Update on Encryption algorithm Rocca-S draft-nakano-rocca-s

Yuto Nakano, Kazuhide Fukushima, Takanori Isobe

CFRG@IETF116

Security evaluation by 3rd party

 Rocca-S has been confirmed to be secure against following attacks

	Indian Institute of Technology Madras(*)	University of Rennes 1 (**)
Differential Attack	\checkmark	\checkmark
Linear Attack	\checkmark	\checkmark
Forgery Attack	\checkmark	\checkmark
Integral Attack		\checkmark
State-recovery Attack		\checkmark

New security claim

- Key-committing security
 - Ciphertext can only be decrypted with the same key which is used for the encryption

• Rocca-S provides 128-bit key-committing security

Update on performance evaluation

 Evaluation results with "openssl -speed" on Core[™] i9 13900K and Ryzen[™] 9 7950X

Reference implementation is available at https://github.com/yt-nakano/rocca-s

Free to use with your application!!