Security Analysis of Signature Schemes with Key
Blinding
https://ia.cr/2023/380

Edward Eaton, Tancréde Lepoint, Christopher A. Wood

March 31, 2023

1/9


https://ia.cr/2023/380

Summary

» Security proofs for variations of signature schemes as
described in draft-irtf-cfrg-signature-key-blinding

» Schemes based on ECDSA and EdDSA
» Discussions of security models

» Consider configurations of schemes and their impact on
security

Full paper available now: https://ia.cr/2023/380

2/9


https://ia.cr/2023/380

What is key-blinding?

Consider an EC signature key pair (sk, pk) = (a,a- G) = (a, A).

Take another scalar b and compute B = b - A. Then:
> With just B, you don't know anything about A
» You can sign messages under ab

> Just B is enough to verify signatures

‘Decoupled’ A and B except original sk is still needed to sign!

3/9



What is key-blinding?

Useful when signature schemes are used in anonymity networks.

pk — pk, phos8:C

(][]

8(8

4/9



What is key-blinding?

KeyGen() — (pk, sk) (generate the ‘identity’ keypair)

BlindPK(pk, bk) — bpk (blind the ID public key with respect to bk)
Sign(msg, sk, bk) — o (sign a message with respect to bk)
Vrfy(msg, o, bpk) — 0/1 (verify with respect to a blinded public key)
OPTIONAL: Unb|indPK(bpk, bk) — pk (undo the blinding

operation)

vVvyyYvyyVvyy

Correctness: Vrfy(msg, Sign(msg, sk, bk), BlindPK(pk, bk)) =1

5/9



Security Models

Unforgeability:
» Give adversary identity public key pk

» Adversary makes queries Sign(msg, bk), gets back o
» Adversary submits (msg*, o™, bk*)

Adversary wins if Vrfy(msg*, o™, BlindPK(pk, bk*)) = 1 and
freshness condition is met:

1. msg™* was never part of a signing query (basic unforgeability)
2. msg*, bk* was never a signing query (bk-binding unforgeability)

3. o* was not the result of a query (msg*, bk*)
(bk-binding strong unforgeability)

6/9



Security Models

Unlinkability:
» Adversary queries BlindPK() gets back
bpk = BlindPK(pk, bk) for random bk
» Adversary can query Sign(msg, bpk) for any bpk previously
returned from BlindPK

» Adversary submits a challenge query, gets back either
BlindPK(pk, bk) or BlindPK(pk’, bk) for fresh pk’ and
random bk.

Adversary wins if they guess whether challenge blinded public key
used identity key or not.

If scheme doesn’t support UnblindPK: Permit bk to be
adversarially controlled.

7/9



Constructions for key-blinding

ECDSA.BlindPK(pk, bk) Ed25519.BlindPK(pk, bk)
> bk € {0,1}% > bk € {0,1}2%
> 3« H2S(bk), B € Z, > h < SHA512(bk)
» Return bpk = (3 - pk > 5+« h[0:32]

» Return bpk = 3 - pk

Signing must be appropriately modified to match what the induced
“blinded secret key” is. As well, when calculating
k + SHA512(R, A', msg) in Ed25519 signing, A" = bpk.

8/9



Our Results

» A proof of unlinkability for Ed25519 (seperated from Tor
context)

P> A tight proof of the bk-binding strong unforgeability of
Ed25519

» A proof of unlinkability for ECDSA
» A proof of plain unforgeability in the ECGGM for ECDSA
» Benchmarks for Ed25519 and ECDSA (P-384 and SHA-384)

https://ia.cr/2023/380

9/9


https://ia.cr/2023/380

