

ALTO Integration and Implementation Supporting CERN Data Management (FTS/Rucio Integration)

Presenters: Jordi Ros Giralt, Mario Lassnig, Mihai Patrascoiu, Y. Richard Yang On behalf of team (Jensen Zhang, Kai Gao, Lauren Delwiche, Mahdi , Ryan Yang)

March 27, 2023

IETF 116

Overview: LHCONE

- Part of CERN infrastructure (experimental facilities, LHCOPN, LHCONE)
- Topology: 600 distributed storage systems, distributed globally (170 data centers, in 127 sites, across 40 countries)
- Workload: support data movement for four LHC experiments, and also Belle II, Pierre Auger Observatory, NOvA, XENON, and JUNO
- Traffic: 2022, the aggregated outgoing traffic just from CERN to its ten largest connected data centres: 457 Petabytes of data.

Overview: Related Software Stack

Data-Intensive Workflows

Data Management / Transfer Orchestration (e.g., Rucio)

> Data Transfer Scheduling (e.g., FTS)

Transfer Data Plane (e.g., GridFTP, XRootD, HTTP)

Internet Transport Layer (e.g., TCP, TCP/Cubic, BBR)

Networking Layer (e.g., traditional networking, AutoGOLE/SENSE, NOTED, Programmable net) High-level goals: Efficiency

Our focus

Fairness

Outline

- Overview
- Transport scheduling integration (ALTO/FTS)

Transfer Scheduling (FTS): Objective and Design

Related objectives:

- Efficiency control: Avoid overloading transfer resources (both network and storage), fully utilize all capacity
- Fairness/allocation: resource allocation beyond congestion

Mechanisms:

- Keeps transfer queue for each src/dst pair (pipe)
- Adjusts # concurrent TCP connections per pipe
- Dispatches transfer if allowed by concurrency level

New but not fully integrated mechanisms:

Each file transfer (src->dst) is marked as on behalf of an activity of an experiment

Data-Intensive Workflows

Data Management / Transfer Orchestration (e.g., Rucio)

Transfer Scheduling (e.g., FTS)

Transfer Data Plane (e.g., GridFTP, XRootD, HTTP)

Internet Transport Layer (e.g., TCP, TCP/Cubic, BBR)

Networking Layer (e.g., traditional networking, AutoGOLE/SENSE, NOTED, Programmable net)

ALTO/FTS Objective: Application-Defined Networking

Diverse, High Level Resource Models

Universal, Minimal TCP Congestion Control (TCC)

- **Universally** available
- Fast, efficient, robust building block
- But **single** resource allocation (fairness) model

Diverse Network Settings

Simplified Example Illustrating ALTO/FTS Visibility, Control

P(R1) = 0 (Plink1 = 3G <= 5G), P(R2) = 0 (Plink2 = 9G <= 10G) P(R3) = 2 (Plink3 = 12G > 10G)

ALTO/FTS Visibility

ALTO/FTS First Hop Visibility

Query Example (ECS with path vector extension)

Routing Plane Retrieval (Looking Glass of CERN and GEANT)

Jensen/Kai/Lauren

Implementation

ALTO/FTS Control Implementation

Integration into FTS 3.12

- Extend database schema for pipes (t_link_config) to support resource control specification (tcn_abs_limit, tcn_rel_weight)
- Implement ALTO/TCNOptimizer class for ALTO/TCN control loop
 - Implementing ZeroOrder Gradient with Integral, Quadratic Distance function
 - Add new optimizer mode (kOptimizerAggregated) to enable ALTO/TCN optimizer

Outline

- Overview
- Transport scheduling integration (ALTO/FTS)
- Transport orchestration integration (ALTO/Rucio)

ALTO/Rucio Objective: Uniform Orchestration Selection

Uniform ALTO Sorting Interface

Diverse Network Visibility Resources

ALTO/Rucio Using Query Expression

Step 1: Configuration

Configure ALTO client at Rucio server to fetch visibility using ALTO

Step 2: Express Sorting using ALTO/Rucio Expression

ALTO sorting expression enables Rucio download command to sort replicas based on a combination of distances and properties, e.g.,

[client]	RV-as boncount dolay ow MUERE continent-"ELL"
# ALTO server	BY=as_hopcount,delay_ow WHERE continent="EU"
<pre>default_ird = https://science.jensen-zhang.site/directory/defau</pre>	lt
<pre>metrics = { "as_hopcount": { "resource_type": "path-vector", "resource_id": "cern-pv", Map properties of ANEs dee "prop_name": "as_path", into end-to-end metrics as "prop_transformer": "tolist len", as "aggr_transformer": "sum" }, "delay_ow": { "resource_type": "cost-map", "resource_id": "delay-ow", ta </pre>	<pre>nernet> rc rucio list-file-replicassort='alto;stmt="BY as_hopcount,delay_ow"metalink tea version="1.0" encoding="0Tr-o :> ink xmlns="urn:ietf:params:xml:ns:metalink"> name="file1"> ntity>test:file1 h type="adler32">69fe2b13 h type="adler32">69fe2b13 h type="md5">12969016e761864f30f97dd5fb259e30 e>1048576 n name="/atlas/rucio/test:file1"> location="XRD1" domain="wan" priority="1" client_extract="false">root://xrd1:1094//rucio/test, location="XRD3" domain="wan" priority="2" client_extract="false">root://xrd1:1094//rucio/test, location="XRD4" domain="wan" priority="3" client_extract="false">root://xrd1:1096//rucio/test, location="XRD4" domain="wan" priority="3" client_extract="false">root://xrd4:1097//rucio/test, location="XRD4" domain="wan" priority="3" client_extract="false">root://xrd4:1097//rucio/test,</pre>
<pre>"dependent_network_map": "default-networkmap" }}</pre>	

ALTO/Rucio Using Query Expression: Default/Backup GeoIP/Distance

- Providing geoip property using the standard ALTO endpoint property service [RFC 9240]
- Providing geo distance between endpoints using the standard ALTO Endpoint Cost Service (ECS) [RFC 7285]

etc >	{} {	geoip-delegate-agent.json $>$
1	{	
2		"namespace": "default",
3		"agent_class": "alto.agent.delegate.DelegateAgent",
4		"data_source_name": "geoip",
5		"data_source_config": {
6		"data_source_cls": "alto.agent.geoip.GeoipAgent",
7		"db_path": "/opt/geoip2/GeoLite2-City.mmdb"
8		},
9		"refresh_interval": 300
10	}	

Summary: Current ALTO/FTS+Rucio: 3 Main Components

Status and Next Steps

Implementations

- ALTO/FTS
 - Visibility: looking glass first-hop links (e.g., CERN border links to peers)
 - Control: Zero-order stochastic gradient algorithm, event-driven programming
 - Scale: 200x40, targeting 600x600 full mesh
 - Resource model: Full linear model
- ALTO/Rucio
 - Fully integrated, uniform interface
- Deployment
 - Target full production workload in summer 2023, for HL-LHC Data Challenge

Backup Slides

ALTO/FTS Control Details

- Integral, quadratic distance function
- Zero-order stochastic rounding

$$U(\tau) = \left(\sum_{i=1}^{K} w_i \tau_i\right) - \eta \cdot d(\tau, t \cdot K)^2$$

1. Basic Gradient	Gradient of control state n_i : $(\frac{\mathrm{d}a}{\mathrm{d}n_i})$	$\frac{\mathrm{d}a}{\mathrm{d}n_i} = \sum_{j=1}^{K} \frac{\mathrm{d}a}{\mathrm{d}T_j} \cdot \frac{\mathrm{d}T_j}{\mathrm{d}n_i}$	
	1.1. $\frac{\mathrm{d}T_j}{\mathrm{d}n_i}$ is the gradient of the bottleneck	If $T_j(n) = \min(f_{j,1}(n),, f_{j,b}(n))$ and	
		$k = \operatorname{argmin} f_{j,k}(n), ext{ then } rac{\mathrm{d} T_j}{\mathrm{d} n_i} = rac{\mathrm{d} f_{j,k}}{n_i}$	
	1.2. Decide zero (implicit) or first order	$\frac{\mathrm{d}f_{j,k}}{\mathrm{d}n_i} = \begin{cases} \text{zero-ord est.} & \text{for blackbox } f_{j,k} \\ \text{first-ord grad.} & \text{otherwise.} \end{cases}$	
	(w/ analytical expr)	$dn_i = \int \text{first-ord grad.} \text{otherwise.}$	
	1.2a. Zero order estimate	$G(n,z) = rac{f_{j,k}(n+z) - f_{j,k}(n)}{\ z\ ^2} \cdot z$	
	1.2b First order computation	Compute analytical expression: $\frac{\mathrm{d}f_{j,k}}{\mathrm{d}n_i}$	
2. Momentum-Based			
Gradient Acceleration	Compute $g = (\frac{\mathrm{d}a(n)}{\mathrm{d}n_1}, \frac{\mathrm{d}a(n)}{\mathrm{d}n_2}, \dots, \frac{\mathrm{d}a(n)}{\mathrm{d}n_K});$ Update $\mathbf{m} = (1 - \alpha)\mathbf{m} + \alpha \cdot (\eta g);$ $n = cur.\mathbf{n} + int(\mathbf{m});$		
3. Discretize	$int(x) = egin{cases} \lfloor x floor & ext{with probability } 1 - (x - \lfloor x floor) \ \lfloor x floor + 1 & ext{with probability } x - \lfloor x floor. \end{cases}$		

Basic ALTO/FTS Benchmarking \Rightarrow Real Topology (ESnet)

IETF

Global Objective, Zero-order gradients, and Resource Control Constraints.

Setting: 30 <src, dst> pipes, one request per pipe, each request 20K transfers, file size = 100MB. the total in the workload is 60TB. Resource Control goal: all equal weights

Basic Benchmarking: Results

FTS-SG depends on correct configuration (e.g., high enough default). ALTO/TCN is fully automated.

Request Performance Distribution

Setting: Similar to previous slide, but with modification to include more requests to show more details: 100 <src, dst> pipes, one request per pipe, each request 5K transfers, file size = 100MB. Resource Control goal: all equal weights.

From All-Arrival Workload \Rightarrow Dynamic Arrival Workload

Per flow comparison of altor and FTS Request Completion Times 50 request with incremental arrival time on ESnet

Setting: ESnet (67 nodes), selected 50 active pipes; each pipe has transfer workload arrives according to a arrival distribution (Poisson arrival, with parameter 1200 (every 200 time slot); Each replication request has N(40k, 20k) files, file size is 100MB.

8.0x improvement in RCT when using ALTO/TCN. (Global Objective, Full Zero Order)

IETF 110: ALTO Integration with FTS and Rucio at CERIN

ALTO/TCN Zero-order vs First-order

First-order integrated ALTO/TCN vs Full Zero-order ALTO/TCN

Setting:ALTO/TCNology ESnet, selected 10 pipes, infinite backlog.

Protocol 1 FTS Model Analyzed (Called for High Success Rate) 1: Define $RL(x) = round(\log_{R}(x))$ 2: procedure OPTIMIZEGOODSUCCESSRATE(state) if cur.ema < prev.ema then if RL(cur.ema) < RL(prev.ema) then decision = prevValue - decreaseStepSize else decision = prevValue end if else if cur.ema > prev.ema then 9 decision = prevValue + increaseStepSize resource flexibility/fairness 10: else emas are equal 11: decision = prevValue + increaseStepSize 12: end if 13: 14: end procedure

A Semi Zero-Order Gradient Alg Optimizing for Each Pipe

Keep track of the exponential moving average (EMA) of throughput.

 $E_i(t+1) = \alpha T_i(t+1) + (1-\alpha)E_i(t)$

Update the number of connections based on EMA. $n_i(t+1) = \begin{cases} n_i(t) - 1 & RL_B(E_i(t+1)) < RL_B(E_i(t)); \text{ Line 4} \\ n_i(t) + 1 & E_i(t+1) \ge E_i(t); \text{ Lines 9,11} \end{cases}$ $n_i(t)$ else

FTS Control Gap

THEOREM 4.2 (CONSERVATION THEOREM). Let $K = \max \frac{M_i}{m_i}$. Then as long as $B > (1 - \alpha + \alpha K^2)$, the quantity $V_t(t) = n_i(t) - \text{round}(\log_B(E_i(t)))$

only ever stays constant or increases.

Theorem: In a **Throughput-**

Deterioration Model, semi zero order

will achieve throughput that is <= 1/VBof the **optimal** (under default settings).

efficiency Bap