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Background

● RFC9180: Hybrid Public Key Encryption (HPKE)
○ https://www.rfc-editor.org/rfc/rfc9180.html
○ Defines a scheme for hybrid public key encryption which works with any combination of 

asymmetric KEM, KDF and AEAD.
○ Has already been adopted by TLS ECH, OHTTP, ODoH, etc.

● draft-ietf-cose-hpke-03: Use of HPKE with COSE (COSE-HPKE)
○ https://datatracker.ietf.org/doc/draft-ietf-cose-hpke/
○ Defines how to use HPKE with COSE for encrypting a payload or a CEK.
○ Supposed to be used for “Firmware Encryption with SUIT Manifests”.

https://www.rfc-editor.org/rfc/rfc9180.html
https://datatracker.ietf.org/doc/draft-ietf-cose-hpke/


HPKE Transaction
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Beforehand, the sender needs to know the pkR(recipient public key) 
and key config information: KEM of the pkR, HPKE mode, 
supported KDFs and AEADs

ciphertext(ct), encapsulated key(enc), KDF and AEAD used for the encryption.

encrypt plaintext(pt)
enc, ct = seal(pkR, info, aad, pt);

decrypt ciphertext(ct)
pt = open(enc, skR, info, aad, ct);
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enc, ct = seal(pkR, info, aad, pt);
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Use Cases

● COSE Key and JWK Representation for HPKE KEM can be used for transmitting 
the pkR and key config information and for storing them as config data.
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pkR = KeyObject.from_jwk(response);
enc, ct = seal(pkR, info, aad, pt);

skR = KeyObject.from_jwk(config);
pt = open(enc, skR, info, aad, ct);

200 OK (response)

skR, pkR = generate_key_pair();
// save as config, response respectivelyGET /.well-known/jwks (or cose_keys)

ct, enc, KDF and AEAD used for the encryption.



COSE Key and JWK Representation for HPKE KEM

Defines:
1. a generic key type (“kty”) for HPKE, which can also represent post-quantum KEM keys to be 

defined in the future, and its algorithm values (“alg”).
○ “kty”: “HPKE-KEM”
○ “alg”: “HPKE-v1-Base” | “HPKE-v1-PSK” | “HPKE-v1-Auth” | “HPKE-v1-AuthPSK”

2. a new common key parameter (“hkc”) for representing the HPKE key config information both 
for the “HPKE-KEM” and for the existing key types used for key derivation. The “hkc” contains 
an object consisting of the following attributes:

○ “hkc”: {
    “kem”: 0x0010, // The HPKE KEM identifier associated with the pkR.
    “kdfs”:  0x0001, // The HPKE KDF identifiers supported by the recipient.
    “aeads”: 0x0002, // The HPKE AEAD identifiers supported by the recipient.

                    }

The KEM/KDF/AEAD identifiers are two-byte value registered in the HPKE IANA registry. This 
eliminates the need to define new “kty”s and “alg”s for future-defined post-quantum KEMs.



Examples

// JWK for DHKEM(X25519, KDF-SHA256) Public Key with kty "HPKE-KEM"
{
    "kty": "HPKE-KEM",
    "kid": "01",
    "alg": "HPKE-v1-Base",
    "hkc": {
        "kem": 0x020,
        "kdfs": [0x001, 0x002, 0x003],
        "aeads": [0x001, 0x002]
    },
    "pub": "y3wJq3uXPHeoCO4FubvTc7VcBuqpvUrSvU6ZMbHDTCI"
}

// COSE_Key for DHKEM(X25519, KDF-SHA256) Public Key with kty HPKE-KEM
{
    1:-1(T.B.D.),  // HPKE-KEM
    2:'01',
    3:-1(T.B.D),   // HPKE-v1-Base
    6(T.B.D): [     // hkc (HPKE Key Configuration)
        0x0020,                                // KEM identifier
        [0x0001, 0x0002, 0x0003],  // supported KDF identifiers
        [0x0001, 0x0002]                 // supported AEAD identifiers
    ],
    -1:h'd75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021…'
}

// JWK for DHKEM(P-256, KDF-SHA256) Public Key with existing kty "EC"
{
    "kty": "EC",
    "kid": "01",
    "crv": "P-256",
    "alg": "HPKE-v1-Base",
    "hkc": {
        "kem": 0x010,
        "kdfs": [0x001, 0x002, 0x003],
        "aeads": [0x001, 0x002]
    },
    "x": "-eZXC6nV-xgthy8zZMCN8pcYSeE2XfWWqckA2fsxHPc",
    "y": "BGU5soLgsu_y7GN2I3EPUXS9EZ7Sw0qif-V70JtInFI"
}

// COSE_Key for DHKEM(P-256, KDF-SHA256) Public Key with existing kty EC2
{
    1: 2,              // EC2
    2: '01',
    -1: 1,             // P-256
    3: -1(T.B.D),  // HPKE-v1-Base
    6(T.B.D): [     // hkc (HPKE Key Configuration)
        0x0010,                                // KEM identifier
        [0x0001, 0x0002, 0x0003],  // supported KDF identifiers
        [0x0001, 0x0002]                 // supported AEAD identifiers
    ],
    -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de10…',
    -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9e…'
}



Controversial Points

Received some feedback from Ilari, Orie and Laurence (Thanks!):

● Should the draft be specialized for the COSE_Key representation?
○ I believe the JWK representation should be defined in the draft as well.

■ JWK representation can be used for COSE.
● ex) EUDCC is CWT but the public keys for its verification are published as JWKs.

■ JOSE-HPKE will be needed as an alternative to ECDH-ES-* sooner or later.

● Can the kty ”HPKE-KEM” be accepted?
○ It's reasonable to associate a key type with the purpose of the key, but this differs from existing key 

types ("EC", “RSA”), which are defined for specific cryptographic algorithms.

● Should we support existing key types?
○ If the kty ”HPKE-KEM” can be accepted, the support for the existing key types might lead the 

implementation problems and some kind of confusion.

● Should the draft focus on the HPKE “Base” mode?
○ I prefer to define all of the HPKE modes in the draft because the “hkc” structure should be 

independent of the HPKE modes.



Next Steps

● Any comments?

● Interest in adopting this proposal into the WG?


