Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814 Pseudorandom Port Numbers

draft-ietf-bmwg-benchmarking-stateful

Gábor LENCSE lence@sz.e.hu (Széchenyi István University) – presenter
Keiichi SHIMA keiichi.shima@g.softbank.co.jp (SoftBank)

Summary of the Proposal

• Guides to achieve reproducible stateful NATxy performance measurements producing meaningful results
 – Facilitating to carry out all the measurement procedures of RFC 2544 / RFC 5180 / RFC 8219 like throughput, latency, frame loss rate, etc. to benchmark stateful NATxy (NAT44, NAT64, etc.) gateways
 – Adding new performance metrics specific to stateful testing:
 • Connection setup performance: maximum connection establishment rate
 • Connection tear down performance: connection tear down rate
 • Size of the connection tracking table: connection tracking table capacity
 – Providing guidelines how to use RFC 4814 pseudorandom port numbers with stateful NATxy gateways
Progress of the draft

• Individual draft “04” (presented at IETF 114)
 – Adopted by BMWG as a WG item
• WG draft “00”
 – Added: test setup for stateful NAT64 gateways
• WG draft “01” (presented at IETF 115)
 – Added: measurements for scalability and reporting format
• WG draft “02” (current version)
 – Added: the usage of multiple IP addresses
 – Section 4.5.1 was removed and split into two Sections: Section 5 about scalability measurements and Section 6 about reporting format.
Reminder: Test Setup

• Methodology works with any IP versions
 – Now, we use the example of stateful NAT64

```
+--------------------------------------+
  | 2001:2::2 |Initiator| Responder| 198.19.0.2 |
+------------+---------+----------|--+----------+
|     Tester |         |<----------+
| IPv6 address| [state table]| IPv4 address|
|              |          |           | +-------------------+
|              |          |           |                  |
|              |          |           |                  |
| 2001:2::1   |         | DUT:      | 198.19.0.1 |
+------------+---------+----------|--+----------+
| Stateful NAT64 gateway |          |          |--|--+
| IPv6 address| [connection tracking table]| IPv4 address|
+-------------------+
```

Reminder: Measurements in two Phases

• Preliminary test phase
 – It serves two purposes:
 • The connection tracking table of the DUT is filled.
 • The state table of the Responder is filled with valid four tuples.
 – It can be used without the real test phase to measure the maximum connection establishment rate.

• Real test phase
 – It MUST be preceded by a preliminary test phase.
 – The “classic” measurement procedures (throughput, frame loss rate, latency, PDV, IPDV) are performed as defined in RFC 8219.
Reminder: To support repeatable measurements

• There are two extreme situations that we can simply ensure
 1. When all test frames create a new connection
 • Ideal for measuring maximum connection establishment rate
 2. When test frames never create a new connection
 • Ideal for the “classic” tests: throughput, latency, frame loss rate, PDV, etc.

• Conditions to achieve them:
 – Large enough and empty connection tracking table for each test
 – Pseudorandom enumeration of all possible port number combinations in the preliminary phase
 – Properly high timeout value in the DUT
Motivation for using multiple IP addresses

• As for generating **multiple network flows**, we proposed to use
 – a single source IP address destination IP address pair
 – multiple port numbers

• This solution works well with Linux 😊
 – With a proper RSS (Receive-Side Scaling) implementation, it can be set
 that port numbers are also considered by the hash function to distribute
 the interrupts of packet arrivals among the CPU cores.

• But is does not work well with OpenBSD 😞
 – Only the IP addresses are considered by the hash function...
 – But there are multiple IP addresses used in the Internet traffic!
How to generate multiple IPv4 addresses?

• *When router testing is done*, section 12 of RFC2544 requires testing first using a single source and destination IP address pair, and then using destination IP addresses from 256 different networks.

 – The 16-23 bits of the 198.18.0.0/24 and 198.19.0.0/24 addresses can be used to express the 256 networks. (198.19.{0..255}.0/24)

 – *As we do not do router testing*, we do not need to use multiple destination networks, therefore, these bits are available for expressing multiple IP addresses that belong to the same "/16" network.

 – Then measurement conditions would reflect better the case when a stateful NATxy gateway processes Internet traffic.
Stateful NAT44 Test Setup w/ Multiple IP Addresses

large enough range moderate range
\ +---+ /
\ | Initiator | Responder |
/ +-----------------|-----------------|<-----------------------------+
| private IPv4| [state table]| public IPv4 |
| +--+ |
| single IP | DUT: Stateful NAT44 gateway | public IPv4 |
| 10.0.0.1/8 | |-----------------------------+
+------------------| Stateful NAT44 gateway | public IPv4 |
private IPv4| [connection tracking table] | | public IPv4 |
+--+ \ moderate
\ range
198.19. [0-127]. 1/16

Benchmarking Stateful NATxy Gateways

Stateful NAT64 Test Setup w/ Multiple IP Addresses

<table>
<thead>
<tr>
<th>large enough range</th>
<th>moderate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:2::[0-ff][0-ff]:0002/64</td>
<td>198.19.[128-255].1/16</td>
</tr>
<tr>
<td>\ +---------------------------------+</td>
<td>/</td>
</tr>
<tr>
<td>IPv6 \</td>
<td>Initiator</td>
</tr>
</tbody>
</table>
| +------------------| Tester | <------------------+
| | addresses | [state table] | public IPv4 | | |
| | +---------------------------------+ | |
| | | | |
| | | single IP | +---------------------------------+ |
| | | 2001:2::1/64| DUT: | public IPv4 | |
| +------------------| Stateful NAT64 gateway | +------------------+
| IPv6 address | [connection tracking table] | \ moderate |
| +---------------------------------+ \ range |
| 198.19.[0-127].1/16 | |

IPv6 address