Compute Resource Modeling Consideration

Presenter: Kehan Yao; yaokehan@chinamobile.com draft-du-cats-computing-modeling-description Zongpeng Du, Yuexia Fu, Cheng Li, Daniel Huang duzongpeng@chinamobile.com, fuyuexia@chinamobile.com, c.l@huawei.com, huang.guangping@zte.com.cn

IFTF116

One main problem in CATS

- In CATS (Computing-Aware Traffic Steering), the decision point would make "a Traffic Steering decision" considering both network and computing status
- However, as the decision point is a network node, a problem arises:
 - It is straightforward that the decision point, as a network device, can have the network status information by some means
 - But it is challenging for a network device to obtain the computing information
- To enable the Computing-Aware Traffic Steering decision in the network, we need to handle two related issues:
 - Clarify what computing information needs to be notified to the decision point and possibly its format (the draft's motivation)
 - By which means the computing information can be notified to the decision point

Computing Information Description

- However, differentiated computing capability is reflected in two aspects:
 - Computing capabilities are various in different service sites
 - the status of different service sites are dynamic

An efficient description of computing information is needed

Computing Information Description (Cont.)

- The decision point needs to know which service site is the best
- The service site should have a suitable service capability, service capability can be expressed by different attributes(CPU/GPU processing speed, memory, host bandwidth, etc.), which are normally static values.
- the workload of service sites is dynamic, the service site can not be overloaded.

The computing evaluating system

- A straightforward way is to run the real service on the service point, and observe the throughput of service
 - For example, images / second for the AI Image Processing
- However, even for the same service, different clients may have different computing requirements, thus
 - In addition, some general capability test results can also be considered as the input of the final score

The computing evaluating system (Cont.)

- Three levels of computing information may be considered in the evaluating system
 - It is not to say that a service needs all the information in the evaluating system
 - It is suggested that a service can subscribe the information it cares
- The first level is about hardware heterogeneity to describe computing capability
 - The indexes of this level can be the performance parameters provided by the manufacturer, such as CPU model, main frequency, number of cores, GPU model, single-precision floating-point performance, etc.
 - Meanwhile, the indexes can also be the test values of commonly used benchmark programs

The computing evaluating system (Cont.)

- The second-level indexes are abstracted from the first-level indexes, which are mainly used for the comprehensive evaluation of node's computing capability
 - The indexes can provide the ability of a certain aspect of the node, such as in the aspect of computing, communication, cache, and storage, or a general comprehensive service ability of the node
- Level 3 indexes are related to the services deployed on the nodes
 - The indexes mainly provide service-related evaluation parameters, such as the actual processing throughput that nodes can provide for a specific computing service. It can also be a test value, but it is generated by running the real service

The computing evaluating system (Cont.)

Some other sections in the draft

- We introduce only part of the draft, focusing mainly on the section 5 Computing Resource Modeling
- Other information includes:
 - Usage of Computing
 Resource Modeling
 - Network Resource Modeling
 - Application demand Modeling
 - **–** ...
- The draft is still very initiative and welcome more discussions & contributions

Table of Contents

1. Introduction
2. Definition of Terms
3. Problem Statement in Computing Resource Modeling
3.1. Heterogeneous Chips and Different Computing Types
3.2. Multi-dimensional Modeling
3.3. Support to be used for Further Representation
4. Usage of Computing Resource Modeling of CATS
4.1. Modeling Based on CATS-defined Format
4.2. Modeling Based on Application-defined Method
5. Computing Resource Modeling
5.1. Consideration of Using in CATS
6. Network Resource Modeling
6.1. Consideration of Using in CATS
7. Application Demands Modeling
7.1. Consideration of Using in CATS
8. Security Considerations
9. IANA Considerations
10. Acknowledgements
11. Contributors
12. Informative References
Appendix A. Related Works on Computing Capacity Modeling
Appendix B. Architecture of Computing Modeling
B.1. Computing Capacity
B.1.1. Types of Chips
B.1.2. Type of Computing
B.1.3. Relation of Computing Types and Chips
B.2. Communication, Cache and Storage Capacity
B.3. Comprehensive Computing Capability Evaluation
Authors' Addresses

Thanks!