
Security Analysis of Signature Schemes with Key
Blinding

https://ia.cr/2023/380

Edward Eaton, Tancrède Lepoint, Christopher A. Wood

March 31, 2023

1 / 9

https://ia.cr/2023/380


Summary

▶ Security proofs for variations of signature schemes as
described in draft-irtf-cfrg-signature-key-blinding

▶ Schemes based on ECDSA and EdDSA
▶ Discussions of security models
▶ Consider configurations of schemes and their impact on

security

Full paper available now: https://ia.cr/2023/380

2 / 9

https://ia.cr/2023/380


What is key-blinding?

Consider an EC signature key pair (sk, pk) = (a, a · G) = (a, A).
Take another scalar b and compute B = b · A. Then:
▶ With just B, you don’t know anything about A
▶ You can sign messages under ab
▶ Just B is enough to verify signatures

‘Decoupled’ A and B except original sk is still needed to sign!

3 / 9



What is key-blinding?

Useful when signature schemes are used in anonymity networks.

4 / 9



What is key-blinding?

▶ KeyGen()→ (pk, sk) (generate the ‘identity’ keypair)
▶ BlindPK(pk, bk)→ bpk (blind the ID public key with respect to bk)
▶ Sign(msg , sk, bk)→ σ (sign a message with respect to bk)
▶ Vrfy(msg , σ, bpk)→ 0/1 (verify with respect to a blinded public key)
▶ OPTIONAL: UnblindPK(bpk, bk)→ pk (undo the blinding

operation)

Correctness: Vrfy(msg , Sign(msg , sk, bk), BlindPK(pk, bk)) = 1

5 / 9



Security Models

Unforgeability:
▶ Give adversary identity public key pk
▶ Adversary makes queries Sign(msg , bk), gets back σ

▶ Adversary submits (msg∗, σ∗, bk∗)

Adversary wins if Vrfy(msg∗, σ∗, BlindPK(pk, bk∗)) = 1 and
freshness condition is met:

1. msg∗ was never part of a signing query (basic unforgeability)

2. msg∗, bk∗ was never a signing query (bk-binding unforgeability)

3. σ∗ was not the result of a query (msg∗, bk∗)
(bk-binding strong unforgeability)

6 / 9



Security Models

Unlinkability:
▶ Adversary queries BlindPK() gets back

bpk = BlindPK(pk, bk) for random bk
▶ Adversary can query Sign(msg , bpk) for any bpk previously

returned from BlindPK
▶ Adversary submits a challenge query, gets back either

BlindPK(pk, bk) or BlindPK(pk ′, bk) for fresh pk ′ and
random bk.

Adversary wins if they guess whether challenge blinded public key
used identity key or not.

If scheme doesn’t support UnblindPK: Permit bk to be
adversarially controlled.

7 / 9



Constructions for key-blinding

ECDSA.BlindPK(pk, bk)
▶ bk ∈ {0, 1}256

▶ β ← H2S(bk), β ∈ Z∗
q

▶ Return bpk = β · pk

Ed25519.BlindPK(pk, bk)
▶ bk ∈ {0, 1}256

▶ h← SHA512(bk)
▶ β ← h[0 : 32]
▶ Return bpk = β · pk

Signing must be appropriately modified to match what the induced
“blinded secret key” is. As well, when calculating
k ← SHA512(R, A′, msg) in Ed25519 signing, A′ = bpk.

8 / 9



Our Results

▶ A proof of unlinkability for Ed25519 (seperated from Tor
context)

▶ A tight proof of the bk-binding strong unforgeability of
Ed25519

▶ A proof of unlinkability for ECDSA
▶ A proof of plain unforgeability in the ECGGM for ECDSA
▶ Benchmarks for Ed25519 and ECDSA (P-384 and SHA-384)

https://ia.cr/2023/380

9 / 9

https://ia.cr/2023/380

