the cost of cracking the underlying

 password is similar to the cost of cracking the shared secret. MS-

 CHAP ([RFC2433] and [RFC2759]) is significantly worse for security,

 as it can be trivially cracked with minimal resources even if the

 shared secret is not known (Section 7.4).

 The implications for security and individual safety are large, and

 negative.

 These issues are only partly mitigated when the authentication

 methods carried within RADIUS define their own processes for

 increased security and privacy. For example, some authentication

 methods such EAP-TLS, EAP-TTLS, etc. allow for User-Name privacy and

 for more secure transport of passwords via the use of TLS. The use

 of MAC address randomization can limit device information

 identification to a particular manufacturer, instead of to a unique

 device.

 However, these authentication methods are not always used, or are not

 always available. Even if these methods were used ubiquitously, they

 do not protect all of the information which is publicly available

 over RADIUS/UDP or RADIUS/TCP transports. And even when TLS-based

 EAP methods are used, implementations have historically often skipped

 certificate validation, leading to password compromise ([SPOOFING]).

 In many cases, users were not even aware that the server certificate

 was incorrect or spoofed, which meant that there was no way for the

 user to detect that anything was wrong. Their passwords were simply

 handed to a spoofed server, with little possibility for the user to

 take any action to stop it.

 It is no longer acceptable for RADIUS to rely on MD5 for security.

 It is no longer acceptable to send device or location information in

 clear text across the wider INternet. This document therefore

 deprecates insecure uses of RADIUS, and mandates the use of secure

 TLS-based transport layers. We also discuss related security issues

 with RADIUS, and give many recommendations for practices which

 increase security and privacy.

DeKok Expires 25 April 2024 [Page 5]

Internet-Draft Deprecating RADIUS October 2023

1.1. Simply using IPSec or TLS is not enough

 The use of a secure transport such as IPSec or TLS ensures complete

 privacy and security for all RADIUS traffic. An observer is limited

 to knowing rough activity levels of a client or server. That is, an

 observer can tell if there are a few users on a NAS, or many users on

 a NAS. All other information is hidden from all observers. However,

 it is not enough to say "use IPSec" and then move on to other issues.

 There are many issues which can only be addressed via an informed

 approach.

 For example it is possible for an attacker to record the session

 traffic, and later crack the TLS session key or IPSec parameters.

 This attack could comprise all traffic sent over that connection,

 including EAP session keys. If the cryptographic methods provide

 forward secrecy ([RFC7525] Section 6.3), then breaking one session

 provides no information about other sessions. As such, it is

 RECOMMENDED that all cryptographic methods used to secure RADIUS

 conversations provide forward secrecy. While forward secrecy will

 not protect individual sessions from attack, it will prevent attack

 on one session from being leveraged to attack other, unrelated,

 sessions.

 AAA servers should minimize the impact of such attacks by using a

 total throughput (recommended) or time based limit before replacing

 the session keys. The session keys can be replaced though a process

 of either rekeying the existing connection, or by opening a new

 connection and deprecating the use of the original connection. Note

 that if the original connection if closed before a new connection is

 open, it can cause spurious errors in a proxy environment.

 The final attack possible in a AAA system is where one party in a AAA

 conversation is compromised or run by a malicious party. This attack

 is made more likely by the extensive use of RADIUS proxy forwarding

 chains. In that situation, every RADIUS proxy has full visibility

 into, and control over, the traffic it transports. The solution here

 is to minimize the number of proxies involved, such as by using

 Dynamic Peer Discovery ([RFC7585].

 There are many additional issues on top of simply adding a secure

 transport. The rest of this document addresses those issues in

 detail.

DeKok Expires 25 April 2024 [Page 6]

Internet-Draft Deprecating RADIUS October 2023

1.2. Overview

 The rest of this document begins a summary of issues with RADIUS, and

 shows just how trivial it is to crack RADIUS/UDP security. We then

 mandate the use of secure transport, and describe what that

 requirement means in practice. We give recommendations on how

 current systems can be migrated to using TLS. We give suggestions

 for increasing the security of existing RADIUS transports, including

 a discussion of the authentication protocols carried within RADIUS.

 We conclude with privacy and security considerations.

 As IPSec has been discussed previously in the context of RADIUS, we

 do not discuss it in detail to it here, other than to say it is an

 acceptable solution for securing RADIUS traffic. As the bulk of the

 current efforts are focused on TLS, this document likewise focuses on

 TLS. However, all of the issues raised here about the RADIUS

 protocol also apply to IPSec transport.

 While this document tries to be comprehensive, it is necessarily

 imperfect. There may be issues which should have been included, but

 which were missed due to oversight or accident. Any reader should be

 aware that there are good practices which are perhaps not documented

 here, and bad behaviors which are likewise not forbidden.

 There is also a common tendency to suggest that a particular practice

 is "allowed" by a specification, simply because the specification

 does not forbid that practice. This belief is wrong. That is, a

 behavior which is not mentioned in the specification cannot honestly

 be said to be "permitted" or "allowed" by that specification.

 Instead, the correct description for such behaviors is that they are

 not forbidden. In many cases, documents such as [RFC5080] are

 written to both correct errors in earlier documents, and to address

 harmful behaviors have been seen in practice.

 By their very nature, documents include a small number of permitted,

 required, and/or forbidden behaviors. There are a much larger set of

 behaviors which are undefined. That is, behaviors which are neither

 permitted nor forbidden. Those behaviors may be good or bad,

 independent of what the specification says.

DeKok Expires 25 April 2024 [Page 7]

Internet-Draft Deprecating RADIUS October 2023

 Outside of published specifications, there is also a large set of

 common practices and behaviors which have grown organically over

 time, but which have not been written into a specification. These

 practices have been found to be valuable by implementers and

 administrators. Deviations from these practices generally result in

 instabilities and incompatibilities between systems. As a result,

 implementers should exercise caution when creating new behaviors

 which have not previously been seen in the industry. Such behaviors

 are likely to be wrong.

 It is RECOMMENDED that implementations follow widely accepted

 practices which have been proven to work, even if those practices are

 not written down in a public specification. Failure to follow common

 industry practices usually results in interoperability failures.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 * RADIUS

 The Remote Authentication Dial-In User Service protocol, as

 defined in [RFC2865], [RFC2865], and [RFC5176] among others.

 * RADIUS/UDP

 RADIUS over the User Datagram Protocol as define above.

 * RADIUS/TCP

 RADIUS over the Transport Control Protocol [RFC6613]

 * RADIUS/TLS

 RADIUS over the Transport Layer Security protocol [RFC6614]

 * RADIUS/DTLS

 RADIUS over the Datagram Transport Layer Security protocol

 [RFC7360]

 * TLS

DeKok Expires 25 April 2024 [Page 8]

Internet-Draft Deprecating RADIUS October 2023

 the Transport Layer Security protocol. Generally when we refer to

 TLS in this document, we are referring to RADIUS/TLS and/or

 RADIUS/DTLS.

 * NAS

 Network Access Server, which is a RADIUS client.

3. Overview of issues with RADIUS

 There are a large number of issues with RADIUS. The most serious is

 that RADIUS sends most information "in the clear", with obvious

 privacy implications.

 Further, MD5 has been broken for over a decade, as summarized in

 [RFC6151]. For traffic sent across the Internet, no protocol should

 depend on MD5 for security. Even if MD5 was not broken, computers

 have gotten substantially faster in the past thirty years. This

 speed increase makes it possible for the average hobbyist to perform

 brute-force attacks to crack even seemingly complex shared secrets.

 We address each of these issues in detail below.

3.1. Information is sent in Clear Text

 Other than a few attributes such as User-Password, all RADIUS traffic

 is sent "in the clear". The resulting data exposure has a large

 number of privacy issues. We refer to [RFC6973], and specifically to

 Section 5 of that document for detailed discussion. RADIUS/UDP and

 RADIUS/TCP are vulnerable to all of the issues raised by [RFC6973].

 There are clear privacy and security information with sending user

 identifiers, and user locations [RFC5580] in clear-text across the

 Internet. As such, the use of clear-text protocols across insecure

 networks is no longer acceptable.

3.2. MD5 has been broken

 Attacks on MD5 are summarized in part in [RFC6151]. While there have

 not been many new attacks in the decade since [RFC6151] was

 published, that does not mean that further attacks do not exist. It

 is more likely that no one is looking for new attacks.

 It is reasonable to expect that new research can further break MD5,

 but also that such research may not be publicly available.

DeKok Expires 25 April 2024 [Page 9]

Internet-Draft Deprecating RADIUS October 2023

3.3. Complexity of cracking RADIUS shared secrets

 The cost of cracking a a shared secret can only go down over time as

 computation becomes cheaper. The issue is made worse because of the

 way MD5 is used to sign RADIUS packets. The attacker does not have

 to calculate the hash over the entire packet, as the hash prefix can

 be calculated once, and then cached. The attacker can then begin the

 attack with that hash prefix, and brute-force only the shared secret

 portion.

 At the time of writing this document, an "off the shelf" commodity

 computer can calculate at least 100M MD5 hashes per second. If we

 limit shared secrets to upper/lowercase letters, numbers, and a few

 "special" characters, we have 64 possible characters for shared

 secrets. Which means that for 8-character secrets, there are 2^48

 possible combinations.

 The result is that using consumer-grade machine, it takes

 approximately 32 days to brute-force the entire 8 octet / 64

 character space for shared secrets. The problem is even worse when

 graphical processing units (GPUs) are used. A high-end GPU is

 capable of performing more than 64 billion hashes per second. At

 that rate, the entire 8 character space described above can be

 searched in approximately 90 minutes.

 This is an attack which is feasible today for a hobbyist. Increasing

 the size of the character set raises the cost of cracking, but not

 enough to be secure. Increasing the character set to 93 characters

 means that the hobbyist using a GPU could search the entire 8

 character space in about a day.

 Increasing the length of the shared secret has a larger impact on the

 cost of cracking. For secrets ten characters long, one GPU can

 search a 64-character space in about six months, and a 93 character

 space would take approximately 24 years.

 This brute-force attack is also trivially parallelizable. Nation-

 states have sufficient resources to deploy hundreds to thousands of

 systems dedicated to these attacks. That realization means that a

 "time to crack" of 24 years is simply expensive, but is not

 particularly difficult. A thousand commodity CPUs are enough to

 reduce the crack time from 24 years to a little over a week.

 Whether the above numbers are precise, or only approximate is

 immaterial. These attacks will only get better over time. The cost

 to crack shared secrets will only go down over time.

DeKok Expires 25 April 2024 [Page 10]

Internet-Draft Deprecating RADIUS October 2023

 Even worse, administrators do not always derive shared secrets from

 secure sources of random numbers. The "time to crack" numbers given

 above are the absolute best case, assuming administrators follow best

 practices for creating secure shared secrets. For shared secrets

 created manually by a person, the search space is orders of magnitude

 smaller than the best case outlined above. Rather than brute-forcing

 all possible shared secrets, an attacker can create a local

 dictionary which contains common or expected values for the shared

 secret. Where the shared secret used by an administrator is in the

 dictionary, the cost of the attack can drop by multiple orders of

 magnitude.

 It should be assumed that a hobbyist attacker with modest resource

 can crack most shared secrets created by people in minutes, if not

 seconds.

 Despite the ease of attacking MD5, it is still a common practice for

 some "cloud" and other RADIUS providers to send RADIUS/UDP packets

 over the Internet "in the clear". It is also common practice for

 administrators to use "short" shared secrets, and to use shared

 secrets created by a person, or derived from a limited character set.

 Theses practice are easy to implement and follow, but they are highly

 insecure and SHOULD NOT be used.

 Further requirements in shared secrets are given below in

 Section 6.1.

3.4. Tunnel-Password and CoA-Request packets

 There are a number of security problems with the Tunnel-Password

 attribute, at least in CoA-Request and Disconnect-Request packets. A

 full explanation requires a review of the relevant specifications.

 [RFC5176] Section 2.3 describes how to calculate the Request

 Authenticator field for these packets:

 Request Authenticator

 In Request packets, the Authenticator value is a 16-octet MD5

 [RFC1321] checksum, called the Request Authenticator. The

 Request Authenticator is calculated the same way as for an

 Accounting-Request, specified in [RFC2866].

 Where [RFC2866] Section 3 says:

DeKok Expires 25 April 2024 [Page 11]

Internet-Draft Deprecating RADIUS October 2023

 The NAS and RADIUS accounting server share a secret. The Request

 Authenticator field in Accounting-Request packets contains a one-

 way MD5 hash calculated over a stream of octets consisting of the

 Code + Identifier + Length + 16 zero octets + request attributes +

 shared secret (where + indicates concatenation). The 16 octet MD5

 hash value is stored in the Authenticator field of the

 Accounting-Request packet.

 Taken together, these definitions mean that for CoA-Request packets,

 all attribute obfuscation is calculated with the Reply Authenticator

 being all zeroes. In contrast for Access-Request packets, the

 Request Authenticator is mandated there to be 16 octets of random

 data. This difference has negative impacts on security.

 For Tunnel-Password, [RFC5176] Section 3.6 allows it to appear in

 CoA-Request packets:

 ...

 Change-of-Authorization Messages

 Request ACK NAK # Attribute

 ...

 0+ 0 0 69 Tunnel-Password (Note 5)

 ...

 (Note 5) When included within a CoA-Request, these attributes

 represent an authorization change request. Where tunnel attributes

 are included within a successful CoA-Request, all existing tunnel

 attributes are removed and replaced by the new attribute(s).

 However, [RFC2868] Section 3.5 says that Tunnel-Password is encrypted

 with the Request Authenticator:

 Call the shared secret S, the pseudo-random 128-bit Request

 Authenticator (from the corresponding Access-Request packet) R,

 The assumption that the Request Authenticator is random data is true

 for Access-Request packets. That assumption is not true for CoA-

 Request packets.

 That is, when the Tunnel-Password attribute is used in CoA-Request

 packets, the only source of randomness in the obfuscation is the

 salt, as defined in [RFC2868] Section 3.5;

DeKok Expires 25 April 2024 [Page 12]

Internet-Draft Deprecating RADIUS October 2023

 Salt

 The Salt field is two octets in length and is used to ensure the

 uniqueness of the encryption key used to encrypt each instance of

 the Tunnel-Password attribute occurring in a given Access-Accept

 packet. The most significant bit (leftmost) of the Salt field

 MUST be set (1). The contents of each Salt field in a given

 Access-Accept packet MUST be unique.

 This chain of unfortunate definitions means that there is only 15

 bits of entropy in the Tunnel-Password obfuscation (plus the secret).

 It is not known if this limitation makes it sufficiently easy for an

 attacker to determine the contents of the Tunnel-Password. However,

 such limited entropy cannot be a good thing, and it is one more

 reason to deprecate RADIUS/UDP.

 Due to the above issues, implementations and new specifications

 SHOULD NOT permit obfuscated attributes to be used in CoA-Request or

 Disconnect-Request packets.

4. All short Shared Secrets have been compromised

 Unless RADIUS packets are sent over a secure network (IPsec, TLS,

 etc.), administrators SHOULD assume that any shared secret of 8

 characters or less has been immediately compromised. Administrators

 SHOULD assume that any shared secret of 10 characters or less has

 been compromised by an attacker with significant resources.

 Administrators SHOULD also assume that any private information (such

 as User-Password) which depends on such shared secrets has also been

 compromised.

 In conclusion, if a User-Password, or CHAP-Password, or MS-CHAP

 password has been sent over the Internet via RADIUS/UDP or RADIUS/TCP

 in the last decade, you should assume that underlying password has

 been compromised.

5. Deprecating Insecure transports

 The solution to an insecure protocol which uses thirty year-old

 cryptography is to deprecate the use insecure cryptography, and to

 mandate modern cryptographic transport.

5.1. Deprecating UDP and TCP as transports

 RADIUS/UDP and RADIUS/TCP MUST NOT be used outside of secure

 networks. A secure network is one which is known to be safe from

 eavesdroppers, attackers, etc. For example, if IPsec is used between

 two systems, then those systems may use RADIUS/UDP or RADIUS/TCP over

 the IPsec connection.

DeKok Expires 25 April 2024 [Page 13]

Internet-Draft Deprecating RADIUS October 2023

 Similarly, RADIUS/UDP and RADIUS/TCP could be used in secure

 management networks. However, administrators should not assume that

 such uses are always secure. An attacker who breaks into a key

 system could use that access to view RADIUS traffic, and thus be able

 to attack it. Similarly, a network misconfiguration could result in

 the RADIUS traffic being sent over an insecure network.

 Neither the RADIUS client nor the RADIUS server would be aware of any

 network misconfiguration (e.g. such as could happen with IPSec).

 Neither the RADIUS client nor the RADIUS server would be aware of any

 attacker snooping on RADIUS/UDP or RADIUS/TCP traffic.

 In contrast, when TLS is used, the RADIUS endpoints are aware of all

 security issues, and can enforce any necessary security policies.

 Using RADIUS/UDP and RADIUS/TCP in any environment is therefore NOT

 RECOMMENDED.

5.2. Mandating Secure transports

 All systems sending RADIUS packets outside of secure networks MUST

 use either IPSec, RADIUS/TLS, or RADIUS/DTLS. It is RECOMMENDED, for

 operational and security reasons that RADIUS/TLS or RADIUS/DTLS are

 preferred over IPSec.

 Unlike (D)TLS, use of IPSec means that applications are generally

 unaware of transport-layer security. Any problem with IPSec such as

 configuration issues, negotiation or re-keying problems are typically

 presented to the RADIUS servers as 100% packet loss. These issues

 may occur at any time, independent of any changes to a RADIUS

 application using that transport. Further, network misconfigurations

 which remove all security are completely transparent to the RADIUS

 application: packets can be sent over an insecure link, and the

 RADIUS server is unaware of the failure of the security layer.

 In contrast, (D)TLS gives the RADIUS application completely knowledge

 and control over transport-layer security. The failure cases around

 (D)TLS are therefore often clearer, easier to diagnose and faster to

 resolve than failures in IPSec. For example, a failed TLS connection

 may return a "connection refused" error to the application, or any

 one of many TLS errors indicating which exact part of the TLS

 conversion failed during negotiation.

DeKok Expires 25 April 2024 [Page 14]

Internet-Draft Deprecating RADIUS October 2023

5.3. Crypto-Agility

 The crypto-agility requirements of [RFC6421] are addressed in

 [RFC6614] Appendix C, and in Section 10.1 of [RFC7360]. For clarity,

 we repeat the text of [RFC7360] here, with some minor modifications

 to update references, but not content.

 Section 4.2 of [RFC6421] makes a number of recommendations about

 security properties of new RADIUS proposals. All of those

 recommendations are satisfied by using TLS or DTLS as the transport

 layer.

 Section 4.3 of [RFC6421] makes a number of recommendations about

 backwards compatibility with RADIUS. [RFC7360] Section 3 addresses

 these concerns in detail.

 Section 4.4 of [RFC6421] recommends that change control be ceded to

 the IETF, and that interoperability is possible. Both requirements

 are satisfied.

 Section 4.5 of [RFC6421] requires that the new security methods apply

 to all packet types. This requirement is satisfied by allowing TLS

 and DTLS to be used for all RADIUS traffic. In addition, [RFC7360]

 Section 3, addresses concerns about documenting the transition from

 legacy RADIUS to crypto-agile RADIUS.

 Section 4.6 of [RFC6421] requires automated key management. This

 requirement is satisfied by using TLS or DTLS key management.

 We can now finalize the work began in [RFC6421]. This document

 updates [RFC2865] et al. to state that any new RADIUS specification

 MUST NOT introduce new "ad hoc" cryptographic primitives to sign

 packets as was done with the Request / Response Authenticator, or to

 obfuscate attributes as was done with User-Password and Tunnel-

 Password. That is, RADIUS-specific cryptographic methods existing as

 of the publication of this document can continue to be used for

 historical compatibility. However, all new cryptographic work in the

 RADIUS protocol is forbidden.

 We recognize that RADIUS/UDP will still be in use for many years, and

 that new standards may require some modicum of privacy. As a result,

 it is a difficult choice to forbid the use of these constructs. If

 an attack is discovered which breaks RADIUS/UDP (e.g. by allowing

 attackers to forge Request Authenticators or Response Authenticators,

 or by allowing attackers to de-obfuscate User-Password), the solution

 would be to simply deprecate the use of RADIUS/UDP entirely. It

 would not be acceptable to design new cryptographic primitives in an

 attempt to "secure" RADIUS/UDP.

DeKok Expires 25 April 2024 [Page 15]

Internet-Draft Deprecating RADIUS October 2023

 All new security and privacy requirements in RADIUS MUST be provided

 by a secure transport layer such as TLS or IPSec. As noted above,

 simply using IPsec is not always enough, as the use (or not) of IPsec

 is unknown to the RADIUS application.

 The restriction forbidding new cryptographic work in RADIUS does not

 apply to the data being transported in RADIUS attributes. For

 example, a new authentication protocol could use new cryptographic

 methods, and would be permitted to be transported in RADIUS. This

 protocol could be a new EAP method, or it could use updates to TLS.

 In those cases, RADIUS serves as a transport layer for the

 authentication method. The authentication data is treated as opaque

 data for the purposes of Access-Request, Access-Challenge, etc.

 packets. There would be no need for RADIUS to define any new

 cryptographic methods in order to transport this data.

 Similarly, new specifications MAY define new attributes which use the

 obfuscation methods for User-Password as defined in [RFC2865]

 Section 5.2, or for Tunnel-Password as defined in [RFC2868]

 Section 3.5. However, due to the issues noted above in Section 3.4,

 the Tunnel-Password obfuscation method MUST NOT be used for packets

 other than Access-Request, Access-Challenge, and Access-Accept. If

 the attribute needs to be send in another type of packet, then the

 protocol design is likely wrong, and needs to be revisited. It is

 again a difficult choice to forbid certain uses of the Tunnel-

 Password obfuscation method, but we believe that doing so is

 preferable to allowing sensitive data to be obfuscated with less

 security than the original design intent.

6. Migration Path and Recommendations

 We recognize that it is difficult to upgrade legacy devices with new

 cryptographic protocols and user interfaces. The problem is made

 worse because the volume of RADIUS devices which are in use. The

 exact number is unknown, and can only be approximated. Our best

 guess is that at the time of this writing, there could be in the

 order of hundreds of thousands, if not millions of RADIUS/UDP devices

 in daily use.

 We therefore need to define a migration path to using secure

 transports. We give a a number of migration steps which could be

 done independently. We recommend increased entropy for shared

 secrets. We also mandate the use of Message-Authenticator in all

 Access-Request packets for RADIUS/UDP and RADIUS/TCP. Finally, where

 [RFC6614] Section 2.3 makes support for TLS-PSK optional, we suggest

 that RADIUS/TLS and RADIUS/DTLS implementations SHOULD support TLS-

 PSK.

DeKok Expires 25 April 2024 [Page 16]

Internet-Draft Deprecating RADIUS October 2023

6.1. Shared Secrets

 [RFC2865] Section 3 says:

 It is preferred that the secret be at least 16 octets. This is to

 ensure a sufficiently large range for the secret to provide

 protection against exhaustive search attacks. The secret MUST NOT

 be empty (length 0) since this would allow packets to be trivially

 forged.

 This recommendation is no longer adequate, so we strengthen it here.

 RADIUS implementations MUST support shared secrets of at least 32

 octets, and SHOULD support shared secrets of 64 octets.

 Implementations MUST warn administrators that the shared secret is

 insecure if it is 10 octets or less in length.

 Administrators SHOULD use shared secrets of at least 24 octets,

 generated using a source of secure random numbers. Any other

 practice is likely to lead to compromise of the shared secret, user

 information, and possibly of the entire network.

 Creating secure shared secrets is not difficult. One solution is to

 use a simple script given below. While the script is not portable to

 all possible systems, the intent here is to document a concise and

 simple method for creating secrets which are secure, and humanly

 manageable.

 #!/usr/bin/env perl use MIME::Base32; use Crypt::URandom(); print

 join(’-’, unpack("(A4)*", lc

 encode_base32(Crypt::URandom::urandom(12)))), "\n";

 This script reads 96 bits of random data from a secure source,

 encodes it in Base32, and then makes it easier for people to work

 with. The generated secrets are of the form "2nw2-4cfi-nicw-3g2i-

 5vxq". This form of secret will be accepted by all implementation

 which supports at least 24 octets for shared secrets.

 Given the simplicity of creating strong secrets, there is no excuse

 for using weak shared secrets with RADIUS. The management overhead

 of dealing with complex secrets is less than the management overhead

 of dealing with compromised networks.

 Over all, the security analysis of shared secrets is similar to that

 for TLS-PSK. It is therefore RECOMMENDED that implementors manage

 shared secrets with same the practices which are recommended for TLS-

 PSK, as defined in [RFC8446] Section E.7 and [RFC9257] Section 4.

DeKok Expires 25 April 2024 [Page 17]

Internet-Draft Deprecating RADIUS October 2023

 On a practical node, RADIUS implementers SHOULD provide tools for

 administrators which can create and manage secure shared secrets.

 The cost to do so is minimal for implementors. Providing such a tool

 can further enable and motivate administrators to use secure

 practices.

6.2. Message-Authenticator

 The Message-Authenticator attribute was defined in [RFC3579]

 Section 3.2. The "Note 1" paragraph at the bottom of [RFC3579]

 Section 3.2 required that Message-Authenticator be added to Access-

 Request packets when the EAP-Message as present, and suggested that

 it should be present in a few other situations. Experience has shown

 that these recommendations are inadequate.

 Some RADIUS clients never use the Message-Authenticator attribute,

 even for the situations where the [RFC3579] text suggests that it

 should be used. When the Message-Authenticator attribute is missing

 from Access-Request packets, it is often possible to trivially forge

 or replay those packets.

 For example, an Access-Request packet containing CHAP-Password but

 which is missing Message-Authenticator can be trivially forged. If

 an attacker sees one packet such packet, it is possible to replace

 the CHAP-Password and CHAP-Challenge (or Request Authenticator) with

 values chosen by the attacker. The attacker can then perform brute-

 force attacks on the RADIUS server in order to test passwords.

 This document therefore requires that RADIUS clients MUST include the

 Message-Authenticator in all Access-Request packets when UDP or TCP

 transport is used.

 In contrast, when TLS-based transports are used, the Message-

 Authenticator attribute serves no purpose, and can be omitted, even

 when the Access-Request packet contains an EAP-Message attribute.

 Servers receiving Access-Request packets over TLS-based transports

 SHOULD NOT silently discard a packet if it is missing a Message-

 Authenticator attribute. However, if the Message-Authenticator

 attribute is present, it still MUST be validated as discussed in

 [RFC7360] and [RFC3579].

6.3. Recommending TLS-PSK

 Given the insecurity of RADIUS/UDP, the absolute minimum acceptable

 security is to use strong shared secrets. However, administrator

 overhead for TLS-PSK is not substantially higher than for shared

 secrets, and TLS-PSK offers significantly increased security and

 privacy.

DeKok Expires 25 April 2024 [Page 18]

Internet-Draft Deprecating RADIUS October 2023

 It is therefore RECOMMENDED that implementations support TLS-PSK. In

 some cases TLS-PSK is preferable to certificates. It may be

 difficult for RADIUS clients to upgrade all of their interfaces to

 support the use of certificates, and TLS-PSK more closely mirrors the

 historical use of shared secrets, with similar operational

 considerations.

 Implementation and operational considerations for TLS-PSK are given

 in [I-D.ietf-radext-tls-psk], and we do not repeat them here.

7. Increasing the Security of RADIUS

 While we still permit the use of UDP and TCP transports in secure

 environments, there are opportunities for increasing the security of

 RADIUS when those transport protocols are used. The amount of

 personal identifiable information sent in packets should be

 minimized. Information about the size, structure, and nature of the

 visited network should be omitted or anonymized. The choice of

 authentication method also has security and privacy impacts.

 The recommendations here for increasing the security of RADIUS

 transports also applies when TLS is used. TLS transports protect the

 RADIUS packets from observation by from third-parties. However, TLS

 does not hide the content of RADIUS packets from intermediate

 proxies, such as ones uses in a roaming environment. As such, the

 best approach to minimizing the information sent to proxies is to

 minimize the number of proxies which see the RADIUS traffic.

 Implementers and administrators need to be aware of all of these

 issues, and then make the best choice for their local network which

 balances their requirements on privacy, security, and cost. Any

 security approach based on a simple "checklist" of "good / bad"

 practices is likely to result in decreased security, as compared to

 an end-to-end approach which is based on understanding the issues

 involved.

7.1. Minimizing Personal Identifiable Information

 One approach to increasing RADIUS privacy is to minimize the amount

 of PII which is sent in packets. Implementers of RADIUS products and

 administrators of RADIUS systems SHOULD ensure that only the minimum

 necessary PII is sent in RADIUS.

 Where possible, identities should be anonymized (e.g. [RFC7542]

 Section 2.4). The use of anonymized identities means that the the

 Chargeable-User-Identifier [RFC4372] should also be used. Further

 discussion on this topic is below.

DeKok Expires 25 April 2024 [Page 19]

Internet-Draft Deprecating RADIUS October 2023

 Device information SHOULD be either omitted, or randomized. e.g.

 MAC address randomization could be used on end-user devices. The

 details behind this recommendation are the subject of ongoing

 research and development. As such, we do not offer more specific

 recommendations here.

 Information about the visited network SHOULD be replaced or

 anonymized before packets are proxied outside of the local

 organization. The attribute Operator-NAS-Identifier [RFC8559] can be

 used to anonymize information about NASes in the local network.

 Location information ([RFC5580] SHOULD either be omitted, or else it

 SHOULD be limited to the broadest possible information, such as

 country code. For example, [I-D.tomas-openroaming] says:

 All OpenRoaming ANPs MUST support signalling of location

 information

 This location information is required to include at the minimum the

 country code. We suggest the country code SHOULD also be the maximum

 amount of location information which is sent over third-party

 networks.

7.1.1. Chargeable-User-Identity

 Where the Chargeable-User-Identity (CUI) [RFC4372] is used, it SHOULD

 be unique per session. This practice will help to maximize user

 privacy, as it will be more difficult to track users across multiple

 sessions. Due to additional constraints which we will discuss below,

 we cannot require that the CUI change for every session.

 What we can do is to require that the home server MUST provide a

 unique CUI for each combination of user and visited network. That

 is, if the same user visits multiple networks, the home server MUST

 provide different CUIs to each visited network for that user. The

 CUI MAY be the same across multiple sessions for that user on one

 particular network. The CUI MAY be the same for multiple devices

 used by that user on one particular network.

 We note that the MAC address is likely the same across multiple user

 sessions on one network. Therefore changing the CUI offers little

 additional benefit, as the user can still be tracked by the

 unchanging MAC address. Never the less, we believe that having a

 unique CUI per session can be useful, because there is ongoing work

 on increasing user privacy by allowing more MAC address

 randomization. If we were to recommend that the CUI remain constant

 across multiple sessions, that would in turn negate much of the

 effort being put into MAC address randomization.

DeKok Expires 25 April 2024 [Page 20]

Internet-Draft Deprecating RADIUS October 2023

 One reason to have a constant CUI value for a user (or user devices)

 on one network is that network access providers may need to enforce

 limits on simultaneous logins. Network providers may also need to

 correlate user behavior across multiple sessions in order to track

 and prevent abuse. Both of these requirements are impossible if the

 CUI changes for every user session.

 The result is that there is a trade-off between user privacy and the

 needs of the local network. While perfect user privacy is an

 admirable goal, perfect user privacy may also allow anonymous users

 to abuse the visited network. The network would then likely simply

 refuse to provide network access. Users may therefore have to accept

 some limitations on privacy, in order to obtain network access.

 We spend some time here in order to give recommendations for creating

 and managing of CUI. We believe that these recommendations will help

 implementers satisfy the preceding requirements, while not imposing

 undue burden on the implementations.

 In general, the simplest way to track CUIs long term is to associate

 the CUI to user identity in some kind of cache or database. This

 association could be created at the tail end of the authentication

 process, and before any accounting packets were received. This

 association should generally be discarded after a period of time if

 no accounting packets are received. If accounting packets are

 received, the CUI to user association should then be tracked along

 with the normal accounting data.

 The above method for tracking CUI works no matter how the CUI is

 generated. If the CUI can be unique per session, or it could be tied

 to a particular user identity across a long period of time. The same

 CUI could also be associated with multiple devices.

 Where the CUI is not unique for each session, the only minor issue is

 the cost of the above method is that the association is stored on a

 per-session basis when there is no need for that to be done. Storing

 the CUI per session means that is it possible to arbitrarily change

 how the CUI is calculated, with no impact on anything else in the

 system. Designs such as this which decouple unrelated architectural

 elements are generally worth the minor extra cost.

 For creating the CUI, that process should be done in a way which is

 scalable and efficient. For a unique CUI per user, implementers

 SHOULD create a value which is unique both to the user, and to the

 visited network. There is no reason to use the same CUI for multiple

 visited networks, as that would enable the tracking of a user across

 multiple networks.

DeKok Expires 25 April 2024 [Page 21]

Internet-Draft Deprecating RADIUS October 2023

 Before suggesting a method for creating the CUI, we note that

 [RFC4372] Section 2.1 defines the CUI as being of data type ’string’

 ([RFC8044] Section 3.5). [RFC4372] Section 2.1 further suggests that

 the value of the CUI is interpreted as an opaque token, similar to

 the Class attribute ([RFC2865] Section 5.25). Some organizations

 create CUI values which use the Network Access Identifier (NAI)

 format as defined in [RFC7542]. This format can allow the home

 network to be identified to the visited network, where the User-Name

 does not contain a realm. Such formats SHOULD NOT be used unless all

 parties involved have agreed to this behavior.

 The CUI SHOULD be created via a construct similar to what is given

 below, where "+" indicates concatenation:

 CUI = HASH(visited network data + user identifier + key)

 This construct has the following conceptual parameters.

 HASH

 A cryptographic hash function.

 visited network data

 Data which identifies the visited network.

 This data could be the Operator-Name attribute ([RFC5580]

 Section 4.1).

 user identifier

 The site-local user identifier. For tunnelled EAP methods such

 as PEAP or TTLS, this could be the user identity which is sent

 inside of the TLS tunnel.

 key

 A secret known only to the local network. The key is generally

 a large random string. It is used to help prevent dictionary

 attacks on the CUI.

 Where the CUI needs to be constant across multiple user sessions or

 devices, the key can be a static value. It is generated once by the

 home network, and then stored for use in further CUI derivations.

 Where the CUI needs to be unique per session, the above derivation

 SHOULD still be used, except that the "key" value will instead be a

 random number which is different for each session. Using such a

DeKok Expires 25 April 2024 [Page 22]

Internet-Draft Deprecating RADIUS October 2023

 design again decouples the CUI creation from any requirement that it

 is unique per session, or constant per user. That decision can be

 changed at any time, and the only piece which needs to be updated is

 the derivation of the "key" field. In contrast, if the CUI is

 generated completely randomly per session, then it may be difficult

 for a system to later change that behavior to allow the CUI to be

 constant for a particular user.

 If an NAI format is desired, the hash output can be converted to

 printable text, truncated if necessary to meet length limitations,

 and then an "@" character and a realm can be appended to it. The

 resulting text string is then in NAI form.

 We note that the above recommendation is not invertible. That is,

 given a particular CUI, it is not possible to determine which visited

 network or user identifier was used to create it. If it is necessary

 to use the CUI to determine which user is associated with it, the

 local network still needs to store the full set of CUI values which

 are associated with each user.

 If this tracking is too complex for a local network, it is possible

 to create the CUI via an invertible encryption process as follows:

 CUI = ENCRYPT(key, visited network data + user identifier)

 This construct has the following conceptual parameters.

 ENCRYPT

 A cryptographically secure encryption function

 key

 The encryption key. Note that the same key must not be used

 for more both hashing and encryption.

 visited network data

 Data which identifies the visited network.

 This data could be the Operator-Name attribute ([RFC5580]

 Section 4.1).

 user identifier

 The site-local user identifier. For tunnelled EAP methods such

 as PEAP or TTLS, this could be the user identity which is sent

 inside of the TLS tunnel.

DeKok Expires 25 April 2024 [Page 23]

Internet-Draft Deprecating RADIUS October 2023

 However, the use of a hash-based method is RECOMMENDED.

 In short, the intent is for CUI to leak as little information as

 possible, and ideally be different for every session. However,

 business agreements, legal requirements, etc. may mandate different

 behavior. The intention of this section is not to mandate complete

 CUI privacy, but instead to clarify the trade-offs between CUI

 privacy and business realities.

7.2. User-Password and Proxying

 The design of RADIUS means that when proxies receive Access-Request

 packets, the clear-text contents of the User-Password attribute are

 visible to the proxy. Despite various claims to the contrary, the

 User-Password attribute is never sent "in the clear" over the

 network. Instead, the password is protected by TLS (RADIUS/TLS) or

 via the obfuscation methods defined in [RFC2865] Section 5.2.

 However, the nature of RADIUS means that each proxy must first undo

 the password obfuscation of [RFC2865], and then re-do it when sending

 the outbound packet. As such, the proxy has the clear-text password

 visible to it, and stored in its application memory.

 It is therefore possible for every intermediate proxy to snoop and

 record all user identities and passwords which they see. This

 exposure is most problematic when the proxies are administered by an

 organization other than the one which operates the home server. Even

 when all of the proxies are operated by the same organization, the

 existence of clear-text passwords on multiple machines is a security

 risk.

 It is therefore NOT RECOMMENDED for organizations to send User-

 Password attributes in packets which are sent outside of the local

 organization. If RADIUS proxying is necessary, another

 authentication method SHOULD be used.

 Client and server implementations SHOULD use programming techniques

 to securely wipe passwords from memory when they are no longer

 needed.

 Organizations MAY still use User-Password attributes within their own

 systems, for reasons which we will explain in the next section.

DeKok Expires 25 April 2024 [Page 24]

Internet-Draft Deprecating RADIUS October 2023

7.3. Password Visibility and Storage

 Some organizations may desire to increase the security of their

 network by using alternate authentication methods such as CHAP or MS-

 CHAP, instead of PAP. These attempts are largely misguided. If

 simple password-based methods must be used, in almost all situations,

 the security of the network as a whole is increased by using PAP in

 preference to CHAP or MS-CHAP. The reason is found through a simple

 risk analysis, which we explain in more detail below.

 When PAP is used, any compromise of a system which sees the User-

 Password will result in that password leaking. In contrast, when

 CHAP or MS-CHAP is used, those methods do not share the password, but

 instead a hashed transformation of it. That hash output is in theory

 secure from attackers. However, the hashes used (MD5 and MD4

 respectively) are decades old, have been broken, and are known to be

 insecure. Any security analysis which makes the claim that "User-

 Password insecure because it is protected with MD5" ignores the fact

 that the CHAP-Password attribute is constructed through substantially

 similar methods.

 The difference between the two constructs is that the CHAP-Password

 depends on the hash of a visible Request Authenticator (or CHAP-

 Challenge) and the users password, while the obfuscated User-Password

 depends on the same Request Authenticator, and on the RADIUS shared

 secret. For an attacker, the difference between the two calculations

 is minimal. They can both be attacked with similar amounts of

 effort.

 Further, any security analysis can not stop with the wire protocol.

 It must include all related systems which are affected by the choice

 of authentication methods. In this case, the most important piece of

 the system affected by these choices is the database which stores the

 passwords.

 When PAP is used, the information stored in the database can be

 salted, and/or hashed in a form is commonly referred to as being in

 "crypt"ed form. The incoming clear-text password then undergoes the

 "crypt" transformation, and the two "crypt"ed passwords are compared.

 The passwords in the database are stored securely at all times, and

 any compromise of the database results in the disclosure of minimal

 information to an attacker. That is, the attacker cannot easily

 obtain the clear-text passwords from the database compromise.

 The process for CHAP and MS-CHAP is inverted from the process for

 PAP. Using similar terminology as above for illustrative purposes,

 the "crypt"ed passwords are sent to the server. The server must

 obtain the clear-text (or NT hashed) password from the database, and

DeKok Expires 25 April 2024 [Page 25]

Internet-Draft Deprecating RADIUS October 2023

 then perform the "crypt" operation on the password from the database.

 The two "crypt"ed passwords are then compared as was done with PAP.

 This inverted process has substantial and negative impacts on

 security.

 When PAP is used, passwords are stored in clear-text only ephemerally

 in the memory of an application which receives and then verifies the

 password. Any compromise of that application results in the exposure

 of a small number of passwords which are visible at the time of

 compromise. If the compromise is undetected for an extended period

 of time, the number of exposed passwords would of course increase.

 However, when CHAP or MS-CHAP are used, all of passwords are stored

 in clear-text in the database, all of the time. The database

 contents might be encrypted, but the decryption keys are necessarily

 accessible to the application which reads that database. Any

 compromise of the application means that the entire database can be

 immediately read and exfiltrated as a whole. The attacker then has

 complete access to all user identities, and all associated clear-text

 passwords.

 The result is that when the system as a whole is taken into account,

 the risk of password compromise is less with PAP than with CHAP or

 MS-CHAP. It is therefore RECOMMENDED that administrators use PAP in

 preference to CHAP or MS-CHAP.

7.4. MS-CHAP

 MS-CHAP (v1 in [RFC2433] and v2 in [RFC2759]) has major design flaws,

 and should not be used outside of a secure tunnel. As MS-CHAPv1 is

 not normally used, the discussion in this section will focus on MS-

 CHAPv2.

 Recent developments demonstrate just how easy it is to attack MS-

 CHAPv2 exchanges, and obtain the "NT-hash" version of the password

 ([SENSEPOST]). The attack relies on a vulnerability in the protocol

 design in [RFC2759] Section 8.4. In that section, the response to

 the MS-CHAP challenge is calculated via three DES operations, which

 are based on the 16-octet NT-Hash form of the password. However, the

 DES operation requires 7 octet keys, so the 16-octet NT-Hash cannot

 be divided evenly into the 21 octets of keys required for the DES

 operation.

DeKok Expires 25 April 2024 [Page 26]

Internet-Draft Deprecating RADIUS October 2023

 The solution in [RFC2759] Section 8.4 is to use the first 7 octets of

 the NT-Hash for the first DES key, the next 7 octets for the second

 DES key, leaving only 2 octets for the final DES key. The final DES

 key is padded with zeros. This construction means that an attacker

 who can observe the MS-CHAP2 exchange only needs to perform 2^16 DES

 operations in order to determine the final 2 octets of the original

 NT-Hash.

 If the attacker has a database which correlates known passwords to

 NT-Hashes, then those two octets can be used as an index into that

 database, which returns a subset of candidate hashes. Those hashes

 are then checked via brute-force operations to see if they match the

 original MS-CHAPv2 data.

 This process lowers the complexity of cracking MS-CHAP by nearly five

 orders of magnitude as compared to a brute-force attack. The attack

 has been demonstrated against databases containing tens to hundreds

 of millions of passwords. On a consumer-grade machine, the time

 required for such an attack to succeed is on the order of tens of

 milliseconds.

 While this attack does require a database of known passwords, such

 databases are easy to find online, or to create locally from

 generator functions. Passwords created manually by people are

 notoriously predictable, and are highly likely to be found in a

 database of known passwords. In the extreme case of strong

 passwords, they will not be found in the database, and the attacker

 is still required to perform a brute-force dictionary search.

 The result is that MS-CHAPv2 SHOULD be considered in most situations

 as being equivalent in security and privacy to PAP. It offers little

 benefit over PAP, and has many drawbacks as discussed here, and in

 the previous section.

 There is one situation where MS-CHAP is significantly worse than PAP;

 where the MS-CHAP data is sent over the network in the clear. When

 the MS-CHAP data is not protected by TLS, it is visible to everyone

 who can observe the RADIUS traffic. Attackers who can see the MS-

 CHAP traffic can therefore obtain the underlying NT-Hash with

 essentially zero effort, as compared to cracking the RADIUS shared

 secret.

 This document therefore mandates that MS-CHAP authentication data

 carried in RADIUS MUST NOT be sent in situations where the MS-CHAP

 data is visible to an observer. That is, MS-CHAP authentication MUST

 NOT be sent over RADIUS/UDP or RADIUS/TCP

DeKok Expires 25 April 2024 [Page 27]

Internet-Draft Deprecating RADIUS October 2023

7.5. EAP

 If more complex authentication methods are needed, there are a number

 of EAP methods which can be used. These methods variously allow for

 the use of certificates (EAP-TLS), or passwords (EAP-TTLS [RFC5281],

 PEAP [I-D.josefsson-pppext-eap-tls-eap])) and EAP-pwd [RFC5931].

 Where it is necessary to use intermediate proxies such as with

 eduroam [EDUROAM] and OpenRoaming [OPENROAMING], it is RECOMMENDED to

 use EAP instead of PAP, CHAP, or MS-CHAP. If passwords are used,

 they can be can be protected via TLS-based EAP methods such as EAP-

 TTLS or PEAP. Passwords can also be omitted entirely from being sent

 over the network, as with EAP-TLS [RFC9190] or EAP-pwd [RFC5931].

 We also note that the TLS-based EAP methods which transport passwords

 also hide the passwords from intermediate RADIUS proxies. However,

 for the home authentication server, those EAP methods are still

 subject to the analysis above about PAP versus CHAP, along with the

 issues of storing passwords in a database.

7.6. Eliminating Proxies

 The best way to avoid compromise of proxies is to eliminate proxies

 entirely. The use of dynamic peer discovery ([RFC7585]) means that

 the number of intermediate proxies is minimized.

 However, the server on the visited network still acts as a proxy

 between the NAS and the home network. As a result, all of the above

 analysis still applies when [RFC7585] peer discovery is used.

8. Privacy Considerations

 The primary focus of this document is addressing privacy and security

 considerations for RADIUS.

 Deprecating insecure transport for RADIUS, and requiring secure

 transport means that personally identifying information is no longer

 sent "in the clear". As noted earlier in this document, such

 information can include MAC addresses, user identifiers, and user

 locations.

 In addition, this document suggests ways to increase privacy by

 minimizing the use and exchange of PII.

9. Security Considerations

 The primary focus of this document is addressing security and privacy

 considerations for RADIUS.

DeKok Expires 25 April 2024 [Page 28]

Internet-Draft Deprecating RADIUS October 2023

 Deprecating insecure transport for RADIUS, and requiring secure

 transport means that many historical security issues with the RADIUS

 protocol no longer apply, or their impact is minimized.

 We reiterate the discussion above, that any security analysis must be

 done on the system as a whole. It is not enough to put an expensive

 lock on the front door of a house while leaving the window next to it

 open, and then declare the house to be "secure". Any approach to

 security based on a simple checklist is at best naive, more

 truthfully is deeply misleading, and at worst such practices will

 serve to decrease security.

 Implementers and administrators need to be aware of the issues raised

 in this document. They can then make the best choice for their local

 network which balances their requirements on privacy, security, and

 cost.

10. IANA Considerations

 There are no IANA considerations in this document.

 RFC Editor: This section may be removed before final publication.

11. Acknowledgements

 Thanks to the many reviewers and commenters for raising topics to

 discuss, and for providing insight into the issues related to

 increasing the security of RADIUS. In no particular order, thanks to

 Margaret Cullen, Alexander Clouter, and Josh Howlett.

12. Changelog

 * 01 - added more discussion of IPSec, and move TLS-PSK to its own

 document,

 * 02 - Added text on Increasing the Security of Insecure Transports

 * 03 - add text on CUI. Add notes on PAP vs CHAP security

 * 04 - add text on security of MS-CHAP. Rearrange and reword many

 sections for clarity.

 * 05 - Rework title to deprecating "insecure practices".

 Clarifications based on WG feedback.

13. References

13.1. Normative References

DeKok Expires 25 April 2024 [Page 29]

Internet-Draft Deprecating RADIUS October 2023

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,

 "Remote Authentication Dial In User Service (RADIUS)",

 RFC 2865, DOI 10.17487/RFC2865, June 2000,

 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC6421] Nelson, D., Ed., "Crypto-Agility Requirements for Remote

 Authentication Dial-In User Service (RADIUS)", RFC 6421,

 DOI 10.17487/RFC6421, November 2011,

 <https://www.rfc-editor.org/info/rfc6421>.

 [RFC8044] DeKok, A., "Data Types in RADIUS", RFC 8044,

 DOI 10.17487/RFC8044, January 2017,

 <https://www.rfc-editor.org/info/rfc8044>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [EDUROAM] eduroam, "eduroam", n.d., <https://eduroam.org>.

 [I-D.ietf-radext-tls-psk]

 DeKok, A., "RADIUS and TLS-PSK", Work in Progress,

 Internet-Draft, draft-ietf-radext-tls-psk-03, 24 August

 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-

 radext-tls-psk-03>.

 [I-D.josefsson-pppext-eap-tls-eap]

 Palekar, A., Josefsson, S., Simon, D., and G. Zorn,

 "Protected EAP Protocol (PEAP) Version 2", Work in

 Progress, Internet-Draft, draft-josefsson-pppext-eap-tls-

 eap-10, 21 October 2004,

 <https://datatracker.ietf.org/doc/html/draft-josefsson-

 pppext-eap-tls-eap-10>.

 [I-D.tomas-openroaming]

 Tomas, B., Grayson, M., Canpolat, N., Cockrell, B. A., and

 S. Gundavelli, "WBA OpenRoaming Wireless Federation", Work

DeKok Expires 25 April 2024 [Page 30]

Internet-Draft Deprecating RADIUS October 2023

 in Progress, Internet-Draft, draft-tomas-openroaming-00,

 14 June 2023, <https://datatracker.ietf.org/doc/html/

 draft-tomas-openroaming-00>.

 [OPENROAMING]

 Alliance, W. B., "OpenRoaming: One global Wi-Fi network",

 n.d., <https://wballiance.com/openroaming/>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

 DOI 10.17487/RFC1321, April 1992,

 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2433] Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions",

 RFC 2433, DOI 10.17487/RFC2433, October 1998,

 <https://www.rfc-editor.org/info/rfc2433>.

 [RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2",

 RFC 2759, DOI 10.17487/RFC2759, January 2000,

 <https://www.rfc-editor.org/info/rfc2759>.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,

 DOI 10.17487/RFC2866, June 2000,

 <https://www.rfc-editor.org/info/rfc2866>.

 [RFC2868] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,

 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol

 Support", RFC 2868, DOI 10.17487/RFC2868, June 2000,

 <https://www.rfc-editor.org/info/rfc2868>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication

 Dial In User Service) Support For Extensible

 Authentication Protocol (EAP)", RFC 3579,

 DOI 10.17487/RFC3579, September 2003,

 <https://www.rfc-editor.org/info/rfc3579>.

 [RFC4372] Adrangi, F., Lior, A., Korhonen, J., and J. Loughney,

 "Chargeable User Identity", RFC 4372,

 DOI 10.17487/RFC4372, January 2006,

 <https://www.rfc-editor.org/info/rfc4372>.

 [RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication

 Dial In User Service (RADIUS) Implementation Issues and

 Suggested Fixes", RFC 5080, DOI 10.17487/RFC5080, December

 2007, <https://www.rfc-editor.org/info/rfc5080>.

DeKok Expires 25 April 2024 [Page 31]

Internet-Draft Deprecating RADIUS October 2023

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.

 Aboba, "Dynamic Authorization Extensions to Remote

 Authentication Dial In User Service (RADIUS)", RFC 5176,

 DOI 10.17487/RFC5176, January 2008,

 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication

 Protocol Tunneled Transport Layer Security Authenticated

 Protocol Version 0 (EAP-TTLSv0)", RFC 5281,

 DOI 10.17487/RFC5281, August 2008,

 <https://www.rfc-editor.org/info/rfc5281>.

 [RFC5580] Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A., and

 B. Aboba, "Carrying Location Objects in RADIUS and

 Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,

 <https://www.rfc-editor.org/info/rfc5580>.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication

 Protocol (EAP) Authentication Using Only a Password",

 RFC 5931, DOI 10.17487/RFC5931, August 2010,

 <https://www.rfc-editor.org/info/rfc5931>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations

 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

 RFC 6151, DOI 10.17487/RFC6151, March 2011,

 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC6218] Zorn, G., Zhang, T., Walker, J., and J. Salowey, "Cisco

 Vendor-Specific RADIUS Attributes for the Delivery of

 Keying Material", RFC 6218, DOI 10.17487/RFC6218, April

 2011, <https://www.rfc-editor.org/info/rfc6218>.

 [RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613,

 DOI 10.17487/RFC6613, May 2012,

 <https://www.rfc-editor.org/info/rfc6613>.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,

 "Transport Layer Security (TLS) Encryption for RADIUS",

 RFC 6614, DOI 10.17487/RFC6614, May 2012,

 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

 Morris, J., Hansen, M., and R. Smith, "Privacy

 Considerations for Internet Protocols", RFC 6973,

 DOI 10.17487/RFC6973, July 2013,

 <https://www.rfc-editor.org/info/rfc6973>.

DeKok Expires 25 April 2024 [Page 32]

Internet-Draft Deprecating RADIUS October 2023

 [RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a

 Transport Layer for RADIUS", RFC 7360,

 DOI 10.17487/RFC7360, September 2014,

 <https://www.rfc-editor.org/info/rfc7360>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,

 "Recommendations for Secure Use of Transport Layer

 Security (TLS) and Datagram Transport Layer Security

 (DTLS)", RFC 7525, DOI 10.17487/RFC7525, May 2015,

 <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,

 DOI 10.17487/RFC7542, May 2015,

 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for

 RADIUS/TLS and RADIUS/DTLS Based on the Network Access

 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October

 2015, <https://www.rfc-editor.org/info/rfc7585>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8559] DeKok, A. and J. Korhonen, "Dynamic Authorization Proxying

 in the Remote Authentication Dial-In User Service (RADIUS)

 Protocol", RFC 8559, DOI 10.17487/RFC8559, April 2019,

 <https://www.rfc-editor.org/info/rfc8559>.

 [RFC9190] Preuß Mattsson, J. and M. Sethi, "EAP-TLS 1.3: Using the

 Extensible Authentication Protocol with TLS 1.3",

 RFC 9190, DOI 10.17487/RFC9190, February 2022,

 <https://www.rfc-editor.org/info/rfc9190>.

 [RFC9257] Housley, R., Hoyland, J., Sethi, M., and C. A. Wood,

 "Guidance for External Pre-Shared Key (PSK) Usage in TLS",

 RFC 9257, DOI 10.17487/RFC9257, July 2022,

 <https://www.rfc-editor.org/info/rfc9257>.

 [SENSEPOST]

 Sensepost, "Cracking MS-CHAP", n.d.,

 <https://github.com/sensepost/assless-chaps>.

 [SPOOFING] Cudbard-Bell, A., "Wi-Fi Spoofing for Fun and Profit",

 n.d., <https://networkradius.com/articles/2021/08/04/wifi-

 spoofing.html>.

DeKok Expires 25 April 2024 [Page 33]

Internet-Draft Deprecating RADIUS October 2023

 [WIFILOC] Alliance, W.-F., "Accurate indoor location with Wi-Fi

 connectivity", n.d.,

 <https://www.wi-fi.org/discover-wi-fi/wi-fi-location>.

Author’s Address

 Alan DeKok

 FreeRADIUS

 Email: aland@freeradius.org

DeKok Expires 25 April 2024 [Page 34]

RADEXT Working Group A. DeKok
Internet-Draft FreeRADIUS
Updates: 6613 7360 (if approved) 19 April 2023
Intended status: Standards Track
Expires: 21 October 2023

 RADIUS Version 1.1
 draft-dekok-radext-radiusv11-05

Abstract

 This document defines Application-Layer Protocol Negotiation
 Extensions for use with RADIUS/TLS and RADIUS/DTLS. These extensions
 permit the negotiation of an additional application protocol for
 RADIUS over (D)TLS. No changes are made to RADIUS/UDP or RADIUS/TCP.
 The extensions allow the negotiation of a transport profile where the
 RADIUS shared secret is no longer used, and all MD5-based packet
 signing and attribute obfuscation methods are removed. When this
 extension is used, the previous Authenticator field is repurposed to
 contain an explicit request / response identifier, called a Token.
 The Token also allows more than 256 packets to be outstanding on one
 connection.

 This extension can be seen as a transport profile for RADIUS, as it
 is not an entirely new protocol. It uses the existing RADIUS packet
 layout and attribute format without change. As such, it can carry
 all present and future RADIUS attributes. Implementation of this
 extension requires only minor changes to the protocol encoder and
 decoder functionality. The protocol defined by this extension is
 named "RADIUS version 1.1", or "RADIUS/1.1".

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-dekok-radext-radiusv11/.

 Discussion of this document takes place on the RADEXT Working Group
 mailing list (mailto:radext@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/radext/.

 Source for this draft and an issue tracker can be found at
 https://github.com/freeradius/radiusv11.git.

DeKok Expires 21 October 2023 [Page 1]

Internet-Draft RADIUSv11 April 2023

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 6
 3. The RADIUS/1.1 Transport profile for RADIUS 7
 3.1. ALPN Name for RADIUS/1.1 7
 3.2. Operation of ALPN . 8
 3.3. Configuration of ALPN for RADIUS/1.1 9
 3.3.1. Tabular Summary 11
 3.4. Additional TLS issues 12
 3.5. Session Resumption 12
 4. RADIUS/1.1 Packet and Attribute Formats 12
 4.1. RADIUS/1.1 Packet Format 13
 4.2. The Token Field . 14
 4.2.1. Sending Packets 14
 4.2.2. Receiving Packets 15
 5. Attribute handling . 16

DeKok Expires 21 October 2023 [Page 2]

Internet-Draft RADIUSv11 April 2023

 5.1. Obfuscated Attributes 16
 5.1.1. User-Password . 17
 5.1.2. CHAP-Challenge 18
 5.1.3. Tunnel-Password 18
 5.1.4. Vendor-Specific Attributes 18
 5.2. Message-Authenticator 19
 5.3. Message-Authentication-Code 19
 5.4. CHAP, MS-CHAP, etc. 19
 5.5. Original-Packet-Code 19
 6. Other Considerations . 20
 6.1. Status-Server . 20
 6.2. Proxies . 21
 6.3. Crypto-Agility . 21
 6.4. Future Standards . 22
 7. Implementation Status . 22
 8. Privacy Considerations 23
 9. Security Considerations 23
 10. IANA Considerations . 23
 11. Acknowledgements . 23
 12. Changelog . 23
 13. References . 25
 13.1. Normative References 25
 13.2. Informative References 26
 Author’s Address . 27

1. Introduction

 The RADIUS protocol [RFC2865] uses MD5 [RFC1321] to sign packets, and
 to obfuscate certain attributes. Decades of cryptographic research
 has shown that MD5 is insecure, and MD5 should no longer be used. In
 addition, the dependency on MD5 makes it impossible to use RADIUS in
 a FIPS-140 compliant system, as FIPS-140 forbids systems from relying
 on insecure cryptographic methods for security. There are many prior
 discussions of MD5 insecurities which we will not repeat here. These
 discussions are most notably in [RFC6151], and in Section 3 of
 [RFC6421], among others.

 While additional transport protocols were defined for RADIUS in TCP
 ([RFC6613]), TLS ([RFC6614]), and DTLS ([RFC7360]), those transports
 still relied on MD5. That is, the shared secret was used along with
 MD5, even when the RADIUS packets were being transported in (D)TLS.
 At the time, the consensus of the RADEXT working group was that this
 continued use of MD5 was acceptable. TLS was seen as a simple
 "wrapper" around RADIUS, while using a fixed shared secret. The
 intention at the time was to allow the use of (D)TLS while making
 essentially no changes to the basic RADIUS encoding, decoding,
 signing, and packet validation.

DeKok Expires 21 October 2023 [Page 3]

Internet-Draft RADIUSv11 April 2023

 The ensuing years have shown that it is important for RADIUS to
 remove its dependency on MD5. The continued use of MD5 is no longer
 acceptable in a security-conscious environment. The use of MD5 in
 [RFC6614] and [RFC7360] adds no security or privacy over that
 provided by TLS. It is time to remove the use of MD5 from RADIUS.

 This document defines an Application-Layer Protocol Negotiation
 (ALPN) [RFC7301] extension for RADIUS which removes the dependency on
 MD5. Systems which implement this transport profile are therefore
 capable of being FIPS-140 compliant. This extension can best be
 understood as a transport profile for RADIUS, rather than a whole-
 sale revision of the RADIUS protocol. A preliminary implementation
 has shown that only minor changes are required to support RADIUS/1.1
 on top of an existing RADIUS server.

 The changes from traditional TLS-based transports for RADIUS are as
 follows:

 * ALPN is used for negotiation of this extension,

 * TLS 1.3 or later is required,

 * all uses of the RADIUS shared secret have been removed,

 * The now-unused Request and Response Authenticator fields have been
 repurposed to carry an opaque Token which identifies requests and
 responses,

 * The Identifier field is no longer used, and has been replaced by
 the Token field,

 * The Message-Authenticator attribute ([RFC3579] Section 3.2) is not
 sent in any packet, and if received is ignored,

 * Attributes such as User-Password, Tunnel-Password, and MS-MPPE
 keys are sent encoded as "text" ([RFC8044] Section 3.4) or
 "octets" ([RFC8044] Section 3.5), without the previous MD5-based
 obfuscation. This obfuscation is no longer necessary, as the data
 is secured and kept private through the use of TLS,

 * Future RADIUS specifications are forbidden from defining new
 cryptographic primitives.

 The following items are left unchanged from traditional TLS-based
 transports for RADIUS:

 * the RADIUS packet header is the same size, and the Code and Length
 fields ([RFC2865] Section 3) have the same meaning as before,

DeKok Expires 21 October 2023 [Page 4]

Internet-Draft RADIUSv11 April 2023

 * All attributes which do not use MD5-based obfuscation methods are
 encoded using the normal RADIUS methods, and have the same meaning
 as before,

 * As this extension is a transport profile for one "hop" (client to
 server connection), it does not impact any other connection used
 by a client or server. The only systems which are aware that this
 transport profile is in use are the client and server which have
 negotiated the use of this extension on a particular shared
 connection,

 * This extension uses the same ports (2083/tcp and 2083/udp) which
 are defined for RADIUS/TLS [RFC6614] and RADIUS/DTLS [RFC7360].

 A major benefit of this extensions is that a home server which
 implements it can also choose to also implement full FIPS-140
 compliance. That is, a home server can remove all uses of MD4 and
 MD5. In that case, however, the home server will not support CHAP,
 MS-CHAP, or any authentication method which uses MD4 or MD5. We note
 that the choice of which authentication method to accept is always
 left to the home server. This specification does not change any
 authentication method carried in RADIUS, and does not mandate (or
 forbid) the use of any authentication method for any system.

 As for proxies, there was never a requirement that proxies implement
 CHAP or MS-CHAP authentication. So far as a proxy is concerned,
 attributes relating to CHAP and MS-CHAP are simply opaque data that
 is transported unchanged to the next hop. As such, it is possible
 for a FIPS-140 compliant proxy to transport authentication methods
 which depend on MD4 or MD5, so long as that data is forwarded to a
 home server which supports those methods.

 We reiterate that the decision to support (or not) any authentication
 method is entirely site local, and is not a requirement of this
 specification. The contents or meaning of any RADIUS attribute other
 than Message-Authenticator (and similar attributes) are not modified.
 The only change to the Message-Authenticator attribute is that is no
 longer used.

 Unless otherwise described in this document, all RADIUS requirements
 apply to this extension. That is, this specification defines a
 transport profile for RADIUS. It is not an entirely new protocol,
 and it defines only minor changes to the existing RADIUS protocol.
 It does not change the RADIUS packet format, attribute format, etc.
 This specification is compatible with all RADIUS attributes, past,
 present, and future.

DeKok Expires 21 October 2023 [Page 5]

Internet-Draft RADIUSv11 April 2023

 This specification is compatible with existing implementations of
 RADIUS/TLS and RADIUS/DTLS. There is no need to define an ALPN name
 for those protocols, as implementations can simply not send an ALPN
 name when those protocols are used. Backwards compatibility with
 existing implementations is both required, and assumed.

 This specification is compatible with all past and future RADIUS
 specifications. There is no need for any RADIUS specification to
 mention this transport profile by name, or to make provisions for
 this specification. This specification defines how to transform
 RADIUS into RADIUS/1.1, and no further discussion of that
 transformation is necessary.

 In short, when negotiated on a connection, this specification permits
 implementations to avoid MD5 when signing packets, or obfuscating
 certain attributes.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 * ALPN

 Application-Layer Protocol Negotiation, as defined in [RFC7301].

 * RADIUS

 The Remote Authentication Dial-In User Service protocol, as
 defined in [RFC2865], [RFC2865], and [RFC5176] among others.

 While this protocol can be viewed as "RADIUS/1.0", for simplicity
 and historical compatibility, we keep the name "RADIUS".

 * RADIUS/UDP

 RADIUS over the User Datagram Protocol as define above.

 * RADIUS/TCP

 RADIUS over the Transmission Control Protocol [RFC6613].

 * RADIUS/TLS

 RADIUS over the Transport Layer Security protocol [RFC6614].

DeKok Expires 21 October 2023 [Page 6]

Internet-Draft RADIUSv11 April 2023

 * RADIUS/DTLS

 RADIUS over the Datagram Transport Layer Security protocol
 [RFC7360].

 * RADIUS over TLS

 Either RADIUS/TLS or RADIUS/DTLS. This terminology is used
 instead of alternatives such as "RADIUS/(D)TLS", or "either
 RADIUS/TLS or RADIUS/DTLS".

 * RADIUS/1.1

 The transport profile defined in this document, which stands for
 "RADIUS version 1.1". We use RADIUS/1.1 to refer interchangeably
 to TLS and DTLS transport.

 * TLS

 the Transport Layer Security protocol. Generally when we refer to
 TLS in this document, we are referring interchangeably to TLS or
 DTLS transport.

3. The RADIUS/1.1 Transport profile for RADIUS

 This section describes the ALPN transport profile in detail. It
 first gives the name used for ALPN, and then describes how ALPN is
 configured and negotiated by client and server. It then concludes by
 discussing TLS issues such as what to do for ALPN during session
 resumption.

3.1. ALPN Name for RADIUS/1.1

 The ALPN name defined for RADIUS/1.1 is as follows:

 "radius/1.1"

 The protocol defined by this specification.

 Where ALPN is not configured or is not received in a TLS connection,
 systems supporting ALPN MUST not use RADIUS/1.1.

 Where ALPN is configured, the client signals support by sending the
 ALPN string "radius/1.1". The server can accept this proposal and
 reply with the ALPN string "radius/1.1", or reject this proposal, and
 not reply with any ALPN string.

DeKok Expires 21 October 2023 [Page 7]

Internet-Draft RADIUSv11 April 2023

 Implementations MUST signal ALPN "radius/1.1" in order for it to be
 used in a connection. Implementations MUST NOT have an
 administrative flag which causes a connection to use "radius/1.1"
 without signalling that protocol via ALPN.

 The next step in defining RADIUS/1.1 is to review how ALPN works.

3.2. Operation of ALPN

 Once a system has been configured to support ALPN, it is negotiated
 on a per-connection basis as per [RFC7301]. We give a brief overview
 here of ALPN in order to provide a high-level description ALPN for
 readers who do not need to understand [RFC7301] in detail. This
 section is not normative.

 1) The client proposes ALPN by sending an ALPN extension in the
 ClientHello. This extension lists one or more application protocols
 by name.

 2) The server receives the extension, and validates the application
 protocol name against the list it has configured.

 If the server finds no acceptable common protocols, it closes the
 connection.

 3) Otherwise, the server return a ServerHello with either no ALPN
 extension, or an ALPN extension with only one named application
 protocol.

 If the client does not signal ALPN, or server does not accept the
 ALPN proposal, the server does not reply with any ALPN name.

 4) The client receives the ServerHello, validates the application
 protocol (if any) against the name it sent, and records the
 application protocol which was chosen

 This check is necessary in order for the client to both know which
 protocol the server has selected, and to validate that the
 protocol sent by the server is acceptable to the client.

 The next step in defining RADIUS/1.1 is to define how ALPN is
 configured on the client and server, and to give more detailed
 requirements on ALPN configuration and operation.

DeKok Expires 21 October 2023 [Page 8]

Internet-Draft RADIUSv11 April 2023

3.3. Configuration of ALPN for RADIUS/1.1

 Clients or servers supporting this specification can do so by
 extending their TLS configuration through the addition of a new
 configuration flag, called "RADIUS/1.1" here. The exact name given
 below does not need to be used, but it is RECOMMENDED that
 administrative interfaces or programming interfaces use a similar
 name in order to provide consistent terminology. This flag controls
 how the implementations signal use of this protocol via ALPN.

 Configuration Flag Name

 RADIUS/1.1

 Allowed Values

 forbid - Forbid the use of RADIUS/1.1

 A client with this configuration MUST NOT signal any protocol
 name via ALPN. The system MUST use RADIUS over TLS as defined
 in [RFC6614] and [RFC7360].

 A server with this configuration MUST NOT signal any protocol
 name via ALPN. The system MUST use RADIUS over TLS as defined
 in [RFC6614] and [RFC7360].

 A server with this configuration MUST NOT close the connection
 if it receives an ALPN name from the client. Instead, it
 simply does not reply with ALPN.

 allow - Allow (or negotiate) the use of RADIUS/1.1

 This value MUST be the default setting for implementations
 which support this specification.

 A client with this configuration MUST use ALPN to signal that
 "radius/1.1" can be used. The client MUST use RADIUS/1.1 if
 the server responds signalling ALPN "radius/1.1". If no ALPN
 response is received from the server, the client MUST use
 RADIUS over TLS as defined in previous specifications.

 A server with this configuration MAY reply to a client with an
 ALPN string of "radius/1.1", but only if the client first
 signals support for that protocol name via ALPN. If the client
 does not signal ALPN, the server MUST NOT reply with any ALPN
 name.

 require - Require the use of RADIUS/1.1

DeKok Expires 21 October 2023 [Page 9]

Internet-Draft RADIUSv11 April 2023

 A client with this configuration MUST use ALPN to signal that
 "radius/1.1" can be used. The client MUST use RADIUS/1.1 if
 the server responds signalling ALPN "radius/1.1". If no ALPN
 response is received from the server, the client MUST close the
 connection.

 A server with this configuration MUST close the connection if
 the client does not signal "radius/1.1" via ALPN.

 A server with this configuration MUST reply with the ALPN
 protocol name "radius/1.1" if the client signals "radius/1.1".
 The server and client both MUST then use RADIUS/1.1 as the
 application-layer protocol. There is no reason to signal
 support for a protocol, and then not use it.

 Note that systems implementing this specification, but configured
 with "forbid" as above, will behave exactly the same as systems which
 do not implement this specification.

 If a client or server determines that there are no compatible
 application protocol names, then as per [RFC7301] Section 3.2, it
 MUST send a TLS alert of "no_application_protocol" (120), which
 signals the other end that there is no compatible application
 protocol. It MUST then close the connection.

 It is RECOMMENDED that a descriptive error is logged in this
 situation, so that an administrator can determine why a particular
 connection failed. The log message SHOULD include information about
 the other end of the connection, such as IP address, certificate
 information, etc. Similarly, a system receiving a TLS alert of
 "no_application_protocol" SHOULD log a descriptive error message.
 Such error messages are critical for helping administrators to
 diagnose connectivity issues.

 Note that there is no way for a client to signal if its’ RADIUS/1.1
 configuration is set to "allow" or "require". The client MUST signal
 "radius/1.1" via ALPN when it is configured with either value. The
 difference between the two values for the client is only in how it
 handles reponses from the server.

 Similarly, there is no way for a server to signal if its’ RADIUS/1.1
 configuration is set to "allow" or "require". In both cases if it
 receives "radius/1.1" from the client via ALPN, the server MUST reply
 with "radius/1.1", and agree to that negotiation. The difference
 between the two values for the server is how it handles the situation
 when no ALPN is signalled from the client.

DeKok Expires 21 October 2023 [Page 10]

Internet-Draft RADIUSv11 April 2023

3.3.1. Tabular Summary

 The preceding text gives a large number of recommendations. In order
 to give a simpler description of the outcomes, a table of possible
 behaviors for client/server values of the RADIUS/1.1 flag is given
 below. This table and the names given below are for informational
 and descriptive purposes only. This section is not normative.

 Server
 no ALPN | forbid | allow | require
 Client |--------------------------------------
 ----------|
 No ALPN | RADIUS RADIUS RADIUS Close
 | Note 1
 |
 forbid | RADIUS RADIUS RADIUS Close
 | Note 1
 |
 allow | RADIUS RADIUS OK OK
 | Note 3 Note 3
 |
 require | Close Close OK OK
 | Note 2 Note 2

 Figure 1: Possible outcomes for ALPN Negotiation

 The table entries above have the following meaning:

 Close

 Note 1 - the server closes the connection, as the client does not
 do RADIUS/1.1

 Note 2 - the client closes the connection, as the server does not
 do RADIUS/1.1

 RADIUS

 RADIUS over TLS is used. RADIUS/1.1 is not used.

 Note 3 - The client sends ALPN, but the server does not reply with
 ALPN.

 OK

 RADIUS/1.1 is used by both parties.

DeKok Expires 21 October 2023 [Page 11]

Internet-Draft RADIUSv11 April 2023

 The client sends "radius/1.1" via ALPN, and the server repies with
 "radius/1.1" via ALPN.

3.4. Additional TLS issues

 Implementations of this specification MUST require TLS version 1.3 or
 later.

 Implementations of this specification MUST support TLS-PSK.

3.5. Session Resumption

 [RFC7301] Section 3.1 states that ALPN is negotiated on each
 connection, even if session resumption is used:

 When session resumption or session tickets [RFC5077] are used, the
 previous contents of this extension are irrelevant, and only the
 values in the new handshake messages are considered.

 In order to prevent down-bidding attacks, RADIUS servers which
 negotiate the "radius/1.1" protocol MUST associate that information
 with the session ticket. On session resumption, the server MUST
 advertise only the capability to do "radius/1.1" for that session.
 That is, even if the server configuration is "allow" for new
 connections, it MUST signal "radius/1.1" when resuming a session
 which had previously negotiated "radius/1.1".

 If a server sees that a client had previously negotiated RADIUS/1.1
 for a session, but the client is now attempting to resume the
 sessions without signalling the use of RADIUS/1.1, the server MUST
 close the connection. The server SHOULD send an appropate TLS error,
 such as no_application_protocol (120), or insufficient_security (71).
 The server SHOULD log a descriptive message as described above.

4. RADIUS/1.1 Packet and Attribute Formats

 This section describes the application-layer data which is sent
 inside of (D)TLS when using the RADIUS/1.1 protocol. Unless
 otherwise discussed herein, the application-layer data is unchanged
 from traditional RADIUS. This protocol is only used when
 "radius/1.1" has been negotiated by both ends of a connection.

DeKok Expires 21 October 2023 [Page 12]

Internet-Draft RADIUSv11 April 2023

4.1. RADIUS/1.1 Packet Format

 When RADIUS/1.1 is used, the RADIUS header is modified from standard
 RADIUS. While the header has the same size, some fields have
 different meaning. The Identifier and the Request Authenticator and
 Response Authenticator fields are no longer used. Any operations
 which depend on those fields MUST NOT be performed. As packet
 signing and security are handled by the TLS layer, RADIUS-specific
 cryptographic primitives are no longer used.

 A summary of the RADIUS/1.1 packet format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Reserved-1 | Length |
 +-+
 | Token |
 +-+
 | |
 | Reserved-2 |
 | |
 +-+
 | Attributes ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-

 Figure 2: The RADIUS/1.1 Packet Format

 Code

 The Code field is one octet, and identifies the type of RADIUS
 packet.

 The meaning of the Code field is unchanged from previous RADIUS
 specifications.

 Reserved-1

 The Reserved-1 field is one octet. It MUST be set to zero for all
 packets.

 This field was previously called "Identifier" in RADIUS. It is
 now unused, as the Token field is now used to identify requests
 and responses.

 Length

DeKok Expires 21 October 2023 [Page 13]

Internet-Draft RADIUSv11 April 2023

 The Length field is two octets.

 The meaning of the Length field is unchanged from previous RADIUS
 specifications.

 Token

 The Token field is four octets, and aids in matching requests and
 replies, as a replacement for the Identifier field. The RADIUS
 server can detect a duplicate request if it receives the same
 Token value for two packets on a particular connection.

 Further requirements are given below in Section 4.2.1 for sending
 packets, and in Section 4.2.2 for receiving packets.

 Reserved-2

 The Reserved-2 field is twelve (12) octets in length.

 These octets MUST be set to zero when sending a packet.

 These octets MUST be ignored when receiving a packet.

 These octets are reserved for future protocol extensions.

4.2. The Token Field

 This section describes in more detail how the Token field is used.

4.2.1. Sending Packets

 A client which sends packets uses the Token field to increase the
 number of RADIUS packets which can be sent over one connection.

 The Token field MUST change for every new unique packet which is sent
 on the same connection. For DTLS transport, it is possible to
 retransmit duplicate packets, in which case the Token value MUST NOT
 be changed when a duplicate packet is (re)sent. When the contents of
 a retransmitted packet change for any reason (such changing Acct-
 Delay-Time as discussed in [RFC2866] Section 5.2), the Token value
 MUST be changed. Note that on reliable transports, packets are never
 retransmitted, and therefore every new packet sent has a unique Token
 value.

DeKok Expires 21 October 2023 [Page 14]

Internet-Draft RADIUSv11 April 2023

 Systems generating the Token can do so via any method they choose,
 but for simplicity, it is RECOMMENDED that the Token values be
 generated from a 32-bit counter which is unique to each connection.
 Such a counter SHOULD be initialized to a random value, taken from a
 random number generator, whenever a new connection is opened. The
 counter can then be incremented for every new packet which is sent.

 As there is no special meaning for the Token, there is no meaning
 when a counter "wraps" around from a high value back to zero. The
 originating system can simply continue to increment the Token value.

 Once a RADIUS response to a request has been received and there is no
 need to track the packet any longer, the Token value MAY be reused.
 This SHOULD be after a suitable delay to ensure that Token values do
 not conflict with outstanding packets. Note that the counter method
 described above for generating Token values will automatically ensure
 a long delay between multiple uses of the same Token value, at the
 cost of maintaining a single 32-bit counter. Any other method of
 generating unique and non-conflicting Token values is likely to
 require substantially more resources to track outstanding Token
 values.

 If a RADIUS client has multiple independent subsystems which send
 packets to a server, each subsystem MAY open a new port which is
 unique to that subsystem. There is no requirement that all packets
 go over one particular connection. That is, despite the use of a
 32-bit Token field, RADIUS/1.1 clients are still permitted to open
 multiple source ports as discussed in [RFC2865] Section 2.5.

4.2.2. Receiving Packets

 A server which receives RADIUS/1.1 packets MUST perform packet
 deduplication for all situations where it is required by RADIUS.
 Where RADIUS does not require deduplication (e.g. TLS transport),
 the server SHOULD NOT do deduplication.

 We note that in previous RADIUS specifications, the Identifier field
 could have the same value for different types of packets on the same
 connection, e.g. for Access-Request and Accounting-Request. This
 overlap required that RADIUS clients and servers track the Identifier
 field, not only on a per-connection basis, but also on a per-packet
 type basis. This behavior adds complexity to implementations.

 When using RADIUS/1.1, implementations MUST instead do deduplication
 only on the Token field, and not on any other field or fields in the
 packet header. A server MUST treat the Token as being an opaque
 field with no intrinsic meaning. While the recommendation above is
 for the sender to use a counter, other implementations are possible,

DeKok Expires 21 October 2023 [Page 15]

Internet-Draft RADIUSv11 April 2023

 valid, and permitted. For example, a system could use a pseudo-
 random number generator with a long period to generate unique values
 for the Token field.

 Where Token deduplication is done, it MUST be done on a per-
 connection basis. If two packets which are received on different
 connections contain the same Token value, then those packets MUST be
 treated as distinct (i.e. different) packets.

 This change from RADIUS means that the Identifier field is no longer
 useful. The Reserved-1 field (previously used as the Identifier)
 MUST be set to zero for all RADIUS/1.1 packets. RADIUS/1.1
 Implementations MUST NOT examine this field or use it for packet
 tracking or deduplication.

5. Attribute handling

 Most attributes in RADIUS have no special encoding "on the wire", or
 any special meaning between client and server. Unless discussed in
 this section, all RADIUS attributes are unchanged in this
 specification. This requirement includes attributes which contain a
 tag, as defined in [RFC2868].

5.1. Obfuscated Attributes

 As (D)TLS is used for this specification, there is no need to hide
 the contents of an attribute on a hop-by-hop basis. The TLS
 transport ensures that all attribute contents are hidden from any
 observer.

 Attributes defined as being obfuscated via MD5 no longer have the
 obfuscation step applied when RADIUS/1.1 is used. Instead, those
 attributes are simply encoded as their values, as with any other
 attribute. Their encoding method MUST follow the encoding for the
 underlying data type, with any encryption / obfuscation step omitted.

 There are often concerns where RADIUS is used, that passwords are
 sent "in cleartext" across the network. This allegation was never
 true for RADIUS, and definitely untrue when (D)TLS transport is used.
 While passwords are encoded in packets as strings, the packets (and
 thus passwords) are protected by TLS. For the unsure reader this
 protocol is the same TLS which protects passwords used for web
 logins, e-mail reception and sending, etc. As a result, any claims
 that passwords are sent "in the clear" are false.

 There are risks from sending passwords over the network, even when
 they are protected by TLS. One such risk somes from the common
 practice of multi-hop RADIUS routing. As all security in RADIUS is

DeKok Expires 21 October 2023 [Page 16]

Internet-Draft RADIUSv11 April 2023

 on a hop-by-hop basis, every proxy which receives a RADIUS packet can
 see (and modify) all of the information in the packet. Sites wishing
 to avoid proxies SHOULD use dynamic peer discovery [RFC7585], which
 permits clients to make connections directly to authoritative servers
 for a realm.

 These others ways to mitigate these risks. One is by ensuring that
 the RADIUS over TLS session parameters are verified before sending
 the password, usually via a method such as verifying a server
 certificate. That is, passwords should only be sent to verified and
 trusted parties. If the TLS session parameters are not verified,
 then it is trivial to convince the RADIUS client to send passwords to
 anyone.

 Another way to mitigate these risks is for the system being
 authenticated to use an authentication protocol which never sends
 passwords (e.g. EAP-PWD [RFC5931]), or which sends passwords
 protected by a TLS tunnel (e.g. EAP-TTLS [RFC5281]). The processes
 to choose and configuring an authentication protocol are strongly
 site-dependent, so further discussion of these issues are outside of
 the scope of this document. The goal here is to ensure that the
 reader has enough information to make an informed decision.

5.1.1. User-Password

 The User-Password attribute ([RFC2865] Section 5.2) MUST be encoded
 the same as any other attribute of data type ’string’ ([RFC8044]
 Section 3.5).

 The contents of the User-Password field MUST be at least one octet in
 length, and MUST NOT be more than 128 octets in length. This
 limitation is maintained from [RFC2865] Section 5.2 for compatibility
 with legacy transports.

 Note that the User-Password attribute is not of data type ’text’.
 The original reason in [RFC2865] was because the attribute was
 encoded as an opaque and obfuscated binary blob. We maintain that
 data type here, even though the attribute is no longer obfuscated.
 The contents of the User-Password attribute do not have to printable
 text, or UTF-8 data as per the definition of the ’text’ data type in
 [RFC8044] Section 3.4.

 However, implementations should be aware that passwords are often
 printable text, and where the passwords are printable text, it can be
 useful to store and display them as printable text. Where
 implementations can process non-printable data in the ’text’ data
 type, they MAY use the data type ’text’ for User-Password.

DeKok Expires 21 October 2023 [Page 17]

Internet-Draft RADIUSv11 April 2023

5.1.2. CHAP-Challenge

 [RFC2865] Section 5.2 allows for the CHAP challenge to be taken from
 either the CHAP-Challenge attribute ([RFC2865] Section 5.40), or the
 Request Authenticator field. Since RADIUS/1.1 connections no longer
 use a Request Authenticator field, proxies may receive an Access-
 Request containing a CHAP-Password attribute ([RFC2865] Section 5.2)
 but without a CHAP-Challenge attribute ([RFC2865] Section 5.40). In
 this case, proxies which forward that CHAP-Password attribute over a
 RADIUS/1.1 connection MUST create a CHAP-Challenge attribute in the
 proxied packet using the contents from the Request Authenticator.

5.1.3. Tunnel-Password

 The Tunnel-Password attribute ([RFC2868] Section 3.5) MUST be encoded
 the same as any other attribute of data type ’text’ which contains a
 tag, such as Tunnel-Client-Endpoint ([RFC2868] Section 3.3). Since
 the attribute is no longer obfuscated, there is no need for a Salt
 field or Data-Length fields as described in [RFC2868] Section 3.5,
 and the textual value of the password can simply be encoded as-is.

 Note that the Tunnel-Password attribute is not of data type ’text’.
 The original reason in [RFC2868] was because the attribute was
 encoded as an opaque and obfuscated binary blob. We maintain that
 data type here, even though the attribute is no longer obfuscated.
 The contents of the Tunnel-Password attribute do not have to
 printable text, or UTF-8 data as per the definition of the ’text’
 data type in [RFC8044] Section 3.4.

 However, implementations should be aware that passwords are often
 printable text, and where the passwords are printable text, it can be
 useful to store and display them as printable text. Where
 implementations can process non-printable data in the ’text’ data
 type, they MAY use the data type ’text’ for Tunnel-Password.

5.1.4. Vendor-Specific Attributes

 Any Vendor-Specific attribute which uses similar obfuscation MUST be
 encoded as per their base data type. Specifically, the MS-MPPE-Send-
 Key and MS-MPPE-Recv-Key attributes ([RFC2548] Section 2.4) MUST be
 encoded as any other attribute of data type ’text’ ([RFC8044]
 Section 3.4).

 We note that as the RADIUS shared secret is no longer used, it is no
 longer possible or necessary for any attribute to be obfuscated on a
 hop-by-hop basis using the previous methods defined for RADIUS.

DeKok Expires 21 October 2023 [Page 18]

Internet-Draft RADIUSv11 April 2023

5.2. Message-Authenticator

 The Message-Authenticator attribute ([RFC3579] Section 3.2) MUST NOT
 be sent over a RADIUS/1.1 connection. That attribute is no longer
 used or needed.

 If the Message-Authenticator attribute is received over a RADIUS/1.1
 connection, the attribute MUST be silently discarded, or treated as
 an "invalid attribute", as defined in [RFC6929] Section 2.8. That
 is, the Message-Authenticator attribute is no longer used to sign
 packets. Its existence (or not) in this transport is meaningless.

 We note that any packet which contains a Message-Authenticator
 attribute can still be processed. There is no need to discard an
 entire packet simply because it contains a Message-Authenticator
 attribute. Only the Message-Authenticator attribute itself is
 ignored.

5.3. Message-Authentication-Code

 Similarly, the Message-Authentication-Code attribute defined in
 [RFC6218] Section 3.3 MUST NOT be sent over a RADIUS/1.1 connection.
 That attribute MUST be treated the same as Message-Authenticator,
 above.

 As the Message-Authentication-Code attribute is no longer used, the
 related MAC-Randomizer attribute [RFC6218] Section 3.2 is also no
 longer used. It MUST also be treated the same was as Message-
 Authenticator, above.

5.4. CHAP, MS-CHAP, etc.

 While some attributes such as CHAP-Password, etc. depend on insecure
 cryptographic primitives such as MD5, these attributes are treated as
 opaque blobs when sent between a RADIUS client and server. The
 contents of the attributes are not obfuscated, and they do not depend
 on the RADIUS shared secret. As a result, these attributes are
 unchanged in RADIUS/1.1.

 A server implementing this specification can proxy CHAP, MS-CHAP,
 etc. without any issue. A home server implementing this
 specification can authenticate CHAP, MS-CHAP, etc. without any issue.

5.5. Original-Packet-Code

 The Original-Packet-Code attribute ([RFC7930] Section 4) MUST NOT be
 sent over a RADIUS/1.1 connection. That attribute is no longer used
 or needed.

DeKok Expires 21 October 2023 [Page 19]

Internet-Draft RADIUSv11 April 2023

 If the Original-Packet-Code attribute is received over a RADIUS/1.1
 connection, the attribute MUST either be silently discarded, or be
 treated an as "invalid attribute", as defined in [RFC6929],
 Section 2.8. That is, existence of the Token field means that the
 Original-Packet-Code attribute is no longer needed to correlate
 Protocol-Error replies with outstanding requests. As such, the
 Original-Packet-Code attribute is not used in RADIUS/1.1.

 We note that any packet which contains an Original-Packet-Code
 attribute can still be processed. There is no need to discard an
 entire packet simply because it contains an Original-Packet-Code
 attribute.

6. Other Considerations

 Most of the differences between RADIUS and RADIUS/1.1 are in the
 packet header and attribute handling, as discussed above. The
 remaining issues are a small set of unrelated topics, and are
 discussed here.

6.1. Status-Server

 [RFC6613] Section 2.6.5, and by extension [RFC7360] suggest that the
 Identifier value zero (0) be reserved for use with Status-Server as
 an application-layer watchdog. This practice MUST NOT be used for
 RADIUS/1.1, as the Identifier field is no longer used.

 The rationale for reserving one value of the Identifier field was the
 limited number of Identifiers available (256), and the overlap in
 Identifiers between Access-Request packets and Status-Server packers.
 If all 256 Identifier values had been used to send Access-Request
 packets, then there would be no Identifier value available for
 sending a Status-Server Packet.

 In contrast, the Token field allows for 2^32 outstanding packets on
 one RADIUS/1.1 connection. If there is a need to send a Status-
 Server packet, it is always possible to allocate a new value for the
 Token field. Similarly, the value zero (0) for the Token field has
 no special meaning. The edge condition is that there are 2^32
 outstanding packets on one connection with no new Token value
 available for Status-Server. In which case there are other serious
 issues, such as allowing billions of packets to be oustanding. The
 safest way forward is likely to just close the connection.

DeKok Expires 21 October 2023 [Page 20]

Internet-Draft RADIUSv11 April 2023

6.2. Proxies

 A RADIUS proxy normally decodes and then re-encodes all attributes,
 included obfuscated ones. A RADIUS proxy will not generally rewrite
 the content of the attributes it proxies (unless site-local policy
 requires such a rewrite). While some attributes may be modified due
 to administrative or policy rules on the proxy, the proxy will
 generally not rewrite the contents of attributes such as User-
 Password, Tunnel-Password, CHAP-Password, MS-CHAP-Password, MS-MPPE
 keys, etc. All attributes are therefore transported through a
 RADIUS/1.1 connection without changing their values or contents.

 A proxy may negotiate RADIUS/1.1 (or not) with a particular client or
 clients, and it may negotiate RADIUS/1.1 (or not) with a server or
 servers it connect to, in any combination. As a result, this
 specification is fully compatible with all past, present, and future
 RADIUS attributes.

6.3. Crypto-Agility

 The crypto-agility requirements of [RFC6421] are addressed in
 [RFC6614] Appendix C, and in Section 10.1 of [RFC7360]. This
 specification makes no changes from, or additions to, those
 specifications. The use of ALPN, and the removal of MD5 has no
 impact on security or privacy of the protocol.

 RADIUS/TLS has been widely deployed in at least eduroam and in
 OpenRoaming. RADIUS/DTLS has seen less adoption, but it is known to
 be supported in many RADIUS clients and servers.

 It is RECOMMENDED that all implementations of RADIUS over TLS be
 updated to support this specification. The effort to implement this
 specification is minimal. Once implementations support this
 specification, administrators can gain the benefit of it with little
 or no configuration changes. This specification is backwards
 compatible with [RFC6614] and [RFC7360]. It is only potentially
 subject to downbidding attacks if implementations do not enforce ALPN
 negotiation correctly on session resumption.

 All crypto-agility needed or used by this specification is
 implemented in TLS. This specification also removes all
 cryptographic primitives from the application-layer protocol (RADIUS)
 being transported by TLS. As discussed in the next section below,
 this specification also bans the development of all new cryptographic
 or crypto-agility methods in the RADIUS protocol.

DeKok Expires 21 October 2023 [Page 21]

Internet-Draft RADIUSv11 April 2023

6.4. Future Standards

 This specification defines a new transport profile for RADIUS. It
 does not define a completely new protocol. As such, any future
 attribute definitions MUST first be defined for RADIUS/UDP, after
 which those definitions can be applied to this transport profile.

 New specifications MAY define new attributes which use the
 obfuscation methods for User-Password as defined in [RFC2865]
 Section 5.2, or for Tunnel-Password as defined in [RFC2868]
 Section 3.5. There is no need for those specifications to describe
 how those new attributes are transported in RADIUS/1.1. Since
 RADIUS/1.1 does not use MD5, any obfuscated attributes will by
 definition be transported as their underlying data type, ("text"
 ([RFC8044] Section 3.4) or "string" ([RFC8044] Section 3.5). a New
 RADIUS specifications MUST NOT define attributes which can only be
 transported via RADIUS over TLS. The RADIUS protocol has no way to
 signal the security requirements of individual attributes. Any
 existing implementation will handle these new attributes as "Invalid
 Attributes" ([RFC6929] Section 2.8), and could forward them over an
 insecure link. As RADIUS security and signalling is hop-by-hop,
 there is no way for a RADIUS client or server to even know if such
 forwarding is taking place. For these reasons and more, it is
 therefore inappropriate to define new attributes which are only
 secure if they use a secure transport layer.

 New specifications do not need to mention this transport profile, or
 make any special provisions for dealing with it. This specification
 defines how RADIUS packet encoding, decoding, signing, and
 verification are performed when using RADIUS/1.1. So long as any
 future specification uses the existing encoding, etc. schemes defined
 for RADIUS, no additional text in future documents is necessary in
 order to be compatible with RADIUS/1.1.

 To close the final loophole, this document updates [RFC2865] at al.
 to state that any new RADIUS specification MUST NOT introduce new "ad
 hoc" cryptographic primitives as was done with User-Password and
 Tunnel-Password. That is, RADIUS-specific cryptographic methods
 existing as of the publication of this document can continue to be
 used for historical compatibility. However, all new cryptographic
 work in RADIUS is forbidden. There is insufficient expertise in the
 RADIUS community to securely design new cryptography.

7. Implementation Status

 (This section to be removed by the RFC editor.)

DeKok Expires 21 October 2023 [Page 22]

Internet-Draft RADIUSv11 April 2023

 This specification is being implemented (client and server) in the
 FreeRADIUS project which is hosted on GitHub at
 https://github.com/FreeRADIUS/freeradius-server/tree/v3.2.x The code
 implementation "diff" is approximately 1,000 lines, including build
 system changes and changes to configuration parsers.

8. Privacy Considerations

 This specification requires secure transport for RADIUS, and this has
 all of the privacy benefits of RADIUS/TLS [RFC6614] and RADIUS/DTLS
 [RFC7360]. All of the insecure uses of RADIUS have been removed.

9. Security Considerations

 The primary focus of this document is addressing security
 considerations for RADIUS.

10. IANA Considerations

 IANA is requested to update the "TLS Application-Layer Protocol
 Negotiation (ALPN) Protocol IDs" registry with one new entry:

 Protocol: radius/1.1
 Id. Sequence: 0x72 0x61 0x64 0x69 0x75 0x73 0x2f 0x31 0x2e 0x31
 ("radius/1.1")
 Reference: This document

11. Acknowledgements

 In hindsight, the decision to retain MD5 for RADIUS over TLS was
 likely wrong. It was an easy decision to make in the short term, but
 it has caused ongoing problems which this document addresses.

 Thanks to Bernard Aboba, Karri Huhtanen, Heikki Vatiainen, Alexander
 Clouter, Michael Richardons, Hannes Tschofenig, and Matthew Netwon
 for reviews and feedback.

12. Changelog

 draft-dekok-radext-sradius-00

 Initial Revision

 draft-dekok-radext-radiusv11-00

 Use ALPN from RFC 7301, instead of defining a new port. Drop the
 name "SRADIUS".

DeKok Expires 21 October 2023 [Page 23]

Internet-Draft RADIUSv11 April 2023

 Add discussion of Original-Packet-Code

 draft-dekok-radext-radiusv11-01

 Update formatting.

 draft-dekok-radext-radiusv11-02

 Add Flag field and description.

 Minor rearrangements and updates to text.

 draft-dekok-radext-radiusv11-03

 Remove Flag field and description based on feedback and expected
 use-cases.

 Use "radius/1.0" instead of "radius/1"

 Consistently refer to the specification as "RADIUSv11", and
 consistently quote the ALPN name as "radius/1.1"

 Add discussion of future attributes and future crypto-agility
 work.

 draft-dekok-radext-radiusv11-04

 Remove "radius/1.0" as it is unnecessary.

 Update Introduction with more historical background, which
 motivates the rest of the section.

 Change Identifier field to be reserved, as it is entirely unused.

 Update discussion on clear text passwords.

 Clarify discussion of Status-Server, User-Password, and Tunnel-
 Password.

 Give high level summary of ALPN, clear up client / server roles,
 and remove "radius/1.0" as it is unnecessary.

 Add text on RFC6421.

 draft-dekok-radext-radiusv11-05

 Clarify naming. "radius/1.1" is the ALPN name. "RADIUS/1.1" is
 the transport profile.

DeKok Expires 21 October 2023 [Page 24]

Internet-Draft RADIUSv11 April 2023

 Clarify that future specifications do not need to make provisions
 for dealing with this transport profile.

 draft-dekok-radext-radiusv11-05

 Typos and word smithing.

 Define and use "RADIUS over TLS" instead of RADIUS/(D)TLS.

 Many cleanups and rework based on feedback from Matthew Newton.

13. References

13.1. Normative References

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC6421] Nelson, D., Ed., "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421,
 DOI 10.17487/RFC6421, November 2011,
 <https://www.rfc-editor.org/info/rfc6421>.

 [RFC6929] DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <https://www.rfc-editor.org/info/rfc6929>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8044] DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <https://www.rfc-editor.org/info/rfc8044>.

DeKok Expires 21 October 2023 [Page 25]

Internet-Draft RADIUSv11 April 2023

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes",
 RFC 2548, DOI 10.17487/RFC2548, March 1999,
 <https://www.rfc-editor.org/info/rfc2548>.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <https://www.rfc-editor.org/info/rfc2866>.

 [RFC2868] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, DOI 10.17487/RFC2868, June 2000,
 <https://www.rfc-editor.org/info/rfc2868>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579,
 DOI 10.17487/RFC3579, September 2003,
 <https://www.rfc-editor.org/info/rfc3579>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
 Protocol Tunneled Transport Layer Security Authenticated
 Protocol Version 0 (EAP-TTLSv0)", RFC 5281,
 DOI 10.17487/RFC5281, August 2008,
 <https://www.rfc-editor.org/info/rfc5281>.

DeKok Expires 21 October 2023 [Page 26]

Internet-Draft RADIUSv11 April 2023

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password",
 RFC 5931, DOI 10.17487/RFC5931, August 2010,
 <https://www.rfc-editor.org/info/rfc5931>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC6218] Zorn, G., Zhang, T., Walker, J., and J. Salowey, "Cisco
 Vendor-Specific RADIUS Attributes for the Delivery of
 Keying Material", RFC 6218, DOI 10.17487/RFC6218, April
 2011, <https://www.rfc-editor.org/info/rfc6218>.

 [RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613,
 DOI 10.17487/RFC6613, May 2012,
 <https://www.rfc-editor.org/info/rfc6613>.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a
 Transport Layer for RADIUS", RFC 7360,
 DOI 10.17487/RFC7360, September 2014,
 <https://www.rfc-editor.org/info/rfc7360>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for
 RADIUS/TLS and RADIUS/DTLS Based on the Network Access
 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October
 2015, <https://www.rfc-editor.org/info/rfc7585>.

 [RFC7930] Hartman, S., "Larger Packets for RADIUS over TCP",
 RFC 7930, DOI 10.17487/RFC7930, August 2016,
 <https://www.rfc-editor.org/info/rfc7930>.

Author’s Address

 Alan DeKok
 FreeRADIUS
 Email: aland@freeradius.org

DeKok Expires 21 October 2023 [Page 27]

RADEXT Working Group A. DeKok

Internet-Draft FreeRADIUS

Intended status: Standards Track V. Cargatser

Expires: 28 January 2024 Cisco

 27 July 2023

 Reverse CoA in RADIUS

 draft-dekok-radext-reverse-coa-01

Abstract

 This document defines a "reverse change of authorization (CoA)" path

 for RADIUS packets. This specification allows a home server to send

 CoA packets in "reverse" down a RADIUS/TLS connection. Without this

 capability, it is impossible for a home server to send CoA packets to

 a NAS which is behind a firewall or NAT gateway. The reverse CoA

 functionality extends the available transport methods for CoA

 packets, but it does not change anything else about how CoA packets

 are handled.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-dekok-radext-reverse-coa/.

 Discussion of this document takes place on the RADEXT Working Group

 mailing list (mailto:radext@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/radext/.

 Source for this draft and an issue tracker can be found at

 https://github.com/freeradius/reverse-coa.git.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

DeKok & Cargatser Expires 28 January 2024 [Page 1]

Internet-Draft Reverse CoA July 2023

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Terminology . 4

 3. Concepts . 5

 4. Capability Configuration and Signalling 5

 4.1. Configuration Flag 6

 4.2. Dynamic Signalling 6

 5. Reverse Routing . 7

 5.1. Retransmits . 8

 6. Implementation Status . 8

 7. Privacy Considerations 9

 8. Security Considerations 9

 9. IANA Considerations . 9

 10. Acknowledgements . 9

 11. Changelog . 9

 12. References . 9

 12.1. Normative References 9

 12.2. Informative References 10

 Authors’ Addresses . 10

DeKok & Cargatser Expires 28 January 2024 [Page 2]

Internet-Draft Reverse CoA July 2023

1. Introduction

 [RFC5176] defines the ability to change a users authorization, or

 disconnect the user via what are generally called "Change of

 Authorization" or "CoA" packets. This term refers to either of the

 RADIUS packet types CoA-Request or Disconnect-Request. The initial

 transport protocol for all RADIUS was the User Datagram Protocol

 (UDP).

 [RFC6614] updated previous specifications to allow packets to be sent

 over the Transport Layer Security (TLS) protocol. Section 2.5 of

 that document explicitly allows all packets (including CoA) to be

 sent over a TLS connection:

 Due to the use of one single TCP port for all packet types, it is

 required that a RADIUS/TLS server signal which types of packets are

 supported on a server to a connecting peer. See also Section 3.4 for

 a discussion of signaling.

 These specifications assume that a RADIUS client can directly contact

 a RADIUS server, which is the normal "forward" path for packets

 between a client and server. However, it is not always possible for

 the RADIUS server to send CoA packets to the RADIUS client. If a

 RADIUS server wishes to act as a CoA client, and send CoA packets to

 the NAS (CoA server), the "reverse" path can be blocked by a

 firewall, NAT gateway, etc. That is, a RADIUS server has to be

 reachable by a NAS, but there is usually no requirement that the NAS

 is reachable from a public system. To the contrary, there is usually

 a requirement that the NAS is not publicly accessible.

 This scenario is most evident in a roaming / federated environment

 such as Eduroam or OpenRoaming. It is in general impossible for a

 home server to signal the NAS to disconnect a user. There is no

 direct reverse path from the home server to the NAS, as the NAS is

 not publicly addressible. Even if there was a public reverse path,

 it would generally be unknowable, as intermediate proxies can (and

 do) attribute rewriting to hide NAS identies.

 These limitations can result in business losses and security

 problems, such as the inability to disconnect an online user when

 their account has been terminated.

 As the reverse path is usally blocked, it means that it is in general

 possible only to send CoA packets to a NAS when the NAS and RADIUS

 server share the same private network (private IP space or IPSec).

 Even though [RFC8559] defines CoA proxying, that specification does

 not address the issue of NAS reachability.

DeKok & Cargatser Expires 28 January 2024 [Page 3]

Internet-Draft Reverse CoA July 2023

 This specification solves that problem. The solution is to simply

 allow CoA packets to go in "reverse" down an existing RADIUS/TLS

 connection. That is, when a NAS connects to a RADIUS server it

 normally sends request packets (Access-Request, etc.) and expects to

 receive response packets (Access-Accept, etc.). This specification

 extends RADIUS/TLS by permitting a RADIUS server to re-use an

 existing TLS connection to send CoA packets to the NAS, and

 permitting the NAS to send CoA response packets to the RADIUS server

 over that same connection.

 We note that while this document specifically mentions RADIUS/TLS, it

 should be possible to use the same mechanisms on RADIUS/DTLS

 [RFC7360]. However at the time of writing this specification, no

 implementations exist for "reverse CoA" over RADIUS/DTLS. As such,

 when we refer to "TLS" here, or "RADIUS/TLS", we implicitly include

 RADIUS/DTLS in that description.

 We also note that while this same mechanism could theoretically be

 used for RADIUS/UDP and RADIUS/TCP, there is no value in defining

 "reverse CoA" for those transports. Therefore for practial purposes,

 "reverse CoA" means RADIUS/TLS and RADIUS/DTLS.

 There are additional considerations for proxies. While [RFC8559]

 describes CoA proxying, there are still issues which need to be

 addressed for the "reverse CoA" use-case. This specification

 describes how a proxy can implement "reverse CoA" proxying, including

 signalling necessary to negotiate this functionality.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 * CoA

 Change of Authorization packets. For brevity, when this document

 refers to "CoA" packets, it means either or both of CoA-Request

 and Disconnect-Request packets.

 * ACK

 Change of Authorization "positive acknowlegement" packets. For

 brevity, when this document refers to "ACK" packets, it means

 either or both of CoA-ACK and Disconnect-ACK packets.

DeKok & Cargatser Expires 28 January 2024 [Page 4]

Internet-Draft Reverse CoA July 2023

 * NAK

 Change of Authorization "negative acknowlegement" packets. For

 brevity, when this document refers to "ACK" packets, it means

 either or both of CoA-NAK and Disconnect-NAK packets.

 * RADIUS/TLS

 RADIUS over the Transport Layer Security protocol [RFC6614]

 * RADIUS/DTLS

 RADIUS over the Datagram Transport Layer Security protocol

 [RFC7360]

 * TLS

 Either RADIUS/TLS or RADIUS/DTLS.

 * reverse CoA

 CoA, ACK, or NAK packets sent over a RADIUS/TLS or RADIUS/DTLS

 connection which was made from a RADIUS client to a RADIUS server.

3. Concepts

 The reverse CoA functionality is based on two additions to RADIUS.

 The first addition is a configuration and signalling, to indicate

 that a RADIUS client is capable of accepting reverse CoA packets.

 The second addition is an extension to the "reverse" routing table

 for CoA packets which was first described in Section 2.1 of

 [RFC8559].

4. Capability Configuration and Signalling

 In order for a RADIUS server to send reverse CoA packets to a client,

 it must first know that the client is capable of accepting these

 packets.

 This functionality can be enabled in one of two ways. The first is a

 simple static configuration between client and server, where both are

 configured to allow reverse CoA. The second method is via per-

 connection signalling between client and server.

DeKok & Cargatser Expires 28 January 2024 [Page 5]

Internet-Draft Reverse CoA July 2023

 The server manages this functionality with two boolean flags, one

 per-client, and one per-connection. The per-client flag can be

 statically configured, and if not present MUST be treated as having a

 "false" value. The per-connection flag MUST be initialized from the

 per-client flag, and then can be dynamically negotiated after that.

4.1. Configuration Flag

 Clients and servers implementing reverse CoA SHOULD have a

 configuration flag which indicates that the other party supports the

 reverse CoA functionality. That is, the client has a per-server flag

 enabling (or not) reverse CoA functionality. The server has a

 similar per-client flag.

 The flag can be used where the parties are known to each other. The

 flag can also be used in conjunction with dynamic discovery

 ([RFC7585]), so long as the server associates the flag with the

 client identity and not with any particular IP address. That is, the

 flag can be associated with any method of identifying a particular

 client such as TLS-PSK identity, information in a client certificate,

 etc.

 For the client, the flag controls whether or not it will accept

 reverse CoA packets from the server, and whether the client will do

 dynamic signalling of the reverse CoA functionality.

 Separately, each side also needs to have a per-connection flag, which

 indicates whether or not this connection supports reverse CoA. The

 per-connection flag is initialized from the static flag, and is then

 dynamically updated after that.

4.2. Dynamic Signalling

 The reverse CoA functionality can be signalled on a per-connection

 basis by the client sending a Status-Server packet when it first

 opens a connection to a server. This packet contains a Capability

 attribute (see below), with value "Reverse-CoA". The existence of

 this attribute in a Status-Server packet indicates that the client

 supports reverse CoA over this connection. The Status-Server packet

 MUST be the first packet sent when the connection is opened, in order

 to perform per-connection signalling. A server which does not

 implement reverse CoA simply ignores this attribute, as per [RFC2865]

 Section 5.

DeKok & Cargatser Expires 28 January 2024 [Page 6]

Internet-Draft Reverse CoA July 2023

 A server implementing reverse CoA does not need to signal the NAS in

 any response, to indicate that it is supports reverse CoA. If the

 server never sends reverse CoA packets, then such signalling is

 unnecessary. If the server does send reverse CoA packets, then the

 packets themselves serve as sufficiant signalling.

 The NAS may send additional Status-Server packets down the same

 connection, as per [RFC3539]. These packets do not need to contain

 the Capability attribute, so it can generally be omitted. That is,

 there is no need to signal the addition or removal of reverse CoA

 functionality during the lifetime of one connection. If a client

 decides that it no longer wants to support reverse CoA on a

 particular connection, it can simply tear down the connection, and

 open a new one which does not negotiate the reverse CoA

 functionality.

 RADIUS client implementations which support reverse CoA MUST always

 signal that functionality in a Status-Server packet on any new

 connection. There is little reason to save a few octets, and having

 explicit signalling can help with implementations, deployment, and

 debugging.

 The combination of static configuration and dynamic configuration

 means that it is possible for client and server to both agree on

 whether or not a particular connection supports reverse CoA.

5. Reverse Routing

 The "reverse" routing table for CoA packets was first described in

 Section 2.1 of [RFC8559]. We extend that table here.

 In our extension, the table does not map realms to home servers.

 Instead, it maps keys to connections. The keys will be defined in

 more detail below. For now, we say that keys can be derived from a

 RADIUS client to server connection, and from the contents of a CoA

 packet which needs to be routed.

 When the server receives a TLS connection from a client, it derives a

 key for that connection, and associates the connection with that key.

 A server MUST support associating one particular key value with

 multiple connections. A server MUST support associating multiple

 keys for one connection. That is, the "key to connection" mapping is

 N to M. It is not one-to-one, or 1-N, or M-1.

DeKok & Cargatser Expires 28 January 2024 [Page 7]

Internet-Draft Reverse CoA July 2023

 When the server receives a CoA packet, it derives a key from that

 packet, and determines if there is a connection or connections which

 maps to that key. Where there is no available connection, the server

 MUST return a NAK packet that contains an Error-Cause Attribute

 having value 502 ("Request Not Routable").

 As with normal proxying, a particular packet can sometimes have the

 choice more than one connection which can be used to reach a

 destination. In that case, issues of load-balancing, fail-over, etc.

 are implementation-defined, and are not discussed here. The server

 simply chooses one connection, and sends the reverse CoA packet down

 that connection.

 The server then waits for a reply, doing retransmission if necessary.

 For all issues other than the connection being used, reverse CoA

 packets are handled as defined in [RFC5176] and in [RFC8559].

 That is, when the NAS and server are known to each other, [RFC5176]

 is followed when sending CoA packets to the NAS. The difference is

 that instead of originating connections to the NAS, the server simply

 re-uses inbound TLS connections from the NAS. The NAS is identified

 by attributes such as NAS-Identifier, NAS-IP-Address, and NAS-

 IPv6-Address.

 When a server is proxying to another server, [RFC8559] is following

 when proxying CoA packets. The "next hop" is identified either by

 Operator-Name for proxy-to-proxy connections. When the CoA packet

 reaches a visited network, that network identifies the NAS by

 examining the Operator-NAS-Identifier attribute.

5.1. Retransmits

 Retransmissions of reverse CoA packets are handled identically to

 normal CoA packets. That is, the reverse CoA functionality extends

 the available transport methods for CoA packets, it does not change

 anything else about how CoA packets are handled.

6. Implementation Status

 FreeRADIUS supports CoA proxying using Vendor-Specific attributes.

 Cisco supports reverse CoA as of Cisco IOS XE Bengaluru 17.6.1 via

 Vendor-Specific attributes.

 https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9300/

 software/release/17-6/configuration_guide/sec/b_176_sec_9300_cg/

 configuring_radsec.pdf

DeKok & Cargatser Expires 28 January 2024 [Page 8]

Internet-Draft Reverse CoA July 2023

 Aruba documentation states that "Instant supports dynamic CoA (RFC

 3576) over RadSec and the RADIUS server uses an existing TLS

 connection opened by the Instant AP to send the request."

 https://www.arubanetworks.com/techdocs/Instant_83_WebHelp/Content/

 Instant_UG/Authentication/ConfiguringRadSec.htm

7. Privacy Considerations

 This document does not change or add any privacy considerations over

 previous RADIUS specifications.

8. Security Considerations

 This document increases network security by removing the requirement

 for non-standard "reverse" paths for CoA-Request and Disconnect-

 Request packets.

9. IANA Considerations

 This document requests no action from IANA.

 RFC Editor: This section may be removed before publication.

10. Acknowledgements

 Thanks to Heikki Vatiainen for testing a preliminary implementation

 in Radiator, and for verifying interoperability with NAS equipment.

11. Changelog

12. References

12.1. Normative References

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,

 "Remote Authentication Dial In User Service (RADIUS)",

 RFC 2865, DOI 10.17487/RFC2865, June 2000,

 <https://www.rfc-editor.org/info/rfc2865>.

DeKok & Cargatser Expires 28 January 2024 [Page 9]

Internet-Draft Reverse CoA July 2023

 [RFC3539] Aboba, B. and J. Wood, "Authentication, Authorization and

 Accounting (AAA) Transport Profile", RFC 3539,

 DOI 10.17487/RFC3539, June 2003,

 <https://www.rfc-editor.org/info/rfc3539>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for

 RADIUS/TLS and RADIUS/DTLS Based on the Network Access

 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October

 2015, <https://www.rfc-editor.org/info/rfc7585>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8559] DeKok, A. and J. Korhonen, "Dynamic Authorization Proxying

 in the Remote Authentication Dial-In User Service (RADIUS)

 Protocol", RFC 8559, DOI 10.17487/RFC8559, April 2019,

 <https://www.rfc-editor.org/info/rfc8559>.

12.2. Informative References

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.

 Aboba, "Dynamic Authorization Extensions to Remote

 Authentication Dial In User Service (RADIUS)", RFC 5176,

 DOI 10.17487/RFC5176, January 2008,

 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,

 "Transport Layer Security (TLS) Encryption for RADIUS",

 RFC 6614, DOI 10.17487/RFC6614, May 2012,

 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a

 Transport Layer for RADIUS", RFC 7360,

 DOI 10.17487/RFC7360, September 2014,

 <https://www.rfc-editor.org/info/rfc7360>.

Authors’ Addresses

 Alan DeKok

 FreeRADIUS

 Email: aland@freeradius.org

 Vadim Cargatser

 Cisco

 Email: vcargats@cisco.com

DeKok & Cargatser Expires 28 January 2024 [Page 10]

RADEXT Working Group A. DeKok

Internet-Draft FreeRADIUS

Intended status: Informational 6 July 2023

Expires: 7 January 2024

 RADIUS and TLS-PSK

 draft-dekok-radext-tls-psk-01

Abstract

 This document gives implementation and operational considerations for

 using TLS-PSK with RADIUS/TLS (RFC6614) and RADIUS/DTLS (RFC7360).

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at

 https://datatracker.ietf.org/doc/draft-dekok-radext-tls-psk/.

 Discussion of this document takes place on the RADEXT Working Group

 mailing list (mailto:radext@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/radext/.

 Source for this draft and an issue tracker can be found at

 https://github.com/freeradius/radext-tls-psk.git.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 January 2024.

DeKok Expires 7 January 2024 [Page 1]

Internet-Draft RADIUS and TLS-PSK July 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. History . 3

 4. General Discussion of PSKs and PSK Identies. 3

 4.1. Requirements on PSKs 4

 4.1.1. Interaction between PSKs and Shared Secrets 5

 4.2. PSK Identities . 6

 4.3. PSK and PSK Identity Sharing 6

 5. Guidance for RADIUS clients 6

 5.1. PSK Identities . 7

 6. Guidance for RADIUS Servers 7

 6.1. Identifying and filtering clients 7

 7. Privacy Considerations 9

 8. Security Considerations 9

 9. IANA Considerations . 9

 10. Acknowledgements . 9

 11. Changelog . 9

 12. References . 10

 12.1. Normative References 10

 12.2. Informative References 10

 Author’s Address . 11

1. Introduction

 The previous specifications "Transport Layer Security (TLS)

 Encryption for RADIUS" [RFC6614] and " Datagram Transport Layer

 Security (DTLS) as a Transport Layer for RADIUS" [RFC7360] defined

 how (D)TLS can be used as a transport protocol for RADIUS. However,

 those documents do not provide guidance for using TLS-PSK with

 RADIUS. This docoument provides that missing guidance, and gives

 implementation and operational considerations.

DeKok Expires 7 January 2024 [Page 2]

Internet-Draft RADIUS and TLS-PSK July 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 TBD

3. History

 TLS deployments usually rely on certificates in most common uses.

 However, we recognize that it may be difficult to fully upgrade

 client implementations to allow for certificates to be used with

 RADIUS/TLS and RADIUS/DTLS. These upgrades involve not only

 implementing TLS, but can also require significant changes to

 administration interfaces and application programming interfaces

 (APIs) in order to fully support certificates.

 For example, unlike shared secrets, certificates expire. This

 expiration means that a working system using TLS can suddenly stop

 working. Managing this expiration can require additional

 notification APIs on RADIUS clients and servers which were previously

 not required when shared secrets were used.

 Certificates also require the use of certification authorities (CAs),

 and chains of certificates. RADIUS implementations using TLS

 therefore have to track not just a small shared secret, but also

 potentially many large certificates. The use of TLS-PSK can

 therefore provide a simpler upgrade path for implementations to

 transition from RADIUS shared secrets to TLS.

4. General Discussion of PSKs and PSK Identies.

 Before we define any RADIUS-specific use of PSKs, we must first

 review the current standards for PSKs, and give general advice on

 PSKs and PSK identies.

 The requirements in this section apply to both client and server

 implementations which use TLS-PSK. Client-specific and server-

 specific issues are discussed in more detail later in this document.

DeKok Expires 7 January 2024 [Page 3]

Internet-Draft RADIUS and TLS-PSK July 2023

4.1. Requirements on PSKs

 Reuse of a PSK in multiple versions of TLS (e.g. TLS 1.2 and TLS

 1.3) is considered unsafe ([RFC8446] Section E.7). Where TLS 1.3

 binds the PSK to a particular key deriviation function, TLS 1.2 does

 not. This binding means that it is possible to use the same PSK in

 different hashes, leading to the potential for attacking the PSK by

 comparing the hash outputs. While there are no known insecurities,

 these uses are not known to be secure, and should therefore be

 avoided.

 [RFC9258] adds a key derivation function to the import interface of

 (D)TLS 1.3, which binds the externally provided PSK to the protocol

 version. In particular, that document:

 ... describes a mechanism for importing PSKs derived from external

 PSKs by including the target KDF, (D)TLS protocol version, and an

 optional context string to ensure uniqueness. This process yields

 a set of candidate PSKs, each of which are bound to a target KDF

 and protocol, that are separate from those used in (D)TLS 1.2 and

 prior versions. This expands what would normally have been a

 single PSK and identity into a set of PSKs and identities.

 If an implementation supports both TLS 1.2 and TLS 1.3, it MUST

 require that TLS 1.3 be negotiated in RADIUS/TLS and RADIUS/DTLS.

 This requirement prevents reuse of a PSK with multiple TLS versions,

 which prevents the attacks discussed in [RFC8446] Section E.7.

 It is RECOMMENDED that systems follow the directions of [RFC9257]

 Section 4 for the use of external PSKs in TLS. That document

 provides extremely useful guidance on generating and using PSKs.

 Implementations MUST support PSKs of at least 32 octets in length,

 and SHOULD support PSKs of 64 octets. Implementations MUST require

 that PSKs be at least 16 octets in length. That is, short PSKs MUST

 NOT be permitted to be used.

 Administrators SHOULD use PSKs of at least 24 octets, generated using

 a source of cryptographically secure random numbers. Implementors

 needing a secure random number generator should see [RFC8937] for for

 further guidance. PSKs are not passwords, and administrators should

 not try to manually create PSKs.

DeKok Expires 7 January 2024 [Page 4]

Internet-Draft RADIUS and TLS-PSK July 2023

 Passwords are generally intended to be remembered and entered by

 people on a regular basis. In contrast, PSKs are intended to be

 entered once, and then automatically saved in a system configuration.

 As such, due to the limited entropy of passwords, they are not

 acceptable for use with TLS-PSK, and would only be acceptable for use

 with a password-authenticated key exchange (PAKE) TLS method.

 We also incorporate by reference the requirements of Section 10.2 of

 [RFC7360] when using PSKs.

4.1.1. Interaction between PSKs and Shared Secrets

 Any shared secret used for RADIUS/UDP or RADIUS/TLS MUST NOT be used

 for TLS-PSK.

 It is RECOMMENDED that RADIUS clients and server track all used

 shared secrets and PSKs, and then verify that the following

 requirements all hold true:

 * no shared secret is used for more than one RADIUS client

 * no PSK is used for more than one RADIUS client

 * no shared secret is used as a PSK

 * no PSK is used as a shared secret

 There may be use-cases for using one shared secret across multiple

 RADIUS clients. There may similarly be use-cases for sharing a PSK

 across multiple RADIUS clients. Details of the possible attacks on

 reused PSKs are given in [RFC9257] Section 4.1.

 There are few, if any, use-cases for using a PSK as a shared secret,

 or vice-versa.

 Implementaions MUST NOT provide user interfaces which allow both PSKs

 and shared secrets to be entered at the same time. Only one or the

 other must be present. Implementations MUST NOT use a "shared

 secret" field as a way for administrators to enter PSKs. The PSK

 entry fields MUST be labelled as being related to PSKs, and not to

 shared secrets.

DeKok Expires 7 January 2024 [Page 5]

Internet-Draft RADIUS and TLS-PSK July 2023

4.2. PSK Identities

 It is RECOMMENDED that systems follow the directions of [RFC9257]

 Section 6.1.1 for the use of external PSK identies in TLS. Note that

 the PSK identity is sent in the clear, and is therefore visible to

 attackers. Where privacy is desired, the PSK identity could be

 either an opaque token generated cryptographically, or perhaps in the

 form of a Network Access Identifier (NAI) [RFC7542], where the "user"

 portion is an opaque token. For example, an NAI could be

 "68092112@example.com". If the attacker already knows that the

 client is associated with "example.com", then using that domain name

 in the PSK identity offers no additional information. In constrast,

 the "user" portion needs to be both unique to the client and private,

 so using an opaque token there is a more secure approach.

 Implementations MUST support PSK identies of 128 octets, and SHOULD

 support longer PSK identities. We note that while TLS provides for

 PSK identities of up to 2^16-1 octets in length, there are few

 practical uses for extremely long PSK identities.

4.3. PSK and PSK Identity Sharing

 While administrators may desire to share PSKs and/or PSK identities

 across multiple systems, such usage is NOT RECOMMENDED. Details of

 the possible attacks on reused PSKs are given in [RFC9257]

 Section 4.1.

 Implementations MUST support configuring a unique PSK and PSK

 identity for each possible client-server relationship. This

 configuration allows administrators desiring security to use unique

 PSKs for each such relationship. This configuration also allows

 administrators to re-use PSKs and PSK identies where local policies

 permit.

 Implementations SHOULD warn administrators if the same PSK identity

 and/or PSK is used for multiple client-server relationships.

5. Guidance for RADIUS clients

 TLS uses certificates in most common uses. However, we recognize

 that it may be difficult to fully upgrade client implementations to

 allow for certificates to be used with RADIUS/TLS and RADIUS/DTLS.

 Client implementations therefore MUST allow the use of a pre-shared

 key (TLS-PSK). The client implementation can then expose a flag "TLS

 yes / no", and then fields which ask for the PSK identity and PSK

 itself.

DeKok Expires 7 January 2024 [Page 6]

Internet-Draft RADIUS and TLS-PSK July 2023

 Implementations MUST use ECDH cipher suites. Implementations MUST

 implement the recommended cipher suites in [RFC9325] Section 4.2 for

 TLS 1.2, and in [RFC9325] Section 4.2 for TLS 1.3.

5.1. PSK Identities

 [RFC6614] is silent on the subject of PSK identities, which is an

 issue that we correct here. Guidance is required on the use of PSK

 identities, as the need to manage identities associated with PSK is a

 new requirement for NAS management interfaces, and is a new

 requirement for RADIUS servers.

 RADIUS systems implementing TLS-PSK MUST support identities as per

 [RFC4279] Section 5.3, and MUST enable configuring TLS-PSK identities

 in management interfaces as per [RFC4279] Section 5.4.

 RADIUS shared secrets cannot safely be used as TLS-PSKs. To prevent

 confusion between shared secrets and TLS-PSKs, management interfaces

 and APIs need to label PSK fields as "PSK" or "TLS-PSK", rather than

 "shared secret

 Where dynamic server lookups [RFC7585] are not used, RADIUS clients

 MUST still permit the configuration of a RADIUS server IP address.

6. Guidance for RADIUS Servers

 The following section(s) describe guidance for RADIUS server

 implementations and deployments.

6.1. Identifying and filtering clients

 RADIUS/UDP and RADIUS/TCP identify clients by source IP address.

 This practice is no longer needed when TLS transport is used, as the

 client can instead be identified via TLS information such as PSK

 identity, client certificate, etc.

 When a RADIUS server implements TLS-PSK, it MUST use the PSK identity

 as the logical identifier for a RADIUS client instead of the IP

 address as was done with RADIUS/UDP. That is, instead of associating

 a source IP address with a shared secret, the RADIUS server instead

 associates a PSK identity with a pre-shared key. In effect, the PSK

 identity replaces the source IP address of the connection as the

 client identifier.

 For example, when a RADIUS server receives a RADIUS/UDP packet, it

 normally looks up the source IP address, finds a client definition,

 and that client definition contains a shared secret. The packet is

 then authenticated (or not) using that shared secret.

DeKok Expires 7 January 2024 [Page 7]

Internet-Draft RADIUS and TLS-PSK July 2023

 When TLS-PSK is used, the RADIUS server instead receives a TLS

 connection request which contains a PSK identity. That identity is

 then used to find a client definition, and that client definition

 contains a PSK. The TLS connection is then authenticated (or not)

 using that PSK.

 Each RADIUS client MUST be configured with a unique PSK, which

 implies a unique PSK identifier for each RADIUS client. To enforce

 the use of unique PSKs, RADIUS servers accepting TLS-PSK MUST require

 that a PSK identifier and PSK can be associated with each RADIUS

 client.

 RADIUS servers MUST be able to look up PSK identity in a subsystem

 which then returns the actual PSK.

 RADIUS servers MUST support IP address and network filtering of the

 source IP address for all TLS connections. In many situations a

 RADIUS server does not need to allow connections from the entire

 Internet. As such, it can increase security to limit permitted

 connections to a small list of networks.

 For example, a RADIUS server be configured to be accept connections

 from a source network of 192.0.2/24. The RADIUS server could

 therefore discard any TLS connection request which comes from a

 source IP address outside of that network. In that case, there is no

 need to examine the PSK identity or to find the client definition.

 Instead, the IP source filtering policy would deny the connection

 before any TLS communication had been performed.

 RADIUS servers SHOULD be able to limit certain PSK identifiers to

 certain network ranges or IP addresses. This filtering can catch

 configuration errors. That is, if a NAS is known to have a dynamic

 IP address within a particular subnet, the server should limit use of

 the NASes PSK to that subnet.

 For example, as with the example above, the RADIUS server be

 configured to be accept connections from a source network of

 192.0.2/24. The RADIUS server may be configured to with a PSK

 idrnity "system1", and then also configured to associate that PSK

 identity with the source IP address 192.0.2.16. In that case, if the

 server receives a connection request from the source IP address

 192.0.2.16 with PSK identity other than "system1", then the

 connection could be rejected. Similarly, if the server receives a

 connection request from the source IP address other than 192.0.2.16

 but which uses the PSK identity "system1", then the connection could

 also be rejected.

DeKok Expires 7 January 2024 [Page 8]

Internet-Draft RADIUS and TLS-PSK July 2023

 The use of PSK identities as client identifiers does not prevent

 RADIUS servers from performing source IP filtering of incoming

 packets or connections. Instead, the use of PSK identities as client

 identifiers means that source IP addresses are no longer required to

 be associated with RADIUS clients.

 Note that as some clients may have dynamic IP addresses, it is

 possible for a one PSK identity to appear at different source IP

 addresses over time. In addition, as there may be many clients

 behind one NAT gateway, there may be multiple RADIUS clients using

 one public IP address. RADIUS servers MUST support multiple PSKs at

 one source IP address, and MUST support a unique PSK identity for

 each unique client which is deployed in such a scenario.

 In those use-cases, the RADIUS server should either not use source IP

 address filtering, or should apply source IP filtering rules which

 permit those use-cases. This filtering must therefore be flexible to

 allow all of the above behaviors, and be configurable by

 administrators to match their needs.

 RADIUS servers SHOULD tie PSK identities to a particular permitted IP

 address or permitted network, as doing so will lower the risk if a

 PSK is leaked. RADIUS servers MUST permit multiple clients to share

 one permitted IP address or network.

7. Privacy Considerations

 We make no changes over [RFC6614] and [RFC7360].

8. Security Considerations

 The primary focus of this document is addressing security

 considerations for RADIUS.

9. IANA Considerations

 There are no IANA considerations in this document.

 RFC Editor: This section may be removed before final publication.

10. Acknowledgements

 TBD.

11. Changelog

 * 00 - initial version

DeKok Expires 7 January 2024 [Page 9]

Internet-Draft RADIUS and TLS-PSK July 2023

 * 01 - update examples

12. References

12.1. Normative References

 [BCP14] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,

 "Remote Authentication Dial In User Service (RADIUS)",

 RFC 2865, DOI 10.17487/RFC2865, June 2000,

 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key

 Ciphersuites for Transport Layer Security (TLS)",

 RFC 4279, DOI 10.17487/RFC4279, December 2005,

 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for

 RADIUS/TLS and RADIUS/DTLS Based on the Network Access

 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October

 2015, <https://www.rfc-editor.org/info/rfc7585>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9258] Benjamin, D. and C. A. Wood, "Importing External Pre-

 Shared Keys (PSKs) for TLS 1.3", RFC 9258,

 DOI 10.17487/RFC9258, July 2022,

 <https://www.rfc-editor.org/info/rfc9258>.

12.2. Informative References

 [RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613,

 DOI 10.17487/RFC6613, May 2012,

 <https://www.rfc-editor.org/info/rfc6613>.

DeKok Expires 7 January 2024 [Page 10]

Internet-Draft RADIUS and TLS-PSK July 2023

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,

 "Transport Layer Security (TLS) Encryption for RADIUS",

 RFC 6614, DOI 10.17487/RFC6614, May 2012,

 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a

 Transport Layer for RADIUS", RFC 7360,

 DOI 10.17487/RFC7360, September 2014,

 <https://www.rfc-editor.org/info/rfc7360>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,

 DOI 10.17487/RFC7542, May 2015,

 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC8937] Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,

 and C. Wood, "Randomness Improvements for Security

 Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,

 <https://www.rfc-editor.org/info/rfc8937>.

 [RFC9257] Housley, R., Hoyland, J., Sethi, M., and C. A. Wood,

 "Guidance for External Pre-Shared Key (PSK) Usage in TLS",

 RFC 9257, DOI 10.17487/RFC9257, July 2022,

 <https://www.rfc-editor.org/info/rfc9257>.

 [RFC9325] Sheffer, Y., Saint-Andre, P., and T. Fossati,

 "Recommendations for Secure Use of Transport Layer

 Security (TLS) and Datagram Transport Layer Security

 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November

 2022, <https://www.rfc-editor.org/info/rfc9325>.

Author’s Address

 Alan DeKok

 FreeRADIUS

 Email: aland@freeradius.org

DeKok Expires 7 January 2024 [Page 11]

RADEXT Working Group M. Grayson
Internet-Draft E. Lear
Intended status: Standards Track Cisco Systems
Expires: 11 January 2024 10 July 2023

 RADIUS profile for Bonded Bluetooth Low Energy peripherals
 draft-grayson-radext-rabble-01

Abstract

 This document specifies an extension to the Remote Authentication
 Dial-In User Service (RADIUS) protocol that enables a Bluetooth Low
 Energy (BLE) peripheral device that has previously formed a bonded,
 secure trusted relationship with a first "home" Bluetooth Low Energy
 Central device to operate with a second "visited" Bluetooth Low
 Energy Central device.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Grayson & Lear Expires 11 January 2024 [Page 1]

Internet-Draft RABBLE July 2023

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 1.2. Terminology . 4
 2. BLE Roaming Overview . 5
 3. RADIUS Profile for BLE 8
 3.1. User-Name . 8
 3.2. NAS-IP-Address, NAS-IPv6-Address 9
 3.3. NAS-Port . 9
 3.4. Service-Type . 9
 3.5. State, Class, Proxy-State 9
 3.6. Vendor-Specific . 9
 3.7. Session-Timeout . 9
 3.8. Idle-Timeout . 9
 3.9. Termination-Action 9
 3.10. Called-Station-Id . 9
 3.11. NAS-Identifier . 10
 3.12. NAS-Port-Type . 10
 3.13. Hashed-Password . 10
 3.13.1. Hashed-Password.Hmac-Sha256-128-Key 10
 3.13.2. Hashed-Password.Hmac-Sha256-128-Password 11
 3.13.3. Hashed-Password TLV-Type Usage 11
 3.14. GATT-Service-Profile 11
 3.15. BLE-Keying-Material Attribute 12
 3.15.1. BLE-Keying-Material.Peripheral-IA 13
 3.15.2. BLE-Keying-Material.Central-IA 13
 3.15.3. BLE-Keying-Material.IV 13
 3.15.4. BLE-Keying-Material.KEK-ID 14
 3.15.5. BLE-Keying-Material.KM-Type 14
 3.15.6. BLE-Keying-Material.KM-Data 15
 3.15.7. BLE-Keying-Material TLV-Type Usage 16
 3.16. Forwarding Bluetooth Messages 16
 3.16.1. MQTT-Broker-URI 16
 3.16.2. MQTT-Token . 17
 3.17. RADIUS Accounting Attributes 18
 3.17.1. Acct-Input-Octets and Acct-Output-Octets 18
 3.17.2. Acct-Input-Packets 18
 3.17.3. Acct-Output-Packets 18
 3.17.4. Acct-Terminate-Cause 19
 4. BLE RADIUS Exchange . 19
 5. Table of Attributes . 22
 6. Security Considerations 23
 7. IANA Considerations . 24
 8. References . 24
 8.1. Normative References 25
 8.2. Informative References 25
 Appendix A. MQTT Interworking 26

Grayson & Lear Expires 11 January 2024 [Page 2]

Internet-Draft RABBLE July 2023

 A.1. Establishing a Session to a MQTT-Broker-URI 27
 A.2. MQTT topics . 27
 A.3. MQTT Exchange for Non-Connectable BLE Peripherals 28
 A.4. Initial MQTT Exchange for Connectable BLE Peripherals . . 30
 A.5. MQTT Exchange for Reading a GATT Attribute 31
 A.6. MQTT Exchange for Writing a GATT Attribute 32
 A.7. MQTT Exchange for BLE Peripheral initiated
 Notifications . 33
 A.8. MQTT Exchange for BLE Peripheral initiated Indications . 34
 A.9. MQTT Exchange for dealing with NAS Mobility 36
 A.10. MQTT Exchange for ending a session for a connected BLE
 Peripheral . 37
 Appendix B. History of Changes 38
 Acknowledgements . 39
 Authors’ Addresses . 39

1. Introduction

 This document specifies an extension to the Remote Authentication
 Dial-In User Service (RADIUS) protocol [RFC2865] that enables a
 Bluetooth Low Energy (BLE) peripheral device that has previously
 formed a bonded, secure trusted relationship with a first "home"
 Bluetooth Low Energy Central device to operate with a second
 "visited" Bluetooth Low Energy Central device that is integrated with
 a Network Access Server.

 After being successfully authenticated, a signalling link is
 established that enables Bluetooth messages advertised by the BLE
 Peripheral to be forwarded from the Visited Bluetooth Low Energy
 Central device to a Home MQTT Broker. For connectable BLE
 Peripherals, the signalling link enables the Home MQTT Broker to send
 BLE Requests or Commands to the Visited Bluetooth Low Energy Central
 device that is then responsible for forwarding to the BLE peripheral.

 The extensions allow administrative entities to collaborate to enable
 RADIUS authentication of BLE devices onto their respective networks,
 without requiring the peripheral to perform a re-pairing on the
 visited network.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Grayson & Lear Expires 11 January 2024 [Page 3]

Internet-Draft RABBLE July 2023

1.2. Terminology

 BLE Central Controller:

 The BLE entity that implements the Bluetooth Link Layer and interacts
 with the Bluetooth Radio Hardware.

 BLE Central Host:

 A BLE entity that interacts with the BLE Central Controller to enable
 applications to communicate with peer BLE devices in a standard and
 interoperable way.

 BLE Peripheral Device:

 A BLE device that is configured to repeatedly send advertising
 messages.

 BLE Security Database:

 A database that stores the keying material associated with a bonded
 Bluetooth Connection.

 Bluetooth Low Energy (BLE):

 A wireless technology designed for low power operation and specified
 by the Bluetooth Special Interest Group.

 Bonding:

 A Bluetooth [BLUETOOTH] defined process that creates a relation
 between a Bluetooth Central device and a Bluetooth Peripheral device
 and which generates session keying material that is expected to be
 stored by both Bluetooth devices, to be used for future
 authentication.

 Hash:

 A Bluetooth [BLUETOOTH] specified 24-bit hash value which is
 calculated using a hash function operating on IRK and prand as its
 input parameters. The hash is encoded in the 24 least significant
 bits of a Resolvable Private Address.

 Home:

 A network that has access to the keying material necessary to support
 the pairing of a BLE peripheral and that is able to expose the keys
 generated as part of the BLE bonding process.

Grayson & Lear Expires 11 January 2024 [Page 4]

Internet-Draft RABBLE July 2023

 Identity Address (IA):

 The 48-bit global (public) MAC address of a Bluetooth device.

 Identity Resolving Key (IRK):

 A Bluetooth [BLUETOOTH] specified key used in the Bluetooth privacy
 feature. The Resolvable Private Address hash value is calculated
 using a hash function of prand and the IRK.

 Long-Term key (LTK):

 A symmetric key which is generated during the Bluetooth bonding
 procedure and used to generate the session key used to encrypt a
 communication session between Bluetooth devices.

 prand:

 A 22-bit random number used by a BLE device to generate a Resolvable
 Private Address. The prand is encoded in the 24 most significant
 bits of a Resolvable Private Address.

 Resolvable Private Address (RPA):

 A Bluetooth [BLUETOOTH] specified private 48-bit address that can be
 resolved to a permanent Bluetooth Identity Address through the use of
 an Identity Resolving Key.

 Visited:

 A network that does not have access to the keying material necessary
 to support the pairing of a BLE peripheral, but that is able to
 support the RADIUS authentication of an already bonded BLE
 Peripheral.

2. BLE Roaming Overview

 This section provides an overview of the RADIUS BLE mechanism, which
 is supported by the extensions described in this document. The
 RADIUS profile is intended to be used between a Visited BLE Central
 Host that is enhanced with Network Access Server (NAS) functionality
 which enables it to exchange messages with a RADIUS server.

Grayson & Lear Expires 11 January 2024 [Page 5]

Internet-Draft RABBLE July 2023

 +------------+ +-----------+
 +------------+ | BLE | | BLE |
 | BLE |---| Central#1 |---| Home |
 | Peripheral | | Controller | | Central#1 |
 +------------+ | | | Host |
 +------------+ +-----------+
 | |
 | |
 | +-------------------------+
 | | BLE Security Database |
 | | Peripheral: IA, IRK |
 | | AP: IA, IRK |
 | | Peripheral+AP: LTK |
 | +-------------------------+
 | |
 | Bonded BLE |
 | Peripheral +-------------+
 | moves |RADIUS Server|
 | +-------------+
 \|/ |
 - |
 +------------+ +-----------+
 +------------+ | BLE | | NAS/BLE |
 | BLE |---| Central#2 |---| Visited |
 | Peripheral | | Controller | | Central#2 |
 +------------+ | | | Host |
 +------------+ +-----------+

 Figure 1: BLE RADIUS Authentication Overview

 A BLE Peripheral is paired and bonded with the BLE Home Central Host.
 The pairing requires the BLE Home Central Host to have access to the
 keying material necessary to support the pairing of a BLE peripheral,
 e.g., by using techniques described in
 [I-D.shahzad-scim-device-model].

 The bonding process generates new session specific keying material
 that MUST be exposed by the BLE Home Central Host to a RADIUS server,
 e.g., stored in a BLE Security Database which is accessible by the
 RADIUS server. The keying material MUST include the peripheral’s IA
 and IRK, indicating that the BLE Peripheral has enabled the Bluetooth
 privacy feature and is operating with a Resolvable Private Address
 (RPA).

 The BLE Peripheral then moves into the coverage of a second BLE
 Central device which comprises a second BLE Central Controller and a
 second BLE (Visited) Central Host which has been enhanced with
 Network Access Server (NAS) functionality. The BLE Peripheral MUST

Grayson & Lear Expires 11 January 2024 [Page 6]

Internet-Draft RABBLE July 2023

 be configured to send low duty cycle advertising events using the BLE
 Peripheral’s RPA that are detected by the NAS/BLE Visited Central
 Host. The NAS/BLE Visited Central Host receives the Advertisement(s)
 sent by the BLE Peripheral and MAY use the presence and/or contents
 of specific Advertising Elements to decide whether to trigger a
 RADIUS exchange with a RADIUS Server which has access to the keying
 material exposed by the BLE Home Central Host.

 The successful authentication of the BLE Peripheral onto the BLE
 Visited Central Host MUST include the signalling of the keying
 material exposed by the BLE Home Central Host to enable the re-
 establishment of the secured communication session with the BLE
 Peripheral. Bluetooth advertisements received from an authenticated
 BLE Peripheral are forwarded between the BLE Visited Central Host and
 a Home MQTT message broker.

 If the BLE Peripheral is connectable, the Home MQTT Broker MAY send
 BLE Requests or Commands to the Visited Bluetooth Low Energy Central
 device that is then responsible for forwarding to the authenticated
 BLE peripheral. The Home MQTT Broker MAY be configured to forward
 the messages to/from a Bluetooth Application associated with the
 authenticated BLE Peripheral, either directly, or via the first Home
 Bluetooth Low Energy Central device.

Grayson & Lear Expires 11 January 2024 [Page 7]

Internet-Draft RABBLE July 2023

 +-----------+
 | BLE |
 +--------|Application|
 | +-----------+
 | |
 | |
 | +-----------+
 Optional direct | | BLE Home |
 signalling between | | Central#1 |
 broker and BLE | | Host |
 application | +-----------+
 | |
 | |
 | +-----------+
 | | Home |
 +--------| MQTT |
 | Broker |
 +-----------+
 | -
 | /|\
 MQTT Publish | |
 application | | MQTT Publish
 to peripheral | | peripheral to
 messages | | application
 | | messages
 \|/ |
 - |
 +------------+ +-----------+
 +------------+ | BLE | | NAS/BLE |
 | BLE |---| Central#2 |----| Visited |
 | Peripheral | | Controller | | Central#2 |
 +------------+ | | | Host |
 +------------+ +-----------+

 Figure 2: BLE Message Forwarding Overview

3. RADIUS Profile for BLE

3.1. User-Name

 Contains a 6 character ASCII upper-case string corresponding to the
 hexadecimal encoding of the 22-bit prand value derived from the
 Bluetooth Resolvable Private Address, where the first string
 character represents the most significant hexadecimal digit, i.e., a
 prand value of 0x035fb2 is encoded as "035FB2".

Grayson & Lear Expires 11 January 2024 [Page 8]

Internet-Draft RABBLE July 2023

3.2. NAS-IP-Address, NAS-IPv6-Address

 The NAS-IP-Address contains the IPv4 address of the BLE Central Host
 acting as an Authenticator, and the NAS-IPv6-Address contains the
 IPv6 address.

3.3. NAS-Port

 For use with BLE the NAS-Port will contain the port number of the BLE
 Central Host, if this is available.

3.4. Service-Type

 For use with BLE, the Service-Type of Authenticate Only (8) is used.

3.5. State, Class, Proxy-State

 These attributes are used for the same purposes as described in
 [RFC2865].

3.6. Vendor-Specific

 Vendor-specific attributes are used for the same purposes as
 described in [RFC2865].

3.7. Session-Timeout

 When sent in an Access-Accept without a Termination-Action attribute
 or with a Termination-Action attribute set to Default, the Session-
 Timeout attribute specifies the maximum number of seconds of service
 provided prior to session termination.

3.8. Idle-Timeout

 The Idle-Timeout attribute indicates the maximum time that the BLE
 wireless device may remain idle.

3.9. Termination-Action

 This attribute indicates what action should be taken when the service
 is completed. The value Default (0) indicates that the session
 should terminate.

3.10. Called-Station-Id

 This attribute is used to store the public Identity Address (BD_ADDR)
 of the Bluetooth Access Point in ASCII formatted as specified in
 section 3.21 of [RFC3580].

Grayson & Lear Expires 11 January 2024 [Page 9]

Internet-Draft RABBLE July 2023

3.11. NAS-Identifier

 This attribute contains a string identifying the BLE Central Host
 originating the Access-Request.

3.12. NAS-Port-Type

 TBA1: "Wireless - Bluetooth Low Energy"

3.13. Hashed-Password

 Description

 The Hashed-Password (TBA2) Attribute allows a RADIUS client to
 include a key and hashed password.

 Type

 TBA2

 Length

 Variable

 Data Type

 TLV

 Value

 The TLV data type is specified in section 3.13 of [RFC8044] and
 its value is determined by the TLV-Type field. Two TLV-Types are
 defined for use with the Hashed-Password Attribute.

3.13.1. Hashed-Password.Hmac-Sha256-128-Key

 TLV-Type

 0 (Hashed-Password.Hmac-Sha256-128-Key)

 TLV-Value:

 A string data type, as defined in section 3.1 of [RFC8044],
 encoding a sequence of octets representing a random 256-bit key.
 The value SHOULD satisfy the requirements of [RFC4086]. A new key
 value MUST be used whenever the value of Hashed-Password.Hmac-
 Sha256-128-Password is changed. The key MUST NOT be changed when
 a message is being retransmitted.

Grayson & Lear Expires 11 January 2024 [Page 10]

Internet-Draft RABBLE July 2023

 TLV-Length:

 34 octets

3.13.2. Hashed-Password.Hmac-Sha256-128-Password

 TLV-Type

 1 (Hashed-Password.Hmac-Sha256-128-Password)

 TLV-Value:

 A string data type encoding a sequence of octets representing the
 first 128-bit (truncated) output of the HMAC-SHA-256-128 algorithm
 [RFC4868] where the input data corresponds to the 24-bit hash
 recovered from the Bluetooth Resolvable Private Address and the
 key corresponds to the value of the TLV-Type Hashed-Password.Hmac-
 Sha256-128-Key.

 TLV-Length:

 18 octets

3.13.3. Hashed-Password TLV-Type Usage

 Two instances of the Hashed-Password Attribute MUST be included in an
 Access-Request packet. One instance MUST correspond to the TLV-Type
 0 (Hashed-Password.Hmac-Sha256-128-Key) and one instance MUST
 correspond to the TLV-Type 1 (Hashed-Password.Hmac-
 Sha256-128-Password).

3.14. GATT-Service-Profile

 Description

 The GATT-Service-Profile (TBA3) Attribute allows a RADIUS client to
 include one or more GATT Service Profiles which are advertised by the
 BLE Peripheral.

 Zero or more GATT-Service-Profile Attributes MAY be included in an
 Access-Request packet.

 A summary of the GATT-Service-Profile Attribute format is shown
 below. The fields are transmitted from left to right.

Grayson & Lear Expires 11 January 2024 [Page 11]

Internet-Draft RABBLE July 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Value
 +-+
 Value (cont) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: Encoding GATT-Service-Profile Attribute

 Type

 TBA3

 Length

 6 octet

 Data Type

 Integer

 Value

 The field is 4 octets, containing a 32-bit unsigned integer that
 represents a GATT Service Profile.

3.15. BLE-Keying-Material Attribute

 Description

 The BLE-Keying-Material (TBA3) Attribute allows the transfer of
 Identity Address(es) and cryptographic keying material from a RADIUS
 Server to the BLE Visited Central Host.

 Type

 TBA3

 Length

 Variable

 Data Type

 TLV

 Value

Grayson & Lear Expires 11 January 2024 [Page 12]

Internet-Draft RABBLE July 2023

 The TLV data type is specified in section 3.13 of [RFC8044] and
 its value is determined by the TLV-Type field. Five TLV-Types are
 defined for use with the BLE-Keying-Material Attribute.

3.15.1. BLE-Keying-Material.Peripheral-IA

 TLV-Type

 0 (BLE-Keying-Material.Peripheral-IA)

 TLV-Value:

 A string data type encoding a sequence of octets representing the
 Peripheral’s 6-octet Identity Address.

 TLV-Length:

 8 octets

3.15.2. BLE-Keying-Material.Central-IA

 TLV-Type

 1 (BLE-Keying-Material.Central-IA)

 TLV-Value:

 A string data type encoding a sequence of octets representing the
 Central’s 6-octet Identity Address.

 TLV-Length:

 8 octets

3.15.3. BLE-Keying-Material.IV

 TLV-Type

 2 (BLE-Keying-Material.IV)

 TLV-Value:

 A string data type encoding a sequence of octets representing an
 8-octet initial value (IV). The value MUST be as specified in
 section 2.2.3 of [RFC3394].

 TLV-Length:

Grayson & Lear Expires 11 January 2024 [Page 13]

Internet-Draft RABBLE July 2023

 10 octets

3.15.4. BLE-Keying-Material.KEK-ID

 TLV-Type

 3 (BLE-Keying-Material.KEK-ID)

 TLV-Value:

 A string data type encoding a sequence of octets representing the
 identity of a Key Encryption Key (KEK). The combination of the
 BLE-Keying-Material.KEK-ID value and the RADIUS client and server
 IP addresses together uniquely identify a key shared between the
 RADIUS client and server. As a result, the BLE-Keying-
 Material.KEK-ID need not be globally unique. The BLE-Keying-
 Material.KEK-ID MUST refer to an encryption key for use with the
 AES Key Wrap with 128-bit KEK algorithm [RFC3394].
 This key is used to protect the contents of the BLE-Keying-
 Material.KM-Data TLV (see Section 3.15.6).

 The BLE-Keying-Material.KEK-ID is a constant that is configured
 through an out-of-band mechanism. The same value is configured on
 both the RADIUS client and server. If no BLE-Keying-Material.KEK-
 ID TLV-Type is signalled, then the field is set to 0. If only a
 single KEK is configured for use between a given RADIUS client and
 server, then 0 can be used as the default value.

 TLV-Length:

 18 octets

3.15.5. BLE-Keying-Material.KM-Type

 TLV-Type:

 4 (BLE-Keying-Material.KM-Type)

 TLV-Value:

 An integer data type identifying the type of keying material
 included in the BLE-Keying-Material.KM-Data TLV.
 This allows for multiple keys for different purposes to be present
 in the same attribute. This document defines three values for the
 The BLE-Keying-Material.KM-Type

Grayson & Lear Expires 11 January 2024 [Page 14]

Internet-Draft RABBLE July 2023

 0 The BLE-Keying-Material.KM-Data TLV contains the
 16-octet Peripheral IRK encrypted using the AES key wrapping
 process with 128-bit KEK defined in [RFC3394]. The
 Peripheral IRK is passed as input P1 and P2, with the
 plaintext P1 corresponding to octet 0 through to octet 7 of
 the IRK and plaintext P2 corresponding to octet 8 through to
 octet 15 of the IRK.

 1 The BLE-Keying-Material.KM-Data TLV contains the
 encrypted 16-octet Peripheral IRK and the 16-octet LTK
 generated during an LE Secure Connection bonding procedure
 using the AES key wrapping process with 128-bit KEK defined
 in [RFC3394]. The Peripheral IRK is passed as the plaintext
 input P1 and P2, with P1 corresponding to octet 0 through to
 octet 7 of the IRK and P2 corresponding to octet 8 through
 to octet 15 of the IRK. The LTK is passed as the plaintext
 input P3 and P4, with P3 corresponding to octet 0 through to
 octet 7 of the LTK and P4 corresponding to octet 8 through
 to octet 15 of the LTK.

 2 The BLE-Keying-Material.KM-Data TLV contains the
 encrypted 16-octet Peripheral IRK, the 16-octet LTK
 generated during an LE Secure Connection bonding procedure
 and the 16-octet Central IRK using the AES key wrapping
 process with 128-bit KEK defined in [RFC3394]. The
 Peripheral IRK is passed as the plaintext input P1 and P2,
 with P1 corresponding to octet 0 through to octet 7 of the
 IRK and P2 corresponding to octet 8 through to octet 15 of
 the IRK. The LTK is passed as the plaintext input P3 and
 P4, with P3 corresponding to octet 0 through to octet 7 of
 the LTK and P4 corresponding to octet 8 through to octet 15
 of the LTK. The Central IRK is passed as plaintext input P5
 and P6, with P5 corresponding to octet 0 through to octet 7
 of the Central IRK and P6 corresponding to octet 8 through
 to octet 15 of the Central IRK.

 TLV-Length:

 6 octets

3.15.6. BLE-Keying-Material.KM-Data

 TLV-Type:

 5 (BLE-Keying-Material.KM-Data)

 TLV-Value:

Grayson & Lear Expires 11 January 2024 [Page 15]

Internet-Draft RABBLE July 2023

 A string data type encoding a sequence of octets representing the
 actual encrypted keying material as identified using the BLE-
 Keying-Material.KM-Type.

 TLV-Length:

 Variable

3.15.7. BLE-Keying-Material TLV-Type Usage

 At least four instances of the BLE-Keying-Material Attribute MUST be
 included in an Access-Accept packet, that include the following TLV-
 Types:

 * TLV-Type 0 (BLE-Keying-Material.Peripheral-IA)

 * TLV-Type 2 (BLE-Keying-Material.IV)

 * TLV-Type 4 (BLE-Keying-Material.KM-Type)

 * TLV-Type 5 (BLE-Keying-Material.KM-Data)

 If a KEK is configured, then in addition the Access-Accept packet
 MUST include the BLE-Keying-Material Attribute with an instance of
 TLV-Type 3 (BLE-Keying-Material.KEK-ID). When not present, the NAS
 MUST use a default value of 0 for the KEK-ID.

 If the BLE Peripheral is connectable and the RADIUS Server authorizes
 connections, then in addition the Access-Accept message MUST include
 the BLE-Keying-Material Attribute with an instance of TLV-Type 1
 (BLE-Keying-Material.Central-IA).

3.16. Forwarding Bluetooth Messages

 RADIUS attributes described in this section are used to exchange
 information to allow non-IP Bluetooth messages to be transferred
 between the BLE Visited Central Host and a Home MQTT Broker.

3.16.1. MQTT-Broker-URI

 Description

 The MQTT-Broker-URI (TBA5) Attribute allows a RADIUS server to
 specify the URI of the MQTT Broker. A single MQTT-Broker-URI
 Attributes MAY be included in an Access-Accept packet.

Grayson & Lear Expires 11 January 2024 [Page 16]

Internet-Draft RABBLE July 2023

 If the RADIUS server operates with NAS/BLE Visited Hosts that are
 deployed behind firewalls or NAT gateways, MQTT Messages SHOULD be
 transported using WebSocket [RFC6455] as a network transport as
 defined in MQTT [MQTT] and the the attribute SHOULD specify the URI
 of a WebSocket server that supports the ’mqtt’ Sec-WebSocket-
 Protocol.

 A summary of the MQTT-Broker-URI Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Text...
 +-+

 Figure 4: Encoding MQTT-Broker-URI Attribute

 Type

 TBA5

 Length

 >=3 octet

 Data Type

 Text

 Value

 The text field encodes a URI where the MQTT service can be
 accessed, e.g., "wss://broker.example.com:443".

3.16.2. MQTT-Token

 Description

 The MQTT-Token (TBA6) Attribute allows a RADIUS server to signal a
 token for use by an MQTT client in an MQTT CONNECT packet [MQTT].
 The token can be used by an MQTT Broker to associate an MQTT
 Connection from an MQTT Client with a Network Access Server.

 A MQTT-Token Attributes MAY be included in an Access-Accept packet.

 A summary of the MQTT-Token Attribute format is shown below. The
 fields are transmitted from left to right.

Grayson & Lear Expires 11 January 2024 [Page 17]

Internet-Draft RABBLE July 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Text...
 +-+

 Figure 5: Encoding MQTT-Token Attribute

 Type

 TBA6

 Length

 >=3 octet

 Data Type

 Text

 Value

 The text field contains a token for use with an MQTT CONNECT
 packet.

3.17. RADIUS Accounting Attributes

 With a few exceptions, the RADIUS accounting attributes defined in
 [RFC2866] have the same meaning within BLE sessions as they do in
 dialup sessions and therefore no additional commentary is needed.

3.17.1. Acct-Input-Octets and Acct-Output-Octets

 These attributes are not not used by BLE Authenticators.

3.17.2. Acct-Input-Packets

 This attribute is used to indicate how many MQTT messages that
 include the Peripheral Identity Address signalled in
 the BLE-Keying-Material attribute have been sent by the BLE Central
 Host.

3.17.3. Acct-Output-Packets

 This attribute is used to indicate how many MQTT messages that
 include the Peripheral Identity Address signalled in
 the BLE-Keying-Material attribute have been received by the BLE
 Central Host.

Grayson & Lear Expires 11 January 2024 [Page 18]

Internet-Draft RABBLE July 2023

3.17.4. Acct-Terminate-Cause

 This attribute indicates how the session was terminated, as described
 in [RFC2866]. When the idle-timeout attribute is used by the NAS/BLE
 Visited Host to terminate a RADIUS Accounting session, it MUST set
 the Acct-Terminate-Cause set to Lost Carrier (2).

4. BLE RADIUS Exchange

 The BLE Peripheral uses techniques defined in Bluetooth Core
 Specifications [BLUETOOTH] to establish a bonded, secure, trusted
 relationship with a BLE Home Central device in the network. The
 bonding procedure generates session specific keying material. The
 BLE Peripheral sends low duty cycle advertising events.

 The BLE Peripheral moves into coverage of a second BLE Central device
 that is integrated with a NAS.

 The BLE Peripheral sends Advertisements using its Resolvable Public
 Address. The contents of the Advertisements are signalled to a BLE
 Visited Central Host associated with the second BLE Central device.
 The received Advertisements sent by the BLE Peripheral are used by
 the BLE Visited Central Host to decide whether to trigger a RADIUS
 exchange, e.g., using the presence and/or contents of specific
 Advertising Elements.

 The NAS associated with the BLE Visited Central Host is configured
 with the identity of the RADIUS server. The NAS/BLE Visited Host MAY
 be statically configured with the identity of a RADIUS Server.
 Alternatively, the NAS/BLE Visited Host MAY use the contents of an
 Advertisement Element received from the BLE Peripheral to derive an
 FQDN of the RADIUS sever and use RFC 7585 [RFC7585] to dynamically
 resolve the address of the RADIUS server. For example, the
 peripheral can use the Bluetooth URI data type Advertisement Element
 (0x24) to encode the Bluetooth defined ’empty scheme’ name tag
 together with a hostname that identifies the network which operates
 the BLE Home Central Host associated with the peripheral.
 Alternatively, a federation of operators of BLE Visited Centrals and
 RADIUS Servers can define the use of the Bluetooth defined
 Manufacturer Specific Advertisement Data Element (0xFF) together with
 a Company Identifier that identifies the federation to signal a
 federation defined sub-type that encodes information that enables the
 BLE Visited Central Host to derive an FQDN of the RADIUS sever
 associated with the advertising peripheral.

Grayson & Lear Expires 11 January 2024 [Page 19]

Internet-Draft RABBLE July 2023

 The NAS/BLE Host generates a RADIUS Access-Request message using the
 prand from the RPA as the User-Name attribute and the hash from the
 RPA to generate the TLV-Type Hashed-Password.Hmac-
 Sha256-128-Password. The NAS-Port-Type is set to "Wireless -
 Bluetooth Low Energy".

 On receiving the RADIUS Access-Request message, the RADIUS Server
 uses the keying material exposed by the BLE Home Central Host and
 attempts to resolve the User-Name and the TLV-Type Hashed-
 Password.Hmac-Sha256-128-Password to a known BLE Identity Address
 (IA). If the RADIUS Server cannot resolve the User-Name and TLV-Type
 Hashed-Password.Hmac-Sha256-128-Password to a known BLE Identity
 Address, the RADIUS server MUST reject the Access-Request.

 If the RADIUS Server resolves the User-Name and TLV-Type Hashed-
 Password.Hmac-Sha256-128-Password to a known BLE Identity Address,
 and the BLE Identity Address is authorized to access via the BLE
 Visited Host, the RADIUS server recovers the session specific keying
 material exposed by the BLE Home Central Host.

 If the BLE Peripheral is not connectable or connections are not
 authorized, the RADIUS server signals the Peripheral Identity Address
 in the TLV-type BLE-Keying-Material.Peripheral-IA, sets the value of
 TLV-Type BLE-Keying-Material.KM-Type to 0 and encodes the Peripheral
 Identity Resolving Key in the TLV-Type BLE-Keying-Material.KM-Data.
 If the BLE Peripheral is connectable and connections are authorized
 via the BLE Visited Host, the RADIUS server additionally includes the
 Central Identity Address in the TLV-type BLE-Keying-Material.Central-
 IA, sets the value of TLV-Type BLE-Keying-Material.KM-Type to 1 and
 encodes the Peripheral Identity Resolving Key and the 16-octet Long
 Term Key in the TLV-Type BLE-Keying-Material.KM-Data. Finally, if
 the BLE Peripheral is connectable and connections are authorized via
 the BLE Visited Host and the security database indicates that the BLE
 Home Central Host operates using Bluetooth privacy, then the RADIUS
 server sets the value of TLV-Type BLE-Keying-Material.KM-Type to 2
 and encodes the Peripheral Identity Resolving Key, the 16-octet Long
 Term Key and the 16-octet Central Identity Resolving Key in the TLV-
 Type BLE-Keying-Material.KM-Data.

 The RADIUS Server SHOULD include the MQTT-Broker-URI attribute and
 MAY include the MQTT-Token attribute by which an MQTT client
 associated with the BLE Visited Host can establish an MQTT connection
 with a Home MQTT Broker for forwarding messages received to/from the
 BLE peripheral.

 On receiving the Access-Accept, the NAS/BLE Visited Host recovers the
 keying material, including the BLE Peripheral’s Identity Address and
 then establishes an MQTT Connection with the Home MQTT Broker. The

Grayson & Lear Expires 11 January 2024 [Page 20]

Internet-Draft RABBLE July 2023

 NAS/BLE Visited Host SHOULD include its NAS-Id in the User Name field
 of the MQTT CONNECT message and MAY include an Operator Name, if for
 example the NAS has been configured with the operator-name attribute
 (#126) as specified in section 4.1 of RFC5580 [RFC5580].

 If the advertisement that triggered the RADIUS exchange corresponds
 to an ADV_IND then the NAS/BLE Visited Host can subsequently
 establish a secure connection with the BLE Peripheral.

 NAS/BLE
 Visited Home Home
 BLE Central#2 RADIUS MQTT
 Peripheral Host Server Broker
 | | | |
 | | | |
 |--BLE----------->| | |
 | Advertisement | | |
 | | | |
 |<--------------->| | |
 | Active Scan |--Access-Request------->| |
 | | User-Name=prand | |
 | | Hashed-Password.Hmac-Sha256-128-Password=hash
 | | Hashed-Password.Hmac-Sha256-128-Key=key
 | | NAS-Port-Type=BLE | |
 | | GATT-Service-Profile | |
 | | | |
 | |<-Access-Accept---------| |
 | | Idle-Timeout | |
 | | BLE-Keying-Material | |
 | | MQTT-Broker-URI | |
 | | MQTT-Token | |
 | | | |
 | |--Accounting-Request--->| |
 | | Acct-Status-Type=Start | |
 | | Session-Id | |
 | | | |
 | |--MQTT CONNECT------------------------>|
 | | User Name=[operator_name:]nas-id |
 | | Password=MQTT Token | |
 | | | |
 | |--MQTT PUBLISH------------------------>|
 | | Advertisement(s) | |
 | | | |
 +---+
 | Further MQTT and associated BLE Exchanges |
 +---+
 | | | |
 |--BLE ---------->|--+ Resolve to | |

Grayson & Lear Expires 11 January 2024 [Page 21]

Internet-Draft RABBLE July 2023

 | Advertisement | | same Identity | |
 | |<-+ Address | |
 | +--| | |
 | | | | |
 | +->|Idle Timer Expiry | |
 | | | |
 | |--Accounting-Request--->| |
 | | Acct-Status-Type=Stop | |
 | | Session-Id | |

 Figure 6: BLE RADIUS Exchange

5. Table of Attributes

 The following table provides a guide to which of the attribute
 defined may be found in which kinds of packets, and in what quantity.

 +=========+========+========+===========+=========+====+===========+
 | Request | Accept | Reject | Challenge | Acct- |# | Attribute |
 | | | | | Request | | |
 +=========+========+========+===========+=========+====+===========+
 | 1+ | 0 | 0 | 0 | 0 |TBA2| Hashed- |
 | | | | | | | Password |
 +---------+--------+--------+-----------+---------+----+-----------+
0+	0	0	0	0	TBA3	GATT-
						Service-
						Profile
+---------+--------+--------+-----------+---------+----+-----------+						
0	1+	0	0	0	TBA4	BLE-
						Keying-
						Material
+---------+--------+--------+-----------+---------+----+-----------+						
0	0-1	0	0	0	TBA5	MQTT-
						Broker-
						URI
+---------+--------+--------+-----------+---------+----+-----------+						
0	0-1	0	0	0	TBA6	MQTT-
						Token
 +---------+--------+--------+-----------+---------+----+-----------+

 Table 1: Table of Attributes

 The following table defines the meaning of the above table entries.

Grayson & Lear Expires 11 January 2024 [Page 22]

Internet-Draft RABBLE July 2023

 +=======+===+
 | Entry | Meaning |
 +=======+===+
 | 0 | This attribute MUST NOT be present in packet. |
 +-------+---+
 | 0+ | Zero or more instances of this attribute MAY |
 | | be present in packet. |
 +-------+---+
 | 0-1 | Zero or one instance of this attribute MAY be |
 | | present in packet. |
 +-------+---+
 | 1 | One instance of this attribute MUST be |
 | | present in packet. |
 +-------+---+

 Table 2: Table of Attributes Entry Definition

6. Security Considerations

 Use of this RADIUS profile for BLE can be between a NAS/BLE Visited
 Host and a RADIUS Server inside a secure network, or between a NAS/
 BLE Visited Host and RADIUS server operated in different
 administrative domains which are connected over the Internet. All
 implementations MUST follow
 [I-D.draft-dekok-radext-deprecating-radius].

 The RADIUS profile for BLE devices is designed to operate when BLE
 devices operate their physical links with BLE Secure Connections
 [BLUETOOTH]. This approach uses a secure exchange of data over the
 Bluetooth connection, together with Elliptic Curve Diffie-Hellman
 (ECDH) public key cryptography, to create the session specific
 symmetric Long Term Key (LTK) which is then exchanged using the BLE-
 Keying-Material attribute in the RADIUS Access-Accept message.

 Bluetooth [BLUETOOTH] specifies how an IRK can be generated from an
 Identity Root (IR) key. Removing the Bluetooth bond in a device will
 typically trigger the generation of a new IRK key for the device.

 The RADIUS profile for BLE devices is designed to operate when BLE
 devices are configured to operate with Bluetooth Privacy Mode enabled
 [BLUETOOTH]. The BLE device defines the policy of how often it
 should generate a new Resolvable Private Address. This can be
 configured to be between every second and every hour, with a default
 value of every 15 minutes [BLUETOOTH]. This mode mitigates risks
 associated with a malicious third-party scanning for and collecting
 Bluetooth addresses over time and using such to build a picture of
 the movements of BLE devices and, by inference, the human users of
 those devices.

Grayson & Lear Expires 11 January 2024 [Page 23]

Internet-Draft RABBLE July 2023

 The Home MQTT broker can observe the Bluetooth messages exchanged
 with the BLE Peripheral. The Bluetooth GATT attributes SHOULD be
 cryptographically protected at the application-layer. The Home MQTT
 Broker MUST be configured with access control lists so that a NAS
 cannot subscribe to a topic that is intended for another NAS.

 The WebSocket connection MUST operate using a WebSocket Secure
 connection. If the entropy of the MQTT-Token is known to be low, the
 WebSocket Secure TLS connection SHOULD be secured with certificate-
 based mutual TLS.

7. IANA Considerations

 This document defines a new value of TBA1 for RADIUS Attribute Type
 #61 (NAS-Port-Type) defined in https://www.iana.org/assignments/
 radius-types/radius-types.xhtml#radius-types-13

 +=======+===================================+==============+
 | Value | Description | Reference |
 +=======+===================================+==============+
 | TBA1 | "Wireless - Bluetooth Low Energy" | Section 3.12 |
 +-------+-----------------------------------+--------------+

 Table 3: New NAS-Port-Type value defined in this document

 This document defines new RADIUS attributes, (see section Section 3),
 and assigns values of TBA2, TBA3, TBA4, TBA5 and TBA6 from the RADIUS
 Attribute Type space https://www.iana.org/assignments/radius-types.

 +======+======================+================+
 | Tag | Attribute | Reference |
 +======+======================+================+
 | TBA2 | Hashed-Password | Section 3.13 |
 +------+----------------------+----------------+
 | TBA3 | GATT-Service-Profile | Section 3.14 |
 +------+----------------------+----------------+
 | TBA4 | BLE-Keying-Material | Section 3.15 |
 +------+----------------------+----------------+
 | TBA5 | MQTT-Broker-URI | Section 3.16.1 |
 +------+----------------------+----------------+
 | TBA6 | MQTT-Token | Section 3.16.2 |
 +------+----------------------+----------------+

 Table 4: New RADIUS attributes defined in
 this document

8. References

Grayson & Lear Expires 11 January 2024 [Page 24]

Internet-Draft RABBLE July 2023

8.1. Normative References

 [I-D.draft-dekok-radext-deprecating-radius]
 DeKok, A., "Deprecating RADIUS/UDP and RADIUS/TCP", Work
 in Progress, Internet-Draft, draft-dekok-radext-
 deprecating-radius-01, 3 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-dekok-radext-
 deprecating-radius-01>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868,
 DOI 10.17487/RFC4868, May 2007,
 <https://www.rfc-editor.org/info/rfc4868>.

 [RFC5580] Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A., and
 B. Aboba, "Carrying Location Objects in RADIUS and
 Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,
 <https://www.rfc-editor.org/info/rfc5580>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC8044] DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <https://www.rfc-editor.org/info/rfc8044>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Grayson & Lear Expires 11 January 2024 [Page 25]

Internet-Draft RABBLE July 2023

 [BLUETOOTH]
 Bluetooth Core Specification Working Group, "BLUETOOTH
 CORE SPECIFICATION v5.3", 13 July 2021,
 <https://www.bluetooth.com/specifications/bluetooth-core-
 specification/>.

 [I-D.shahzad-scim-device-model]
 Shahzad, M., Hassan, H., and E. Lear, "Device Schema
 Extensions to the SCIM model", Work in Progress, Internet-
 Draft, draft-shahzad-scim-device-model-05, 2 June 2023,
 <https://datatracker.ietf.org/doc/html/draft-shahzad-scim-
 device-model-05>.

 [MQTT] OASIS, "MQTT Version 5.0", 7 March 2019,
 <https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
 v5.0.html>.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <https://www.rfc-editor.org/info/rfc2866>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580,
 DOI 10.17487/RFC3580, September 2003,
 <https://www.rfc-editor.org/info/rfc3580>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for
 RADIUS/TLS and RADIUS/DTLS Based on the Network Access
 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October
 2015, <https://www.rfc-editor.org/info/rfc7585>.

Appendix A. MQTT Interworking

 This section describes how a NAS/BLE Visited Host supporting the BLE
 RADIUS profile can interwork with a Home MQTT Message Broker in order
 to use MQTT topics to deliver Bluetooth messages to/from a BLE
 Peripheral. It is intended to move this material to another document
 - but is included here to describe, at a high level, the MQTT
 interworking established by the RADIUS exchange.

Grayson & Lear Expires 11 January 2024 [Page 26]

Internet-Draft RABBLE July 2023

A.1. Establishing a Session to a MQTT-Broker-URI

 If the NAS/BLE Visited Host is signalled a MQTT-Broker-URI in an
 Access-Accept with which it does not have an established MQTT
 connection, then it MUST establish an MQTT connection. It the NAS/
 BLE Visited Host is behind a firewall or NAT gateway it MUST use
 WebSocket transport for the MQTT connection. The user name in the
 MQTT CONNECT message SHOULD include the NAS-ID and MAY include the
 name of the operator of the NAS/BLE Visited Host.

 NAS/BLE
 Visited Home Home
 BLE Central#2 RADIUS MQTT
 Peripheral Host Server Broker
 | | | |
 | | | |
 | |--Accounting-Request--->| |
 | | Acct-Status-Type=Start | |
 | | Session-Id | |
 | | Chargeable-User-Id | |
 | | | |
 | |--HTTP GET---------------------------->|
 | | Upgrade:websocket | |
 | | Connection:upgrade | |
 | | Sec-WebSocket-Protocol=mqtt |
 | | | |
 | |<-HTTP 101--------------|--------------|
 | | Upgrade:websocket | |
 | | Connection:upgrade | |
 | | Sec-WebSocket-Protocol=mqtt |
 | | | |
 | |--MQTT CONNECT------------------------>|
 | | User Name=[operator_name:]nas-id |
 | | Password=MQTT Token | |
 | | | |
 | |<-MQTT CONNACK-------------------------|
 | | | |
 | | | |

 Figure 7: Establishing an MQTT connection to a Home Broker using
 WebSocket transport

A.2. MQTT topics

 The following topic is used by the MQTT client of the BLE Visited
 Host to signal active and passive scan advertisements received from
 BLE Peripherals to the home MQTT Broker.

Grayson & Lear Expires 11 January 2024 [Page 27]

Internet-Draft RABBLE July 2023

 * {peripheral_identity_address}/advertisement/gatt-ind

 If the BLE Peripheral is connectable, the MQTT client of the BLE
 Visited Host SHOULD subscribe to the following message topics to be
 able to receive GATT requests from the Home MQTT Broker:

 1. {peripheral_identity_address}/connect/gatt-req : when publishing
 a message on the {peripheral_identity_address}/connect/gatt-req
 topic, an MQTT client SHOULD include the following as a response
 topic {peripheral_identity_address}/connect/gatt-res.

 2. {peripheral_identity_address}/disconnect/gatt-req : when
 publishing a message on the
 {peripheral_identity_address}/disconnect/gatt-req topic, an MQTT
 client SHOULD include the following as a response topic
 {peripheral_identity_address}/disconnect/gatt-res.

 3. {peripheral_identity_address}/read/gatt-req : when publishing a
 message on the {peripheral_identity_address}/read/gatt-req topic,
 an MQTT client SHOULD include the following as a response topic
 {peripheral_identity_address}/read/gatt-res.

 4. {peripheral_identity_address}/write/gatt-req : when publishing a
 message on the {peripheral_identity_address}/write/gatt-req
 topic, an MQTT client SHOULD include the following as a response
 topic {peripheral_identity_address}/write/gatt-res.

 5. {peripheral_identity_address}/service-discovery/gatt-req : when
 publishing a message on the
 {peripheral_identity_address}/service-discovery/gatt-req topic,
 an MQTT client SHOULD include the following as a response topic
 {peripheral_identity_address}/service-discovery/gatt-res.

 6. {peripheral_identity_address}/notification/gatt-ind-res : when
 sending indications, the MQTT client of the NAS/BLE Visited Host
 SHOULD publish the message using the
 topic:{peripheral_identity_address}/notification/gatt-ind-req
 indication and SHOULD include the following as a response topic
 {peripheral_identity_address}/notification/gatt-ind-res.

A.3. MQTT Exchange for Non-Connectable BLE Peripherals

 If the BLE Peripheral indicates in its scan that it is not
 connectable, the NAS/BLE Visited Host is responsible for publishing
 the received advertisements received from the authenticated BLE
 Peripheral.

Grayson & Lear Expires 11 January 2024 [Page 28]

Internet-Draft RABBLE July 2023

 On idle-timeout the NAS/BLE Visited Host MUST send an Accounting-
 Request message with Acct-Status-Type set to STOP and Acct-Terminate-
 Cause set to Lost Carrier (2).

 NAS/BLE
 Visited Home
 BLE Central#2 RADIUS MQTT
 Peripheral Host Server Broker
 | | | |
 |--BLE ---------->| | |
 | Advertisement | | |
 +---------------------+ | |
 | | Active Scan | | | |
 | |<-BLE SCAN_REQ---| | | |
 | | | | | |
 | |--BLE SCAN_RSP-->| | | |
 +---------------------+ | |
 | |--MQTT PUBLISH------------------------>| | |
 | | topic:{peripheral_identity_address}/ |
 | | advertisement/gatt-ind | |
 | | msg:Advertising Report | |
 | | | |
 |--BLE ---------->| | |
 | Advertisement |--MQTT PUBLISH------------------------>|
 | +--| topic:{peripheral_identity_address}/ |
 | | | advertisement/gatt-ind | |
 | | | msg:Advertising Report | |
 | | | | |
 | | | | |
 | | | | |
 | +->|Idle Timer Expiry | |
 | | | |
 | |--Accounting-Request--->| |
 | | Acct-Status-Type=Stop | |
 | | Session-Id | |
 | | | |
 | +---+
 | | Last Session to MQTT Broker Stopped |
 | +---+
 | | |
 | |--MQTT DISCONNECT--------------------->|
 | | |
 | |--Close WebSocket--------------------->|
 | | |

 Figure 8: MQTT Exchange for Non-Connectable BLE Peripherals

Grayson & Lear Expires 11 January 2024 [Page 29]

Internet-Draft RABBLE July 2023

A.4. Initial MQTT Exchange for Connectable BLE Peripherals

 If the BLE Peripheral indicates in its scan that it is connectable,
 the NAS/BLE Visited Host is responsible for publishing the received
 advertisements received from the authenticated BLE Peripheral and to
 subscribing to the GATT requests published for the BLE Peripheral’s
 Identity Address.

 NAS/BLE
 Visited Home
 BLE Central#2 MQTT
 Peripheral Host Broker
 | | |
 |--BLE----------->| |
 | Advertisement |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | advertisement/gatt-ind |
 | | msg:Advertising Report |
 | | |
 +--+
 | GATT Subscription |
 +--+
 | | |
 | |---MQTT SUBSCRIBE---------------------->|
 | | topic:{peripheral_identity_address}/ |
 | | +/gatt-req |
 | | topic:{peripheral_identity_address}/ |
 | | +/gatt-ind-res |
 | | |
 +--+
 | GATT Connection and Service Discovery |
 +--+
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| connect/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | connect/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | connect/gatt-res |
 | | correlation data:{binary data} |
 | | msg: connect-id or error |
 | | |

Grayson & Lear Expires 11 January 2024 [Page 30]

Internet-Draft RABBLE July 2023

 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| service-discovery/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | service-discovery/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: connect-id, optional UUID |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | service-discovery/gatt-res |
 | | correlation data:{binary data} |
 | | msg: service UUID or error |
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| disconnect/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | disconnect/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: connect-id |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | disconnect/gatt-res |
 | | correlation data:{binary data} |
 | | msg: ok or error |
 | | |

 Figure 9: MQTT Exchange for GATT Service Discovery

A.5. MQTT Exchange for Reading a GATT Attribute

 If the BLE Peripheral is connectable, a Bluetooth Application can
 read GATT attributes.

Grayson & Lear Expires 11 January 2024 [Page 31]

Internet-Draft RABBLE July 2023

 NAS/BLE
 Visited Home
 BLE Central#2 MQTT
 Peripheral Host Broker
 | | |
 +--+
 | GATT Read Request |
 +--+
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| read/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | read/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: Characteristic optional offset, |
 | | optional maxlen |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | read/gatt-res |
 | | correlation data:{binary data} |
 | | msg: Handle, opcode, offset, value or |
 | | error |

 Figure 10: MQTT Exchange for GATT Read Attribute

A.6. MQTT Exchange for Writing a GATT Attribute

 If the BLE Peripheral is connectable, a Bluetooth Application can
 write GATT attributes.

Grayson & Lear Expires 11 January 2024 [Page 32]

Internet-Draft RABBLE July 2023

 NAS/BLE
 Visited Home
 BLE Central#2 MQTT
 Peripheral Host Broker
 | | |
 +--+
 | GATT Write Request |
 +--+
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| write/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: characteristic, length, value |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary data} |
 | | msg: success or error |
 | | |

 Figure 11: MQTT Exchange for GATT Write Attribute

A.7. MQTT Exchange for BLE Peripheral initiated Notifications

 A Bluetooth Application can subscribe to receive Bluetooth
 notifications sent by the BLE Peripheral.

Grayson & Lear Expires 11 January 2024 [Page 33]

Internet-Draft RABBLE July 2023

 NAS/BLE
 Visited Home
 BLE Central#2 MQTT
 Peripheral Host Broker
 | | |
 +--+
 | GATT Set Notification Request |
 +--+
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| write/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: characteristic, enable/disable |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary data} |
 | | msg: success or error |
 | | |
 +--+
 | GATT Notification |
 +--+
 | | |
 |--BLE ---------->| |
 | Notification |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | notification/gatt-ind |
 | | msg:handle & value |
 | | |

 Figure 12: MQTT Exchange for BLE Peripheral Notifications

A.8. MQTT Exchange for BLE Peripheral initiated Indications

 A Bluetooth Application can subscribe to receive Bluetooth
 indications sent by the BLE Peripheral.

Grayson & Lear Expires 11 January 2024 [Page 34]

Internet-Draft RABBLE July 2023

 NAS/BLE
 Visited Home
 BLE Central#2 MQTT
 Peripheral Host Broker
 | | |
 +--+
 | GATT Set Indication Request |
 +--+
 | | |
 | |<--MQTT PUBLISH-------------------------|
 | | topic:{peripheral_identity_address}/ |
 |<-BLE PDU------->| write/gatt-req |
 | Exchange | response topic: |
 | | {peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary_data} |
 | | msg: identifier & handle |
 | | |
 | |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | write/gatt-res |
 | | correlation data:{binary data} |
 | | msg: procedure complete |
 | | |
 +--+
 | GATT Indication |
 +--+
 | | |
 |--BLE----------->| |
 | Indication |---MQTT PUBLISH------------------------>|
 | | topic:{peripheral_identity_address}/ |
 | | notification/gatt-ind-req |
 | | response topic: |
 | | {peripheral_identity_address}/ |
 | | notification/gatt-ind-res |
 | | correlation data:{binary_data} |
 | | msg: Indication |
 | | |
 | |<--MQTT PUBLISH-------------------------|
 |<-BLE------------| topic:{peripheral_identity_address}/ |
 | Status | notification/gatt-ind-res |
 | | correlation data:{binary data} |
 | | msg: Indication confirmation |
 | | |

 Figure 13: MQTT Exchange for BLE Peripheral Indications

Grayson & Lear Expires 11 January 2024 [Page 35]

Internet-Draft RABBLE July 2023

A.9. MQTT Exchange for dealing with NAS Mobility

 NAS/BLE NAS/BLE
 Visited Visited Home
 BLE Central#2 Central#3 MQTT
 Peripheral Host Host Broker
 | | | |
 +--+
 | Initial Authentication With Central#2 |
 +--+
 | | | |
 | |--MQTT SUBSCRIBE --------------------------->|
 | | topic:{periperal_identity_address}/ |
 | | +/gatt-req |
 | | | |
 +--+
 | NAS Mobility to Central#3 without MQTT unsubscription |
 +--+
 | | | |
 | | |--MQTT SUBSCRIBE--------------> |
 | | | topic: |
 | | | {peripheral_identity_address}/ |
 | | | +/gatt-req |
 | | | |
 +--+
 | Example GATT Connection Request with NAS Mobility |
 +--+
 | | | | |
 | |<-MQTT PUBLISH-------------------------------|
 | +--| topic:{peripheral_identity_address}/ |
 | | | connect/gatt-req |
 | | | response topic: |
 | | | {peripheral_identity_address}/ |
 | | | connect/gatt-res |
 | | | correlation data:{binary_data} |
 | | | msg: | |
 | | | | |
 | | | |<--MQTT PUBLISH-----------------|
 | | | | topic: |
 | | | | {peripheral_identity_address}/ |
 | | | | connect/gatt-req |
 |<-BLE----|-------------->| response topic: |
 | PDU | | | {peripheral_identity_address}/ |
 | Exchange | | connect/gatt-res |
 | | | | correlation data:{binary_data} |
 | | | | msg: |
 | | | | |
 | | | |---MQTT PUBLISH---------------->|

Grayson & Lear Expires 11 January 2024 [Page 36]

Internet-Draft RABBLE July 2023

 | | | | topic: |
 | | | | {peripheral_identity_address}/ |
 |Central#2| | | connect/gatt-res |
 | BLE| | | correlation data:{binary data} |
 | Timeout| | | msg: connect-id |
 | +->| | |
 | |---MQTT PUBLISH----------------------------->|
 | | topic:{peripheral_identity_address}/ |
 | | connect/gatt-res |
 | | correlation data:{binary data} |
 | | msg: procedure timeout |
 | | | |
 +--+
 | MQTT Broker drops timeout message for PUBLISH |
 | with duplicated correlation data |
 +--+

 Figure 14: MQTT Exchange for Inter-NAS Mobility without MQTT
 Unsubscription

A.10. MQTT Exchange for ending a session for a connected BLE Peripheral

 On idle-timeout the NAS/BLE Visited Host MUST un-subscribe from any
 subscribed to topics and send an Accounting-Request message with
 Acct-Status-Type set to STOP and Acct-Terminate-Cause set to Lost
 Carrier (2).

Grayson & Lear Expires 11 January 2024 [Page 37]

Internet-Draft RABBLE July 2023

 NAS/BLE
 Visited Home Home
 BLE Central#2 RADIUS MQTT
 Peripheral Host Server Broker
 | | | | |
 |--BLE----------->| | |
 | Advertisement |---MQTT PUBLISH------------------------>|
 | +--| topic:{peripheral_identity_address}/ |
 | | | advertisement/gatt-ind | |
 | | | msg:Advertising Report | |
 | | | | |
 | | | | |
 | +->|Idle Timer Expiry | |
 | | | |
 | |---Accounting-Request--->| |
 | | Acct-Status-Type=Stop | |
 | | | |
 | |---MQTT UNSUBSCRIBE-------------------->|
 | | topic:{peripheral_identity_address}/ |
 | | +/gatt-req | |
 | | topic:{peripheral_identity_address}/ |
 | | +/gatt-ind-res | |
 | | | |
 | +--+
 | | Last Session to MQTT Broker Stopped |
 | +--+
 | | | |
 | |---MQTT DISCONNECT--------------------->|
 | | | |
 | |---Close WebSocket--------------------->|
 | | | |

 Figure 15: MQTT Exchange when disconnecting from a connected BLE
 Peripheral

Appendix B. History of Changes

 Note: This appendix will be deleted in the final version of the
 document.

 From version 00 -> 01:

 * switched from User-Password to new Hashed-Password attribute using
 SHA256

 * switched to TLV-encoding of BLE-Keying-Material

 * re-ordered MQTT topic definitions

Grayson & Lear Expires 11 January 2024 [Page 38]

Internet-Draft RABBLE July 2023

 * removed redundant attribute sections

Acknowledgements

 Thanks to Oleg Pekar and Eric Vyncke for their review comments.

Authors’ Addresses

 Mark Grayson
 Cisco Systems
 10 New Square Park
 Feltham
 TW14 8HA
 United Kingdom
 Email: mgrayson@cisco.com

 Eliot Lear
 Cisco Systems
 Glatt-com
 CH- CH-8301 Glattzentrum, Zurich
 Switzerland
 Email: elear@cisco.com

Grayson & Lear Expires 11 January 2024 [Page 39]

RADIUS EXTensions J.-F. Rieckers
Internet-Draft DFN
Obsoletes: 6614 (if approved) S. Winter
Intended status: Standards Track RESTENA
Expires: 11 September 2023 10 March 2023

 Transport Layer Security (TLS) Encryption for RADIUS
 draft-rieckers-radext-rfc6614bis-02

Abstract

 This document specifies a transport profile for RADIUS using
 Transport Layer Security (TLS) over TCP as the transport protocol.
 This enables dynamic trust relationships between RADIUS servers as
 well as encrypting RADIUS traffic between servers using a shared
 secret.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-rieckers-radext-rfc6614bis/.

 Discussion of this document takes place on the RADIUS EXTensions
 Working Group mailing list (mailto:radext@ietf.org), which is
 archived at https://mailarchive.ietf.org/arch/browse/radext/.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 September 2023.

Rieckers & Winter Expires 11 September 2023 [Page 1]

Internet-Draft RADIUS over TLS March 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions and Definitions 3
 1.2. Changes from RFC6614 4
 2. Transport layer security for RADIUS/TCP 4
 2.1. TCP port and Packet Types 5
 2.2. TLS Connection setup 5
 2.3. TLS Peer Authentication 6
 2.3.1. Authentication using X.509 certificates with PKIX trust
 model . 6
 2.3.2. Authentication using certificate fingerprints 8
 2.3.3. Authentication using TLS-PSK 8
 2.3.4. Authentication using Raw Public Keys 8
 2.4. Connecting Client Identity 8
 2.5. RADIUS Datagrams . 9
 3. Design Decisions . 11
 3.1. Implications of Dynamic Peer Discovery 11
 3.2. X.509 Certificate Considerations 11
 3.3. Cipher Suites and Compression Negotiation
 Considerations . 11
 3.4. RADIUS Datagram Considerations 12
 4. Compatibility with Other RADIUS Transports 13
 5. Security Considerations 13
 6. IANA Considerations . 15
 7. References . 15
 7.1. Normative References 15
 7.2. Informative References 16
 Appendix A. Lessons learned from deployments of the Experimental
 RFC6614 . 17
 A.1. eduroam . 17
 A.2. Wireless Broadband Alliance’s OpenRoaming 19
 A.3. Participating in more than one roaming consortium 19
 Appendix B. Interoperable Implementations 20

Rieckers & Winter Expires 11 September 2023 [Page 2]

Internet-Draft RADIUS over TLS March 2023

 Appendix C. Backward compatibility 20
 Acknowledgments . 20
 Authors’ Addresses . 20

1. Introduction

 The RADIUS protocol [RFC2865] is a widely deployed authentication and
 authorization protocol. The supplementary RADIUS Accounting
 specification [RFC2866] provides accounting mechanisms, thus
 delivering a full Authentication, Authorization, and Accounting (AAA)
 solution. However, RADIUS has shown several shortcomings, especially
 the lack of security for large parts of its packet payload. RADIUS
 security is based on the MD5 algorithm, which has been proven to be
 insecure.

 The main focus of RADIUS over TLS is to provide a means to secure the
 communication between RADIUS/TCP peers using TLS. The most important
 use of this specification lies in roaming environments where RADIUS
 packets need to be transferred through different administrative
 domains and untrusted, potentially hostile network.

 There are multiple known attacks on the MD5 algorithm that is used in
 RADIUS to provide integrity protection and a limited confidentiality
 protection. RADIUS over TLS wraps the entire RADIUS packet payload
 into a TLS stream and thus mitigates the risk of attacks on MD5.

 Because of the static trust establishment between RADIUS peers (IP
 address and shared secret), the only scalable way of creating a
 massive deployment of RADIUS servers under the control of different
 administrative entities is to introduce some form of a proxy chain to
 route the access requests to their home server. This creates a lot
 of overhead in terms of possible points of failure, longer
 transmission times, as well as middleboxes through which
 authentication traffic flows. These middleboxes may learn privacy-
 relevant data while forwarding requests. The new features in RADIUS
 over TLS add a new way to identify other peers, e.g., by checking a
 certificate for the issuer or other certificate properties, but also
 provides a simple upgrade path for existing RADIUS connection by
 simply using the shared secret to authenticate the TLS session.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Rieckers & Winter Expires 11 September 2023 [Page 3]

Internet-Draft RADIUS over TLS March 2023

 Within this document we will use the following terms:

 RADIUS/TLS node: a RADIUS-over-TLS client or server

 RADIUS/TLS Client: a RADIUS-over-TLS instance that initiates a new
 connection

 RADIUS/TLS Server: a RADIUS-over-TLS instance that listens on a
 RADIUS-over-TLS port and accepts new connections

 RADIUS/UDP: a classic RADIUS transport over UDP as defined in
 [RFC2865]

1.2. Changes from RFC6614

 Currently, there are no big changes, since this is just a
 restructured spec from [RFC6614].

 The following things have changed:

 Required TLS versions: TLS 1.2 is now the minimum TLS version, TLS
 1.3 is included as recommended.

 TLS compression: [RFC6614] allowed usage of TLS compression, this
 document forbids it.

 TLS-PSK support: [RFC6614] lists support for TLS-PSK as OPTIONAL,
 this document changes this to RECOMMENDED.

 Mandatory-to-implement(MTI) cipher suites: Following the
 recommendation from [RFC9325], the RC4 cipher suite is no longer
 included as SHOULD, and the AES cipher suite is the new MTI cipher
 suite, since it is the MTI cipher suite from TLS 1.2.
 Additionally, this document references [RFC9325] for further
 recommendations for cipher suites.

 The following things will change in future versions of this draft:

 * Usage of Server Name Indication

 * More text for TLS-PSK

2. Transport layer security for RADIUS/TCP

 This section specifies the way TLS is used to secure the traffic and
 the changes in the handling of RADIUS packets.

Rieckers & Winter Expires 11 September 2023 [Page 4]

Internet-Draft RADIUS over TLS March 2023

2.1. TCP port and Packet Types

 The default destination port number for RADIUS over TLS is TCP/2083.
 There are no separate ports for authentication, accounting, and
 dynamic authorization changes. The source port is arbitrary.

2.2. TLS Connection setup

 The RADIUS/TLS nodes first try to establish a TCP connection as per
 [RFC6613]. Failure to connect leads to continuous retries. It is
 RECOMMENDED to use exponentially growing intervals between every try.

 After completing the TCP handshake, the RADIUS/TLS nodes immediately
 negotiate a TLS session. The following restrictions apply:

 * Support for TLS 1.2 [RFC5246] is REQUIRED, support for TLS 1.3
 [RFC8446] is RECOMMENDED. RADIUS/TLS nodes MUST NOT negotiate TLS
 versions prior to TLS 1.2.

 * The RADIUS/TLS nodes MUST NOT offer or negotiate cipher suites
 which do not provide confidentiality and integrity protection.

 * The RADIUS/TLS nodes MUST NOT negotiate compression.

 * When using TLS 1.3, RADIUS/TLS nodes MUST NOT use early data
 ([RFC8446], Section 2.3)

 * RADIUS/TLS implementations MUST, at minimum, support negotiation
 of the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite and SHOULD follow
 the recommendations for supported cipher suites in [RFC9325],
 Section 4.

 * In addition, RADIUS/TLS implementations MUST support negotiation
 of the mandatory-to-implement cipher suites required by the
 versions of TLS they support.

 Details for peer authentication are described in Section 2.3.

 After successful negotiation of a TLS session, the RADIUS/TLS peers
 can start exchanging RADIUS datagrams. The shared secret to compute
 the (obsolete) MD5 integrity checks and attribute obfuscation MUST be
 "radsec".

Rieckers & Winter Expires 11 September 2023 [Page 5]

Internet-Draft RADIUS over TLS March 2023

2.3. TLS Peer Authentication

 Peers MUST mutually authenticate each other at the TLS layer. The
 authentication of peers can be done using different models, that will
 be described here. Peers can also perform additional authorization
 checks based on non-TLS information. For example, verifying that the
 client IP address (source IP address of the TLS connection) falls
 within a particular network range.

2.3.1. Authentication using X.509 certificates with PKIX trust model

 All RADIUS/TLS implementations MUST implement this model, following
 the following rules:

 * Implementations MUST allow the configuration of a list of trusted
 Certificate Authorities for incoming connections.

 * Certificate validation MUST include the verification rules as per
 [RFC5280].

 * Implementations SHOULD indicate their trusted Certification
 Authorities (CAs). See [RFC5246], Section 7.4.4 and [RFC6066],
 Section 6 for TLS 1.2 and [RFC8446], Section 4.2.4 for TLS 1.3.

 * RADIUS/TLS clients validate the server identity to match their
 local configuration:

 - If the expected RADIUS/TLS server was configured as a hostname,
 the configured name is matched against the presented names from
 the subjectAltName:DNS extension; if no such exist, against the
 presented CN component of the certificate subject.

 - If the expected RADIUS/TLS server was configured as an IP
 address, the configured IP address is matched against the
 presented addresses in the subjectAltName:iPAddr extension; if
 no such exist, against the presented CN component of the
 certificate subject.

 - If the expected RADIUS/TLS server was not configured but
 discovered as per [RFC7585], the peer executes the following
 checks in this order, accepting the certificate on the first
 match:

 o The realm which was used as input to the discovery is
 matched against the presented realm names from the
 subjectAltName:naiRealm extension.

Rieckers & Winter Expires 11 September 2023 [Page 6]

Internet-Draft RADIUS over TLS March 2023

 o If the discovery process yielded a hostname, this hostname
 is matched against the presented names from the
 subjectAltName:DNS extension; if no such exist, against the
 presented CN component of the certificate subject.
 Implementations MAY require the use of DNSSEC [RFC4033] to
 ensure the authenticity of the DNS result before relying on
 this for trust checks.

 o If the previous checks fail, the certificate MAY be accepted
 without further name checks immediately after the [RFC5280]
 trust chain checks.

 * RADIUS/TLS server validate the incoming certificate against a
 local database of acceptable clients. The database may enumerate
 acceptable clients either by IP address or by a name component in
 the certificate.

 - For clients configured by name, the configured name is matched
 against the presented names from the subjectAltName:DNS
 extension; if no such exists, against the presented CN
 component in the certificate subject.

 - For clients configured by their source IP address, the
 configured IP address is matched against the presented
 addresses in the subjectAltName:iPAddr extension; if no such
 exist, against the presented CN component of the certificate
 subject.

 - It is possible for a RADIUS/TLS server to not require
 additional name checks for incoming RADIUS/TLS clients. In
 this case, the certificate is accepted immediately after the
 [RFC5280] trust chain checks. This MUST NOT be used outside of
 trusted network environments or without additional certificate
 attribute checks in place.

 * Implementations MAY allow the configuration of a set of additional
 properties of the certificate to check for a peer’s authorization
 to communicate (e.g., a set of allowed values in
 subjectAltName:URI or a set of allowed X.509v3 Certificate
 Policies).

 * When the configured trust base changes (e.g., removal of a CA from
 the list of trusted CAs; issuance of a new CRL for a given CA),
 implementations MAY renegotiate the TLS session to reassess the
 connecting peer’s continued authorization.
 // Replace may with should here?
 //
 // -- Janfred

Rieckers & Winter Expires 11 September 2023 [Page 7]

Internet-Draft RADIUS over TLS March 2023

2.3.2. Authentication using certificate fingerprints

 RADIUS/TLS implementations SHOULD allow the configuration of a list
 of trusted certificates, identified via fingerprint of the DER
 encoded certificate octets. When implementing this model, support
 for SHA-1 as hash algorithm for the fingerprint is REQUIRED, and
 support for the more contemporary has function SHA-256 is
 RECOMMENDED.

2.3.3. Authentication using TLS-PSK

 RADIUS/TLS implementations SHOULD support the use of TLS-PSK.

2.3.4. Authentication using Raw Public Keys

 RADIUS/TLS implementations SHOULD support using Raw Public Keys
 [RFC7250] for mutual authentication.
 // TODO: More text here.
 //
 // -- Janfred

2.4. Connecting Client Identity

 In RADIUS/UDP, clients are uniquely identified by their IP address.
 Since the shared secret is associated with the origin IP address, if
 more than one RADIUS client is associated with the same IP address,
 then those clients also must utilize the same shared secret. This
 practice is inherently insecure, as noted in [RFC5247],
 Section 5.3.2.

 Following the different authentication modes presented in
 Section 2.3, the identification of clients can be done by different
 means:

 In TLS-PSK operation, a client is uniquely identified by its PSK
 Identity.

 When using certificate fingerprints, a client is uniquely identified
 by the fingerprint of the presented client certificate.

 When using X.509 certificates with a PKIX trust model, a client is
 uniquely identified by the tuple of the serial number of the
 presended client certificate and the issuer of the client
 certificate.

Rieckers & Winter Expires 11 September 2023 [Page 8]

Internet-Draft RADIUS over TLS March 2023

 // TODO: Client identity when using Raw Public Key needs to be
 // described here.
 //
 // -- Janfred

 Note well: having identified a connecting entity does not mean the
 server necessarily wants to communicate with that client. For
 example, if the issuer is not in a trusted set of issuers, the server
 may decline to perform RADIUS transactions with this client.

 There are numerous trust models in PKIX environments, and it is
 beyond the scope of this document to define how a particular
 deployment determines whether a client is trustworthy.
 Implementations that want to support a wide variety of trust models
 should expose as many details of the presented certificate to the
 administrator as possible so that the trust model can be implemented
 by the administrator. As a suggestion, at least the following
 parameters of the X.509 client certificate should be exposed:

 * Originating IP address

 * Certificate Fingerprint

 * Issuer

 * Subject

 * all X.509v3 Extended Key Usage

 * all X.509v3 Subject Alternative Name

 * all X.509v3 Certificate Policies

 For TLS-PSK operation, at least the following parameters of the TLS
 connection should be exposed:

 * Originating IP address

 * PSK Identity

2.5. RADIUS Datagrams

 Authentication, Authorization, and Accounting packets are sent
 according to the following rules:

 RADIUS/TLS clients transmit the same packet types on the connection
 they initiated as a RADIUS/UDP client would. For example, they send

Rieckers & Winter Expires 11 September 2023 [Page 9]

Internet-Draft RADIUS over TLS March 2023

 * Access-Request

 * Accounting-Request

 * Status-Server

 * Disconnect-ACK

 * Disconnect-NAK

 * ...

 RADIUS/TLS servers transmit the same packets on connections they have
 accepted as a RADIUS/UDP server would. For example, they send

 * Access-Challenge

 * Access-Accept

 * Access-Reject

 * Accounting-Response

 * Disconnect-Request

 * ...

 Due to the use of one single TCP port for all packet types, it is
 required that a RADIUS/TLS server signal which types of packets are
 supported on a server to a connecting peer.

 * When an unwanted packet of type ’CoA-Request’ or ’Disconnect-
 Request’ is received, a RADIUS/TLS server needs to respond with a
 ’CoA-NAK’ or ’Disconnect-NAK’, respectively. The NAK SHOULD
 contain an attribute Error-Cause with the value 406 ("Unsupported
 Extension"); see [RFC5176] for details.

 * When an unwanted packet of type ’Accounting-Request’ is received,
 the RADIUS/TLS server SHOULD reply with an Accounting-Response
 containing an Error-Cause attribute with value 406 "Unsupported
 Extension" as defined in [RFC5176]. A RADIUS/TLS accounting
 client receiving such an Accounting-Response SHOULD log the error
 and stop sending Accounting-Request packets to this server.

Rieckers & Winter Expires 11 September 2023 [Page 10]

Internet-Draft RADIUS over TLS March 2023

3. Design Decisions

 This section explains the design decisions that led to the rules
 defined in the previous section, as well as a reasoning behind the
 differences to [RFC6614].

3.1. Implications of Dynamic Peer Discovery

 One mechanism to discover RADIUS-over-TLS peers dynamically via DNS
 is specified in [RFC7585]. While this mechanism is still under
 development and therefore is not a normative dependency of RADIUS/
 TLS, the use of dynamic discovery has potential future implications
 that are important to understand.

 Readers of this document who are considering the deployment of DNS-
 based dynamic discovery are thus encouraged to read [RFC7585] and
 follow its future development.

3.2. X.509 Certificate Considerations

 (1) If a RADIUS/TLS client is in possession of multiple certificates
 from different CAs (i.e., is part of multiple roaming consortia)
 and dynamic discovery is used, the discovery mechanism possibly
 does not yield sufficient information to identify the consortium
 uniquely (e.g., DNS discovery). Subsequently, the client may not
 know by itself which client certificate to use for the TLS
 handshake. Then, it is necessary for the server to signal to
 which consortium it belongs and which certificates it expects. If
 there is no risk of confusing multiple roaming consortia,
 providing this information in the handshake is not crucial.

 (2) If a RADIUS/TLS server is in possession of multiple certificates
 from different CAs (i.e., is part of multiple roaming consortia),
 it will need to select one of its certificates to present to the
 RADIUS/TLS client. If the client sends the Trusted CA Indication,
 this hint can make the server select the appropriate certificate
 and prevent a handshake failure. Omitting this indication makes
 it impossible to deterministically select the right certificate in
 this case. If there is no risk of confusing multiple roaming
 consortia, providing this indication in the handshake is not
 crucial.

3.3. Cipher Suites and Compression Negotiation Considerations

 See [RFC9325] for considerations regarding the cipher suites and
 negotiation.

Rieckers & Winter Expires 11 September 2023 [Page 11]

Internet-Draft RADIUS over TLS March 2023

3.4. RADIUS Datagram Considerations

 (1) After the TLS session is established, RADIUS packet payloads are
 exchanged over the encrypted TLS tunnel. In RADIUS/UDP, the
 packet size can be determined by evaluating the size of the
 datagram that arrived. Due to the stream nature of TCP and TLS,
 this does not hold true for RADIUS/TLS packet exchange. Instead,
 packet boundaries of RADIUS packets that arrive in the stream are
 calculated by evaluating the packet’s Length field. Special care
 needs to be taken on the packet sender side that the value of the
 Length field is indeed correct before sending it over the TLS
 tunnel, because incorrect packet lengths can no longer be detected
 by a differing datagram boundary. See Section 2.6.4 of [RFC6613]
 for more details.

 (2) Within RADIUS/UDP [RFC2865], a shared secret is used for hiding
 attributes such as User-Password, as well as in computation of the
 Response Authenticator. In RADIUS accounting [RFC2866], the
 shared secret is used in computation of both the Request
 Authenticator and the Response Authenticator. Since TLS provides
 integrity protection and encryption sufficient to substitute for
 RADIUS application-layer security, it is not necessary to
 configure a RADIUS shared secret. The use of a fixed string for
 the obsolete shared secret eliminates possible node
 misconfigurations.

 (3) RADIUS/UDP [RFC2865] uses different UDP ports for
 authentication, accounting, and dynamic authorization changes.
 RADIUS/TLS allocates a single port for all RADIUS packet types.
 Nevertheless, in RADIUS/TLS, the notion of a client that sends
 authentication requests and processes replies associated with its
 users’ sessions and the notion of a server that receives requests,
 processes them, and sends the appropriate replies is to be
 preserved. The normative rules about acceptable packet types for
 clients and servers mirror the packet flow behavior from RADIUS/
 UDP.

 (4) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly
 allocated UDP port to signal that a peer RADIUS server does not
 support the reception and processing of the packet types in
 [RFC5176]. These packet types are listed as to be received in
 RADIUS/TLS implementations. Note well: it is not required for an
 implementation to actually process these packet types; it is only
 required that the NAK be sent as defined above.

 (5) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly

Rieckers & Winter Expires 11 September 2023 [Page 12]

Internet-Draft RADIUS over TLS March 2023

 allocated UDP port to signal that a peer RADIUS server does not
 support the reception and processing of RADIUS Accounting packets.
 There is no RADIUS datagram to signal an Accounting NAK. Clients
 may be misconfigured for sending Accounting packets to a RADIUS/
 TLS server that does not wish to process their Accounting packet.
 To prevent a regression of detectability of this situation, the
 Accounting-Response + Error-Cause signaling was introduced.

4. Compatibility with Other RADIUS Transports

 The IETF defines multiple alternative transports to the classic UDP
 transport model as defined in [RFC2865], namely RADIUS over TCP
 [RFC6613], the present document on RADIUS over TLS and RADIUS over
 Datagram Transport Layer Security (DTLS) [RFC7360].

 RADIUS/TLS does not specify any inherent backward compatibility to
 RADIUS/UDP or cross compatibility to the other transports, i.e., an
 implementation that utilizes RADIUS/TLS only will not be able to
 receive or send RADIUS packet payloads over other transports. An
 implementation wishing to be backward or cross compatible (i.e.,
 wishes to serve clients using other transports than RADIUS/TLS) will
 need to implement these other transports along with the RADIUS/TLS
 transport and be prepared to send and receive on all implemented
 transports, which is called a "multi-stack implementation".

 If a given IP device is able to receive RADIUS payloads on multiple
 transports, this may or may not be the same instance of software, and
 it may or may not serve the same purposes. It is not safe to assume
 that both ports are interchangeable. In particular, it cannot be
 assumed that state is maintained for the packet payloads between the
 transports. Two such instances MUST be considered separate RADIUS
 server entities.

5. Security Considerations

 The computational resources to establish a TLS tunnel are
 significantly higher than simply sending mostly unencrypted UDP
 datagrams. Therefore, clients connecting to a RADIUS/TLS node will
 more easily create high load conditions and a malicious client might
 create a Denial-of-Service attack more easily.

 Some TLS cipher suites only provide integrity validation of their
 payload and provide no encryption. This specification forbids the
 use of such cipher suites. Since the RADIUS payload’s shared secret
 is fixed to the well-known term "radsec", failure to comply with this
 requirement will expose the entire datagram payload in plaintext,
 including User-Password, to intermediate IP nodes.

Rieckers & Winter Expires 11 September 2023 [Page 13]

Internet-Draft RADIUS over TLS March 2023

 By virtue of being based on TCP, there are several generic attack
 vectors to slow down or prevent the TCP connection from being
 established; see [RFC4953] for details. If a TCP connection is not
 up when a packet is to be processed, it gets re-established, so such
 attacks in general lead only to a minor performance degradation (the
 time it takes to re-establish the connection). There is one notable
 exception where an attacker might create a bidding-down attack
 though. If peer communication between two devices is configured for
 both RADIUS/TLS and RADIUS/UDP, and the RADIUS/UDP transport is the
 failover option if the TLS session cannot be established, a bidding-
 down attack can occur if an adversary can maliciously close the TCP
 connection or prevent it from being established. Situtations where
 clients are configured in such a way are likely to occur during a
 migration phase from RADIUS/UDP to RADIUS/TLS. By preventing the TLS
 session setup, the attacker can reduce the security of the packet
 payload from the selected TLS cipher suite packet encryption to the
 classic MD5 per-attribute encryption. The situation should be
 avoided by disabling the weaker RADIUS/UDP transport as soon as the
 new RADIUS/TLS connection is established and tested.

 RADIUS/TLS provides authentication and encryption between RADIUS
 peers. In the presence of proxies, the intermediate proxies can
 still inspect the individual RADIUS packets, i.e., "end-to-end"
 encryption is not provided. Where intermediate proxies are
 untrusted, it is desirable to use other RADIUS mechanisms to prevent
 RADIUS packet payload from inspection by such proxies. One common
 method to protect passwords is the use of the Extensible
 Authentication Protocol (EAP) and EAP methods that utilize TLS.

 For dynamic discovery, this document allows the acceptance of a
 certificate only after doing PKIX checks. When using publicly
 trusted CAs as trust anchor, this may lead to security issues, since
 an advisary may easily get a valid certificate from this CAs. In
 current practice of [RFC6614], this problem is circumvented by using
 a private CA as a trust anchor. This private CA only issues
 certificate to members of the roaming consortium. This may still
 enable a malicious member to intercept traffic not intended for them,
 however, depending on the size of the consortium, this attack vector
 may be negligible. If the private CA also issues certificates for
 other purposes than RADIUS/TLS, the RADIUS/TLS certificates SHOULD
 include RADIUS/TLS-specific attributes against the implementation can
 check such as a X.509v3 Certificate Policy specific for RADIUS/TLS.

 When using certificate fingerprints to identify RADIUS/TLS peers, any
 two certificates that produce the same hash value (i.e., that have a
 hash collision) will be considered the same client. Therefore, it is
 important to make sure that the hash function used is
 cryptographically uncompromised so that an attacker is very unlikely

Rieckers & Winter Expires 11 September 2023 [Page 14]

Internet-Draft RADIUS over TLS March 2023

 to be able to produce a hash collision with a certificate of his
 choice. While this specification mandates support for SHA-1, a later
 revision will likely demand support for more contemporary hash
 functions because as of issuance of this document, there are already
 attacks on SHA-1.

6. IANA Considerations

 Upon approval, IANA should update the Reference to radsec in the
 Service Name and Transport Protocol Port Number Registry:

 * Service Name: radsec

 * Port Number: 2083

 * Transport Protocol: tcp

 * Description: Secure RADIUS Service

 * Assignment notes: The TCP port 2083 was already previously
 assigned by IANA for "RadSec", an early implementation of RADIUS/
 TLS, prior to issuance of the experimental RFC 6614. [This
 document] updates RFC 6614, while maintaining backward
 compatibility, if configured. For further details see RFC 6614,
 Appendix A or [This document], Appendix C.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <https://www.rfc-editor.org/info/rfc2866>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

Rieckers & Winter Expires 11 September 2023 [Page 15]

Internet-Draft RADIUS over TLS March 2023

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613,
 DOI 10.17487/RFC6613, May 2012,
 <https://www.rfc-editor.org/info/rfc6613>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9325] Sheffer, Y., Saint-Andre, P., and T. Fossati,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November
 2022, <https://www.rfc-editor.org/info/rfc9325>.

7.2. Informative References

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
 RFC 4953, DOI 10.17487/RFC4953, July 2007,
 <https://www.rfc-editor.org/info/rfc4953>.

Rieckers & Winter Expires 11 September 2023 [Page 16]

Internet-Draft RADIUS over TLS March 2023

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/info/rfc5247>.

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC7360] DeKok, A., "Datagram Transport Layer Security (DTLS) as a
 Transport Layer for RADIUS", RFC 7360,
 DOI 10.17487/RFC7360, September 2014,
 <https://www.rfc-editor.org/info/rfc7360>.

 [RFC7585] Winter, S. and M. McCauley, "Dynamic Peer Discovery for
 RADIUS/TLS and RADIUS/DTLS Based on the Network Access
 Identifier (NAI)", RFC 7585, DOI 10.17487/RFC7585, October
 2015, <https://www.rfc-editor.org/info/rfc7585>.

 [RFC7593] Wierenga, K., Winter, S., and T. Wolniewicz, "The eduroam
 Architecture for Network Roaming", RFC 7593,
 DOI 10.17487/RFC7593, September 2015,
 <https://www.rfc-editor.org/info/rfc7593>.

Appendix A. Lessons learned from deployments of the Experimental
 [RFC6614]

 There are at least two major (world-scale) deployments of [RFC6614].

A.1. eduroam

 eduroam is a globally operating Wi-Fi roaming consortium exclusively
 for persons in Research and Education. For an extensive background
 on eduroam and its authentication fabric architecture, refer to
 [RFC7593].

Rieckers & Winter Expires 11 September 2023 [Page 17]

Internet-Draft RADIUS over TLS March 2023

 Over time, more than a dozen out of 100+ national branches of eduroam
 used RADIUS/TLS in production to secure their country-to-country
 RADIUS proxy connections. This number is big enough to attest that
 the protocol does work, and scales. The number is also low enough to
 wonder why RADIUS/UDP continued to be used by a majority of country
 deployments despite its significant security issues.

 Operational experience reveals that the main reason is related to the
 choice of PKIX certificates for securing the proxy interconnections.
 Compared to shared secrets, certificates are more complex to handle
 in multiple dimensions:

 * Lifetime: PKIX certificates have an expiry date, and need
 administrator attention and expertise for their renewal

 * Validation: The validation of a certificate (both client and
 server) requires contacting a third party to verify the
 recovaction status. This either takes time during session setup
 (OCSP checks) or requires the presence of a fresh CRL on the
 server - this in turn requires regular update of that CRL.

 * Issuance: PKIX certificates carry properties in the Subject and
 extensions that need to be vetted. Depending on the CA policy, a
 certificate request may need significant human intervention to be
 verified. In particular, the authorisation of a requester to
 operate a server for a particular NAI realm needs to be verified.
 This rules out public "browser-trusted" CAs; eduroam is operating
 a special-purpose CA for eduroam RADIUS/TLS purposes.

 * Automatic failure over time: CRL refresh and certificate renewal
 must be attended to regularly. Failure to do so leads to failure
 of the authentication service. Among other reasons, employee
 churn with incorrectly transferred or forgotten responsibilities
 is a risk factor.

 It appears that these complexities often outweigh the argument of
 improved security; and a fallback to RADIUS/UDP is seen as the more
 appealing option.

 It can be considered an important result of the experiment in
 [RFC6614] that providing less complex ways of operating RADIUS/TLS
 are required. The more thoroughly specified provisions in the
 current document towards TLS-PSK and raw public keys are a response
 to this insight.

Rieckers & Winter Expires 11 September 2023 [Page 18]

Internet-Draft RADIUS over TLS March 2023

 On the other hand, using RADIUS/TLS in combination with Dynamic
 Discovery as per [RFC7585] necessitates the use of PKIX certificates.
 So, the continued ability to operate with PKIX certificates is also
 important and cannot be discontinued without sacrificing vital
 funcionality of large roaming consortia.

A.2. Wireless Broadband Alliance’s OpenRoaming

 OpenRoaming is a globally operating Wi-Fi roaming consortium for the
 general public, operated by the Wireless Broadband Alliance (WBA).
 With its (optional) settled usage of hotspots, the consortium
 requires both RADIUS authentication as well as RADIUS accounting.

 The consortium operational procedures were defined in the late 2010s
 when [RFC6614] and [RFC7585] were long available. The consortium
 decided to fully base itself on these two RFCs.

 In this architecture, using PSKs or raw public keys is not an option.
 The complexities around PKIX certificates as discussed in the
 previous section are believed to be controllable: the consortium
 operates its own special-purpose CA and can rely on a reliable source
 of truth for operator authorisation (becoming an operator requires a
 paid membership in WBA); expiry and revocation topics can be expected
 to be dealt with as high-priority because of the monetary
 implications in case of infrastructure failure during settled
 operation.

A.3. Participating in more than one roaming consortium

 It is possible for a RADIUS/TLS (home) server to participate in more
 than one roaming consortium, i.e. to authenticate its users to
 multiple clients from distinct consortia, which present client
 certificates from their respective consortium’s CA; and which expect
 the server to present a certificate from the matching CA.

 The eduroam consortium has chosen to cooperate with (the settlement-
 free parts of) OpenRoaming to allow eduroam users to log in to
 (settlement-free) OpenRoaming hotspots.

 eduroam RADIUS/TLS servers thus may be contacted by OpenRoaming
 clients expecting an OpenRoaming server certificate, and by eduroam
 clients expecting an eduroam server certificate.

 It is therefore necessary to decide on the certificate to present
 during TLS session establishment. To make that decision, the
 availability of Trusted CA Indication in the client TLS message is
 important.

Rieckers & Winter Expires 11 September 2023 [Page 19]

Internet-Draft RADIUS over TLS March 2023

 It can be considered an important result of the experiment in
 [RFC6614] that Trusted CA Indication is an important asset for inter-
 connectivity of multiple roaming consortia.

Appendix B. Interoperable Implementations

 [RFC6614] is implemented and interoperates between at least three
 server implementations: FreeRADIUS, radsecproxy, Radiator. It is
 also implemented among a number of Wireless Access Points /
 Controllers from numerous vendors, including but not limited to:
 Aruba Networks, LANCOM Systems.

Appendix C. Backward compatibility

 TODO describe necessary steps to configure common servers for
 compatibility with this version. Hopefully the differences to
 [RFC6614] are small enough that almost no config change is necessary.

Acknowledgments

 Thanks to the original authors of RFC 6614: Stefan Winter, Mike
 McCauley, Stig Venaas and Klaas Vierenga.

 TODO more acknowledgements

Authors’ Addresses

 Jan-Frederik Rieckers
 Deutsches Forschungsnetz | German National Research and Education Network
 Alexanderplatz 1
 10178 Berlin
 Germany
 Email: rieckers@dfn.de
 URI: www.dfn.de

 Stefan Winter
 Fondation Restena | Restena Foundation
 2, avenue de l’Université
 L-4365 Esch-sur-Alzette
 Luxembourg
 Email: stefan.winter@restena.lu
 URI: www.restena.lu

Rieckers & Winter Expires 11 September 2023 [Page 20]

	draft-cullen-radextra-status-realm-01
	draft-dekok-radext-deprecating-radius-05
	draft-dekok-radext-radiusv11-05
	draft-dekok-radext-reverse-coa-01
	draft-dekok-radext-tls-psk-01
	draft-grayson-radext-rabble-01
	draft-rieckers-radext-rfc6614bis-02

