A Generic COIN framework in controlled environments

draft-yao-coinrg-generic-framework-00

Presenter: Kehan Yao (China mobile)

Introduction

• Programmable Network Devices(PNDs) have inspired a lot of research work like LBs\FWs in the area of COIN. Technically, they are not strictly "computing" in the network, but hardware implementations of network functions.

• We think that Computing in the network is "to offload **application-specific functions** to network elements, so as to accelerate applications".

•These **application-specific functions** are described by series of computing primitives/operations/semantics.

Introduction

 Academic researches and industrial practice in COIN area are lack of generality and scalability.

- mostly case-by-case design
- rely heavily on PNDs

NetCache \ distCache	caching
P4xos \ NetChain \ NetLock	
SwitchML \ SHARP \ ATP	distributed ML training,
ElasticSketch \ SilkRoad \ Sonata	network monitoring

• Application development-friendly framework should be designed to help App developers better leverage the network capabilities provided by operators.

- To increase generality and promote the standardization of COIN
 - summarize some general computing primitives/operations/semantics that can be implemented inside in normal network devices rather than PNDs.
 - Promote them to be standardized.
 - propose a generic framework of COIN in the controlled environments.

Generic COIN Framework

- The generic COIN framework contains three logical layers:
 - Scheduling layer(S): decomposes jobs into host tasks and COIN tasks
 - **Control layer(C)**: Host/COIN task deployment and control, management, routing, End-Network Collaboration
 - Infrastructure layer(I): hosts and network equipment

	Sched	uler
 +	Resource (Hos Job Decomposition (Ta	sk Scheduling Policy)
	Host Task	COIN Task
Control Layer		
Host Co opti Host Task End-Network	ntroller onal> Collabora Installation Collaboration <	COIN Controller ation COIN Task Installation Routing + End-Network Collaboration
	Host Management Host Task Control 	Device Management COIN Task Contro
Infrastructure		 ++
	Host	Network Device

Enabling Technologies-Scheduling Layer

- Schedulers follow a scheduling policy to manage job resource allocation for better efficiency.
- The scheduling policies vary for different workloads:
 - deadline-aware policies for Deadline-Aware (DA) jobs
 - heuristic policies for Best-Effort (BE) jobs
 - •
- With the addition of in-network computing technology, it is necessary to consider not only the host resources, but also the in-network computing resources

Enabling Technologies-Control Layer

• Both host controller and COIN controller can be centralized or distributed. They cooperate to achieve End-Network collaboration.

• Host side:

* Cooperate with the host application to do the COIN processing, including completing the overall calculation task with the network side, and reliability control.

• Network side:

* Network equipment management (status, load condition, computing capacity and resource, etc.)
* topology management

* Routing

Enabling Technologies-Infrastructure Layer

• Network equipment implements the standard COIN primitive.

	ta Structur		Primitives	++
ValStr_Agg	Array		Map.get, Map.add, Map.clear	
Asyn_Val_Agg	Мар		Map.get, Map.add, Stream.modify	
K-V	Мар		Map.get, Map.add	
consensus ++	0		Map.get, Map.add, Map.clear	

- ValStr_Agg: used in applications like distributed machine learning training
- Asyn_Val_Agg: used in big data analysis applications where map-reduce is needed.
- K-V is used for caching
- consensus: used for synchronization within distributed systems
- COIN transformation of application program on host side.
 - the host applications need to be COIN aware
 - flexibly process the data that has been in-network processed or not

Research challenges and other considerations

- End and network collaboration
 - fallback mechanisms --- when tasks cannot be fully accomplished within the network, they should be finished at the end devices. Relative algorithms, protocols should be considered for implementation.
- COIN reliability and correctness
 - correctness mechanisms --- to maintain that the COIN results is consistent with that when tasks are fully accomplished at end devices.
 reliable data transmission --- to fullfill strict QoS requirements.

Thanks!