Background

- **DHCP Snoop Database**
 - Stores valid IPv4/IPv6 MAC bindings by snooping DHCP messages

- **First Hop Security (FHS)**
 - ARP Inspection, ND Inspection and IPv4/IPv6 Source Guard make use of DHCP bindings

- FHS is widely deployed on access switches without standard based multihoming and host mobility
Problem Statement

- Extend application of FHS on EVPN PEs supporting Network Virtualization Overlay (NVO) and running multi-homing (All-Active or Single-Active) with host mobility
 - BGP extensions and new procedures for EVPN to support FHS in presence of EVPN multi-homing and host mobility by distributing DHCP Snoop bindings among EVPN PEs participating in that EVPN instance (EVI) are to be defined
- This drafts defines new EVPN route type to synchronize DHCP Snoop Database
Requirements

- Extend application of FHS
 - EVPN PEs supporting multihoming (All-Active or Single-Active)
 - Host mobility between the PEs participating in same EVPN instance
 - Support Bridge and IRB service
Primer: DHCP Snoop

MPLS/VxLAN EVPN

1. Discover

2. Offer

3. Request

4. Ack

<table>
<thead>
<tr>
<th>SW1</th>
<th></th>
<th>SW2</th>
</tr>
</thead>
</table>

DHCP Client (Host) DHCP Server

Figure 1: DHCP DORA Exchange over EVPN Fabric
DHCP Snoop Route format

| RD (8 octets) |
|---|---|
| Ethernet Segment Identifier (10 octets) |
| Ethernet Tag ID (4 octets) |
| MAC Address Length (1 octet) |
| MAC Address (6 octets) |
| IP Address Length (1 octet) |
| IP Address (4 or 16 octets) |
| Remaining Lease Time in sec (4 octets) |
DHCP Snoop Route

- PE where host is attached sends DHCP snoop route after completion of DORA exchange. This PE will be referred as **DHCP Snoop Anchor PE**
- Remote PE updates the DHCP Snoop Database after receiving DHCP snoop route
- When the host moves to new PE, it successfully validates the host
- Lease timer expiry will trigger withdraw
- DHCP lease renew will trigger DHCP snoop route update with remaining lease time
Remaining Lease Time

- DHCP renew lease time.
- Anchor PE sets the initial lease time received from the DHCP server.
- BGP speakers maintain create/update timestamp of DHCP snoop route.
- Remaining lease time calculated as follows while advertising it to the BGP peers:
 - Current timestamp: \textit{current_timestamp}
 - Create/update timestamp: \textit{create_update_timestamp}
 - Received remaining lease time: \textit{rcvd_rem_lease_time}
 - Remaining lease time = \textit{rcvd_rem_lease_time} - (\textit{current_timestamp} - \textit{create_update_timestamp})
 - If value is negative then send ZERO
DHCP Snoop Route
Host: 10.1.1.1
Lease time 10 hours
Originator: PE1

Time: 10:00:00
PE1

DHCP Snoop Route
Host: 10.1.1.1
Lease time 10 hours
Originator: PE1

Time: 10:00:00
PE2

DHCP Snoop Route
Host: 10.1.1.1
Lease time 10 hours
Originator: PE1

Time: 10:00:00
PE3

Timer starting at 14:00:00

PE3 gets provisioned 4 hours later than initial setup. Current time 14:00:00
DHCP Snoop Route
Host: 10.1.1.1
Lease time 10 hours
Originator: PE1

Time: 10:00:00

DHCP Snoop Route
Host: 10.1.1.1
Lease time 6 hours
Originator: PE1

PE1

PE2

PE3

Timer

DHCP Snoop Route
Host: 10.1.1.1
Lease time 6 hours
Originator: PE1

DHCP Snoop Route
Host: 10.1.1.1
Lease time 10 hours
Originator: PE1

Time: 10:00:00

PE3 gets provisioned 4 hours later than initial setup. Current time 14:00:00

Timer starting at 14:00:00
Bridge Service

- **Single Active multihoming**
 - DORA messages will arrive on single PE
 - Active PE will be the Anchor PE and originates DHCP snoop route

- **All Active multihoming**
 - No individual DORA message synchronization
 - Make use of Anchor PE DHCP snoop route

- **Remote PEs in the same EVI**
 - Updates the DHCP snoop database.
 - This DHCP state will be used when the host moves from its existing ESI to a new ESI.
IRB Service

- DORA messages are unicasted to DHCP server via DHCP Relay(s)
 - Source IP address in relay is unique to the PE, such that server messages lands on the PE which initiated the relay message

- Single Active/All Active multihoming
 - DORA messages will arrive on single PE
 - Make use of Anchor PE DHCP snoop route

- Remote PEs in the same EVI
 - Updates the DHCP snoop database.
 - This DHCP state will be used when the host moves from its existing ESI to a new ESI.
DHCP Snoop Anchor Mobility (1)

- Host moves are determined via GARP/RARP
 - DHCP Snoop Entry is already synced in the fabric
 - Initiates rfc7432 mobility procedures and after completion DHCP Snoop Anchor will be moved

- Duplicate Case
 - Duplicate-wait-timer with default value of 30 sec
 - After the expiry of duplicate-wait-timer, anchor will be moved if MAC/IP in the DHCP snoop route is pointing local. If not then Anchor will not be moved. Subsequent Host mobility will again start the duplicate-wait-timer
DHCP Snoop Anchor Mobility (2)

- MAC Mobility extended community attribute defined rfc7432 will be used for DHCP snoop route
 - Sequence number is handling is similar to Mac mobility procedures defined in rfc7432
Next Step

- Work in progress to handle more scenarios.
- Solicit more input from WG
THANK YOU!