
COSE Key and JWK
Representation for HPKE KEM

https://datatracker.ietf.org/doc/draft-ajitomi-cose-cose-key-jwk-hpke-kem/

AJITOMI Daisuke

Background

● RFC9180: Hybrid Public Key Encryption (HPKE)
○ https://www.rfc-editor.org/rfc/rfc9180.html
○ Defines a scheme for hybrid public key encryption which works with any combination of

asymmetric KEM, KDF and AEAD.
○ Has already been adopted by TLS ECH, OHTTP, ODoH, etc.

● draft-ietf-cose-hpke-03: Use of HPKE with COSE (COSE-HPKE)
○ https://datatracker.ietf.org/doc/draft-ietf-cose-hpke/
○ Defines how to use HPKE with COSE for encrypting a payload or a CEK.
○ Supposed to be used for “Firmware Encryption with SUIT Manifests”.

https://www.rfc-editor.org/rfc/rfc9180.html
https://datatracker.ietf.org/doc/draft-ietf-cose-hpke/

HPKE Transaction

Sender

Sender

Recipient

Recipient

Beforehand, the sender needs to know the pkR(recipient public key)
and key config information: KEM of the pkR, HPKE mode,
supported KDFs and AEADs

ciphertext(ct), encapsulated key(enc), KDF and AEAD used for the encryption.

encrypt plaintext(pt)
enc, ct = seal(pkR, info, aad, pt);

decrypt ciphertext(ct)
pt = open(enc, skR, info, aad, ct);

The Scope of the COSE-HPKE Draft

Sender

Sender

Recipient

Recipient

ciphertext(ct), encapsulated key(enc), KDF and AEAD used for the encryption.

encrypt plaintext(pt)
enc, ct = seal(pkR, info, aad, pt);

decrypt ciphertext(ct)
pt = open(enc, skR, info, aad, ct);

Beforehand, the sender needs to know the pkR(recipient public key)
and key config information: KEM of the pkR, HPKE mode,
supported KDFs and AEADs

The Scope of this Proposal

Sender

Sender

Recipient

Recipient

ciphertext(ct), encapsulated key(enc), KDF and AEAD used for the encryption.

encrypt plaintext(pt)
enc, ct = seal(pkR, info, aad, pt);

decrypt ciphertext(ct)
pt = open(enc, skR, info, aad, ct);

Beforehand, the sender needs to know the pkR(recipient public key)
and key config information: KEM of the pkR, HPKE mode,
supported KDFs and AEADs

Use Cases

● COSE Key and JWK Representation for HPKE KEM can be used for transmitting
the pkR and key config information and for storing them as config data.

Sender

Sender

Recipient

Recipient

pkR = KeyObject.from_jwk(response);
enc, ct = seal(pkR, info, aad, pt);

skR = KeyObject.from_jwk(config);
pt = open(enc, skR, info, aad, ct);

200 OK (response)

skR, pkR = generate_key_pair();
// save as config, response respectivelyGET /.well-known/jwks (or cose_keys)

ct, enc, KDF and AEAD used for the encryption.

COSE Key and JWK Representation for HPKE KEM

Defines:
1. a generic key type (“kty”) for HPKE, which can also represent post-quantum KEM keys to be

defined in the future, and its algorithm values (“alg”).
○ “kty”: “HPKE-KEM”
○ “alg”: “HPKE-v1-Base” | “HPKE-v1-PSK” | “HPKE-v1-Auth” | “HPKE-v1-AuthPSK”

2. a new common key parameter (“hkc”) for representing the HPKE key config information both
for the “HPKE-KEM” and for the existing key types used for key derivation. The “hkc” contains
an object consisting of the following attributes:

○ “hkc”: {
 “kem”: 0x0010, // The HPKE KEM identifier associated with the pkR.
 “kdfs”: 0x0001, // The HPKE KDF identifiers supported by the recipient.
 “aeads”: 0x0002, // The HPKE AEAD identifiers supported by the recipient.

 }

The KEM/KDF/AEAD identifiers are two-byte value registered in the HPKE IANA registry. This
eliminates the need to define new “kty”s and “alg”s for future-defined post-quantum KEMs.

Examples

// JWK for DHKEM(X25519, KDF-SHA256) Public Key with kty "HPKE-KEM"
{
 "kty": "HPKE-KEM",
 "kid": "01",
 "alg": "HPKE-v1-Base",
 "hkc": {
 "kem": 0x020,
 "kdfs": [0x001, 0x002, 0x003],
 "aeads": [0x001, 0x002]
 },
 "pub": "y3wJq3uXPHeoCO4FubvTc7VcBuqpvUrSvU6ZMbHDTCI"
}

// COSE_Key for DHKEM(X25519, KDF-SHA256) Public Key with kty HPKE-KEM
{
 1:-1(T.B.D.), // HPKE-KEM
 2:'01',
 3:-1(T.B.D), // HPKE-v1-Base
 6(T.B.D): [// hkc (HPKE Key Configuration)
 0x0020, // KEM identifier
 [0x0001, 0x0002, 0x0003], // supported KDF identifiers
 [0x0001, 0x0002] // supported AEAD identifiers
],
 -1:h'd75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021…'
}

// JWK for DHKEM(P-256, KDF-SHA256) Public Key with existing kty "EC"
{
 "kty": "EC",
 "kid": "01",
 "crv": "P-256",
 "alg": "HPKE-v1-Base",
 "hkc": {
 "kem": 0x010,
 "kdfs": [0x001, 0x002, 0x003],
 "aeads": [0x001, 0x002]
 },
 "x": "-eZXC6nV-xgthy8zZMCN8pcYSeE2XfWWqckA2fsxHPc",
 "y": "BGU5soLgsu_y7GN2I3EPUXS9EZ7Sw0qif-V70JtInFI"
}

// COSE_Key for DHKEM(P-256, KDF-SHA256) Public Key with existing kty EC2
{
 1: 2, // EC2
 2: '01',
 -1: 1, // P-256
 3: -1(T.B.D), // HPKE-v1-Base
 6(T.B.D): [// hkc (HPKE Key Configuration)
 0x0010, // KEM identifier
 [0x0001, 0x0002, 0x0003], // supported KDF identifiers
 [0x0001, 0x0002] // supported AEAD identifiers
],
 -2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de10…',
 -3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9e…'
}

Controversial Points

Received some feedback from Ilari, Orie and Laurence (Thanks!):

● Should the draft be specialized for the COSE_Key representation?
○ I believe the JWK representation should be defined in the draft as well.

■ JWK representation can be used for COSE.
● ex) EUDCC is CWT but the public keys for its verification are published as JWKs.

■ JOSE-HPKE will be needed as an alternative to ECDH-ES-* sooner or later.

● Can the kty ”HPKE-KEM” be accepted?
○ It's reasonable to associate a key type with the purpose of the key, but this differs from existing key

types ("EC", “RSA”), which are defined for specific cryptographic algorithms.

● Should we support existing key types?
○ If the kty ”HPKE-KEM” can be accepted, the support for the existing key types might lead the

implementation problems and some kind of confusion.

● Should the draft focus on the HPKE “Base” mode?
○ I prefer to define all of the HPKE modes in the draft because the “hkc” structure should be

independent of the HPKE modes.

Next Steps

● Any comments?

● Interest in adopting this proposal into the WG?

