A YANG Data Model for Layer 0 Types

draft-ietf-ccamp-rfc9093-bis-04

Co-authors (frontpage):
- Sergio Belotti (Nokia)
- Italo Busi (Huawei)
- Dieter Beller (Nokia)
- Haomian Zheng (Huawei)
- Esther Le Rouzic (Orange)
- A. Guo (Futurewei)
- D. King (University of Lancaster)

Contributors
- Y. Lee (Samsung)
- Gabriele Galimberti (Cisco)
- D. Dhody (Huawei)
- B.Y. Yoon (ETRI)
- R. Vilalta (CTTC)
- Enrico Griseri (Nokia)
- V. Lopez (Nokia)
Updates Since IETF 115

YANG model update:

- Added “supported-modes” presence container (issue #126 in Optical Impairment Closed)
 - to allow profile in optical impairment draft there is no ambiguity here for empty list since a transceiver will support at least one mode. Two options here:
 - 1) leave as it is clarifying in the description that the list is empty when the server does not report the supported-modes (profile case)
 - 2) make the supported-modes a presence container and add a min-element 1 to the supported-mode list → chosen for alignment with the adopted profile solutions in all the model

- Closed Issue #66 on RX power penalty
 - to extend the operative region of the receiver. The “extended operative region" would allow to use the transponders/transceivers in network where the deployed HW forces the power level to be less than minimum of operative region.
 - changed the definition of min-OSNR, using rx-ref-channel-power.
 - defined new data node rx-ref-channel-power: the channel power used as reference for defining penalties and min-OSNR
 - introduced the new list for power-penalty
leaf rx-channel-power-penalty {
 config false;
 description
 "Optional penalty associated with a received power
 lower than rx-ref-channel-power.
 This list of pair power and penalty can be used to
 sample the function penalty = f(rx-channel-power).";
 leaf rx-channel-power {
 type union {
 type dbm-t;
 type empty;
 }
 units "dBm";
 config false;
 mandatory true;
 description "Received Power";
 }
 uses penalty-value;
} // grouping transceiver-capabilities

leaf min-OSNR {
 type snr;
 units "dBm";
 config false;
 description
 "min OSNR measured over 0.1 nm resolution bandwidth:
 if received OSNR at Rx-power reference point
 (rx-ref-channel-power) is lower than MIN-OSNR,
 an increased
 level of bit-errors post-FEC needs to be expected";
} leaf rx-ref-channel-power {
 type dbm-t;
 config false;
 description
 "The channel power used as reference
 for defining penalties and min-OSNR";
} // grouping transceiver-capabilities

list supported-modes {
 presence
 "When present, it indicates that the modes supported by a
 transceiver are reported."
 description
 "The top level container for the list supported
 transceiver's modes.";
 list supported-mode {
 key "mode-id";
 config false;
 min-elements 1;
 description "The list of supported transceiver's modes.";
 leaf mode-id {
 type string {
 length "1..255";
 }
 description "ID for the supported transceiver's mode.";
 }
 } // list supported-modes
} // container supported-modes

Open issues

• Tracking Open Issues, discussions and resolutions linked to YANG model https://github.com/ietf-ccamp-wg/ietf-ccamp-layer0-types-ext-RFC9093-bis/issues
• 1 issue closed since IETF-115
• Still 21 open issues: need to review the list and solve first the issues that create dependency for stable draft almost closed to LC (e.g. optical impairments)
• https://github.com/ietf-ccamp-wg

Administrative:

• We have weekly call associated with Optical Impairments aware Topology model on Tuesday 2pm CET
Next Steps

• Complete the Appendix A with the changes from RFC 9093 (issue #40)
• Prioritizing and Fixing the remaining issues https://github.com/ietf-ccamp-wg/ietf-ccamp-layer0-types-ext/issues
backup